Добірка наукової літератури з теми "Beyond CMOS technologie"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Beyond CMOS technologie".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Beyond CMOS technologie"

1

Mohamed, Khaled Salah. "Work around Moore’s Law: Current and next Generation Technologies." Applied Mechanics and Materials 110-116 (October 2011): 3278–83. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.3278.

Повний текст джерела
Анотація:
Interconnect dimensions and CMOS transistor feature size approach their physical limits, therefore scaling will no longer play an important role in performance improvement. So, instead of trying to improve the performance of traditional CMOS circuits, integration of multiple technologies and different components in a heterogeneous system that is high performance will be introduced “moore than more” and CMOS replacement”beyond CMOS” will be explored. This paper focuses on Technology level trends where it presents “More Moore”:New Architectures (SOI, FinFET, Twin-Well),”More Moore” :New Materials (High-K, Metal Gate, Strained-Si) ,”More than Moore”:New Interconnects Schemes (3D, NoC, Optical, Wireless), and ”Beyond CMOS” :New Devices (Molecular Computer, Biological computer, Quantum Computer) .
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Thomas, S. G., P. Tomasini, M. Bauer, B. Vyne, Y. Zhang, M. Givens, J. Devrajan, S. Koester, and I. Lauer. "Enabling Moore's Law beyond CMOS technologies through heteroepitaxy." Thin Solid Films 518, no. 6 (January 2010): S53—S56. http://dx.doi.org/10.1016/j.tsf.2009.10.054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ma, T. P. "(Plenary) Beyond-Si CMOS Technologies Based on High-Mobility Channels." ECS Transactions 54, no. 1 (June 28, 2013): 15–24. http://dx.doi.org/10.1149/05401.0015ecst.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, An, Supriyo Datta, X. Sharon Hu, Michael T. Niemier, Tajana Simunic Rosing, and J. Joshua Yang. "A Survey on Architecture Advances Enabled by Emerging Beyond-CMOS Technologies." IEEE Design & Test 36, no. 3 (June 2019): 46–68. http://dx.doi.org/10.1109/mdat.2019.2902359.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bourianoff, George, and Dmitri Nikonov. "(Keynote) Progress, Opportunities and Challenges for Beyond CMOS Information Processing Technologies." ECS Transactions 35, no. 2 (December 16, 2019): 43–53. http://dx.doi.org/10.1149/1.3568847.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

LI, QILIANG. "HYBRID SILICON-MOLECULAR ELECTRONICS." Modern Physics Letters B 22, no. 12 (May 20, 2008): 1183–202. http://dx.doi.org/10.1142/s0217984908016054.

Повний текст джерела
Анотація:
As CMOS technology extends beyond the current technology node, many challenges to conventional MOSFET were raised. Non-classical CMOS to extend and fundamentally new technologies to replace current CMOS technology are under intensive investigation to meet these challenges. The approach of hybrid silicon/molecular electronics is to provide a smooth transition technology by integrating molecular intrinsic scalability and diverse properties with the vast infrastructure of traditional MOS technology. Here we discuss: (1) the integration of redox-active molecules into Si -based structures, (2) characterization and modeling of the properties of these Si /molecular systems, (3) single and multiple states of Si /molecular memory, and (4) applications based on hybrid Si /molecular electronic system.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

De Gendt, Stefan. "(Dielectric Science & Technology Thomas Callinan Award) Materials and Processes As Enablers for Moore Moore and Beyond Moore Technologies." ECS Meeting Abstracts MA2022-01, no. 18 (July 7, 2022): 1036. http://dx.doi.org/10.1149/ma2022-01181036mtgabs.

Повний текст джерела
Анотація:
In this presentation, an overview will be presented of historic and recent developments achieved w.r.t. materials and processes that enabled continued performance scaling of CMOS and beyond CMOS applications. Starting from early high-k work. For decades, thermal oxidation of crystalline Silicon into SiO2 has been the gate oxide material in CMOS technology. Miniaturization for performance improvement, required the gate dielectric to decrease in thickness to support the required increase in capacitance (per unit area) and drive current (per device width). Early 2000, the thickness scaled below 1.5 nm, causing drastically increased leakage currents, high power consumption and reduced device reliability. Replacing the SiO2 gate dielectric with a high-κ (dielectric constant) material allows increased gate capacitance without the associated leakage effects. Activities involved the unit process step development of dielectric and metal deposition processes, advanced interface preparation, electrical and physical characterization and wet and dry etch process development. In a second section, emphasis will be on emerging nanomaterials. Nanotechnology is defined as the manipulation of matter with at least one dimension sized from below 100nm, thus all CMOS activities are functional nanotechnology. The latter concentrated initially on Graphene, but extended further towards Transition Metal Dicalchogenide Materials. Emphasis of the work will be on growth, functionalization, dielectric passivation and doping of these materials. Lastly, expanding on the nanomaterial know-how also progress with regard to low-k dielectrics, area selective deposition processes (for bottom-up lithography) and application of nanochemistry research for photoresist material screening, where chemical interactions at the nanoscale, related to the EUV lithography (radiation chemistry) are hampering the pattern scaling. Throughout the presentation, recognition will be given to people (PhD students) that contributed to this work and the presentation is also in honor of Prof Dolf Landheer and Professor Samares Kar with whom I organized my first ECS symposium.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pan, Chenyun, Qiuwen Lou, Michael Niemier, Sharon Hu, and Azad Naeemi. "Energy-Efficient Convolutional Neural Network Based on Cellular Neural Network Using Beyond-CMOS Technologies." IEEE Journal on Exploratory Solid-State Computational Devices and Circuits 5, no. 2 (December 2019): 85–93. http://dx.doi.org/10.1109/jxcdc.2019.2960307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Cheng, Zijin Pan, Xunyu Li, Weiquan Hao, Runyu Miao, and Albert Wang. "Selective Overview of 3D Heterogeneity in CMOS." Nanomaterials 12, no. 14 (July 8, 2022): 2340. http://dx.doi.org/10.3390/nano12142340.

Повний текст джерела
Анотація:
As the demands for improved performance of integrated circuit (IC) chips continue to increase, while technology scaling driven by Moore’s law is becoming extremely challenging, if not impractical or impossible, heterogeneous integration (HI) emerges as an attractive pathway to further enhance performance of Si-based complementary metal-oxide-semiconductor (CMOS) chips. The underlying basis for using HI technologies and structures is that IC performance goes well beyond classic logic functions; rather, functionalities and complexity of smart chips span across the full information chain, including signal sensing, conditioning, processing, storage, computing, communication, control, and actuation, which are required to facilitate comprehensive human–world interactions. Therefore, HI technologies can bring in more function diversifications to make system chips smarter within acceptable design constraints, including costs. Over the past two decades or so, a large number of HI technologies have been explored to increase heterogeneities in materials, technologies, devices, circuits, and system architectures, making it practically impossible to provide one single comprehensive review of everything in the field in one paper. This article chooses to offer a topical overview of selected HI structures that have been validated in CMOS platforms, including a stacked-via vertical magnetic-cored inductor structure in CMOSs, a metal wall structure in the back end of line (BEOL) of CMOSs to suppress global flying noises, an above-IC graphene nano-electromechanical system (NEMS) switch and nano-crossbar array electrostatic discharge (ESD) protection structure, and graphene ESD interconnects.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Grella, K., S. Dreiner, H. Vogt, and U. Paschen. "Reliability Investigations up to 350°C of Gate Oxide Capacitors Realized in a Silicon-on-Insulator CMOS Technology." Journal of Microelectronics and Electronic Packaging 10, no. 4 (October 1, 2013): 150–54. http://dx.doi.org/10.4071/imaps.391.

Повний текст джерела
Анотація:
It is difficult to use standard bulk-CMOS-technology at temperatures higher than 175°C due to high pn-leakage currents. Silicon-on-insulator-technologies (SOI), on the other hand, are usable up to 250°C and even higher, because leakage currents can be reduced by two to three orders of magnitude. Nevertheless, performance and reliability of SOI devices are strongly affected at these high temperatures. One of the main critical factors is the gate oxide quality and its reliability. In this paper, we present a study of gate oxide capacitor time-dependent dielectric breakdown (TDDB) measurements at temperatures up to 350°C. The experiments were carried out on gate oxide capacitor structures realized in the Fraunhofer 1.0 μm SOI-CMOS process. The gate oxide thickness is 40 nm. Using the data of the TDDB measurements, the behavior of field and temperature acceleration parameters at temperatures up to 350°C was evaluated. For a more detailed investigation, the evolution of the current in time was also studied. An analysis of the oxide breakdown conditions, in particular the field and temperature dependence of the charge to breakdown and the current just before breakdown, completes the study. The presented data provide important information about accelerated oxide reliability testing beyond 250°C, and make it possible to quickly evaluate the reliability of high temperature CMOS technologies at operation temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Beyond CMOS technologie"

1

Ceyhan, Ahmet. "Interconnects for future technology generations - conventional CMOS with copper/low-k and beyond." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53080.

Повний текст джерела
Анотація:
The limitations of the conventional Cu/low-k interconnect technology for use in future ultra-scaled integrated circuits down to 7 nm in the year 2020 are investigated from the power/performance point of view. Compact models are used to demonstrate the impacts of various interconnect process parameters, for instance, the interconnect barrier/liner bilayer thickness and aspect ratio, on the design and optimization of a multilevel interconnect network. A framework to perform a sensitivity analysis for the circuit behavior to interconnect process parameters is created for future FinFET CMOS technology nodes. Multiple predictive cell libraries down to the 7‒nm technology node are constructed to enable early investigation of the electronic chip performance using commercial electronic design automation (EDA) tools with real chip information. Findings indicated new opportunities that arise for emerging novel interconnect technologies from the materials and process perspectives. These opportunities are evaluated based on potential benefits that are quantified with rigorous circuit-level simulations and requirements for key parameters are underlined. The impacts of various emerging interconnect technologies on the performances of emerging devices are analyzed to quantify the realistic circuit- and system-level benefits that these new switches can offer.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Balijepalli, Heman. "Design, Implementation, and Test of Novel Quantum-dot Cellular Automata FPGAs for the beyond CMOS Era." University of Toledo / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1333730938.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lee, Wei-Chin, and 李威縉. "MBE-grown High quality Oxide Thin Film for CMOS Technology beyond 16nm node." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/08939201900273523191.

Повний текст джерела
Анотація:
博士
國立清華大學
材料科學工程學系
98
Looking beyond the 16 nm node ICs, researchers have come up a consensus that high-κ dielectrics will become the channel material in the long-standing SiO2/Si system. The combination of high-κ dielectrics with channel made of III-Vs will have to be integrated onto Si. Themes of this thesis work focus on utilizing unique MBE technique to grow high quality oxides to search potential solutions to solve this issue. Two major achievements has been obtained by employing the MBE method: (I) further reducing the EOT by (a) interfacial engineering and (b) phase transition engineering, (II) the integration of GaN onto Si through the high quality MBE-grown crystalline oxide. (III) (a) By employing the MBE technique, the formation of the oxide/Si interfacial layer has been effectively suppressed. HfO2 films with 4.9 nm thickness show low leakage current density ~0.4 A/cm2 at 1V, a dielectric constant �� of 20.7, and an EOT of 0.9 nm. The composite film of ALD-HfO2(1.4 nm)/MBE-HfO2(1.5 nm) exhibits an overall�n�� value of 16.2, and an EOT of 0.7 nm with a leakage current density of 5.3×10-1 A/cm2 at Vfb -1V. The Dit value at midgap is 3.6×1011 cm-2eV-1 calculated by the conductance method. (b) Cubic phase yttrium-doped HfO2 (YDH) ultrathin films were grown on both Si (111) and GaAs(100) substrates by molecular beam epitaxy. Thorough structural and morphological investigations by x-ray scattering and transmission electron microscopy reveal that the YDH thin films are epitaxially grown on the Si(111) and GaAs(100) substrates. From the electrical measurements, optimized doping concentration of yttrium into HfO2 increases the dielectric value to 32, achieving lower EOT on both Si and GaAs. (IV) The epitaxial growth of GaN on Si (111) substrates with a thin crystalline oxide (Sc2O3, or ��-Al2O3) as a template/buffer layer is fabricated. The structural properties and in-situ epitaxial growth were studied using reflection high energy electron diffraction (RHEED), high-resolution transmission electron microscopy, and high-resolution x-ray diffraction. The crystalline oxide template serves as an effective barrier layer, and no cracking is observed in GaN.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pan, Chun-Peng, and 潘俊澎. "The 1.8~1.6nm Gate Dielectrics Prepared by Plasma-Nitridation for 0.13um CMOS Technology Application and Beyond." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/48938724714296935755.

Повний текст джерела
Анотація:
碩士
國立臺北科技大學
機電整合研究所
92
In order to improve the device performance, gate oxide has been scaled aggressively. The gate leakage current through the gate oxide increases significantly because direct tunneling is the primary conduction mechanism. The high gate leakage increases standby power consumption, which is a major concern for low power device applications. Decoupled plasma nitridation of is a new technology using inductive coupling to generate nitrogen plasma and implant a high level of nitrogen concentration onto the top surface layer of an ultra-thin gate oxide. This will help to increase the dielectric constant of the gate dielectric, and improve the boron penetration problem in p-channel MOSFETs. Traditional nitrided oxide prepared using N2O or NO thermal nitridation will have nitrogen piling up at the oxide/substrate interface, which results in boron pile up within the oxide causing an increase in the electron trapping and degradation of the oxide reliability. In our study, using traditional nitrided oxide methods result in poor performance、worse resistance to boron penetration、small EOT (effective oxide thickness) decreasing range. In this thesis, we use the current-voltage (I-V) measurements, capacitance-voltage (C-V) measurements, and lots of electric parameters studies were used to characterize the MOSFETs performance with Decoupled-Plasma nitrided oxide and compared with conventional methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kang, Inkuk. "Formation of N⁺P junctions using in-situ phosphorus doped selective Si1-xGex alloys for CMOS technology nodes beyond 50nm." 2004. http://www.lib.ncsu.edu/theses/available/etd-03312004-172745/unrestricted/etd.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chang, Pen, та 張翔筆. "Interface engineering between high-κ dielectrics and III-V high mobility channel materials for passivation enabling the technology beyond Si CMOS". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/26050156900427811103.

Повний текст джерела
Анотація:
博士
國立清華大學
材料科學工程學系
100
The High-κ/Metal-Gate plus III-V high mobility channel materials is regarded as a urgent issue for achieving high performance and low power dissipation complementary metal-oxide-semiconductor (CMOS) technology beyond 15 nm node. A combination of electrical, chemical, and structural characterization methods to evaluate the MOS interface passivation quality. The interface engineering of in-situ directly deposited not only rare-earth oxide (REOs) but also HfO2-based high-κ dielectrics on III-V surface exhibited the successful passivation, in terms of low interfacial density of states (Dit) below 10e12 eV-1cm-2 without midgap peak, low equivalent oxide thickness (EOT) below 1 nm, low leakage current, both conduction band offset (ΔEc) and valence band offset (ΔEv) are larger than 1.5 eV, and truly high thermal stability higher than 800 oC. Moreover, high performance of self-aligned gate first inversion-channel MOS field-effect-transistors (MOSFETs) have achieved steep subthreshold swing (SS) value below 100 mV/dec, a maximum drain current (Id,max) of 1.5 mA/μm, a maximum transconductance (Gm) of 0.77 mS/μm, and a peak field-effect mobility (μFE) of 2100 cm2/Vs. This work suffices the key for realizing ultimately scaled devices with really high performance.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Beyond CMOS technologie"

1

Topaloglu, Rasit O., and H. S. Philip Wong, eds. Beyond-CMOS Technologies for Next Generation Computer Design. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-90385-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Simon, Deleonibus, ed. Electronic device architectures for the nano-CMOS era: From ultimate CMOS scaling to beyond CMOS devices. Singapore: Pan Stanford, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Simon, Deleonibus, ed. Electronic device architectures for the nano-CMOS era: From ultimate CMOS scaling to beyond CMOS devices. Singapore: Pan Stanford, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Topaloglu, Rasit O., and H. S. Philip Wong. Beyond-CMOS Technologies for Next Generation Computer Design. Springer International Publishing AG, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Topaloglu, Rasit O., and H. S. Philip Wong. Beyond-CMOS Technologies for Next Generation Computer Design. Springer, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, An. Advances in Semiconductor Technologies: Selected Topics Beyond Conventional CMOS. Wiley & Sons, Incorporated, John, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chen, An. Advances in Semiconductor Technologies: Selected Topics Beyond Conventional CMOS. Wiley & Sons, Incorporated, John, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chen, An. Advances in Semiconductor Technologies: Selected Topics Beyond Conventional CMOS. Wiley & Sons, Incorporated, John, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chen, An. Advances in Semiconductor Technologies: Selected Topics Beyond Conventional CMOS. Wiley & Sons, Incorporated, John, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ferrari, Philippe, Rolf Jakoby, Onur Hamza Karabey, Gustavo P. Rehder, and Holger Maune, eds. Reconfigurable Circuits and Technologies for Smart Millimeter-Wave Systems. Cambridge University Press, 2022. http://dx.doi.org/10.1017/9781316212479.

Повний текст джерела
Анотація:
Get up to speed on the modelling, design, technologies, and applications of tunable circuits and reconfigurable mm-wave systems. Coverage includes smart antennas and frequency-agile RF components, as well as a detailed comparison of three key technologies for the design of tunable mm-wave circuits: CMOS, RF MEMS, and microwave liquid crystals, and measurement results of state-of-the-art prototypes. Numerous examples of tunable circuits and systems are included that can be practically implemented for the reader's own needs. Ideal for graduate students studying RF/microwave engineering, and researchers and engineers involved in circuit and system design for new communication platforms such as mm-wave 5G and beyond, high-throughput satellites in GSO, and future satellite constellations in MEO/LEO, as well as for automotive radars, security and biomedical mm-wave systems.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Beyond CMOS technologie"

1

Sangiorgi, E. "Part 2 New Materials, Devices and Technologies for Energy Harvesting." In Beyond-CMOS Nanodevices 1, 83–87. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984772.part2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nassiopoulou, Androula G. "Part 4 New Materials, Devices and Technologies for RF Applications." In Beyond-CMOS Nanodevices 1, 365–72. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984772.part4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nassiopoulou, Androula G., Panagiotis Sarafis, Jean-Pierre Raskin, Henza Issa, and Phillippe Ferrari. "Substrate Technologies for Silicon-Integrated RF and mm-Wave Passive Devices." In Beyond-CMOS Nanodevices 1, 373–417. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984772.ch13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jamaa, Haykel Ben, Bahman Kheradmand Boroujeni, Giovanni De Micheli, Yusuf Leblebici, Christian Piguet, Alexandre Schmid, and Milos Stanisavljevic. "Design Technologies for Nanoelectronic Systems Beyond Ultimately Scaled CMOS." In Nanosystems Design and Technology, 45–84. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0255-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Anghel, Costin, and Amara Amara. "Beyond Conventional CMOS Technology: Challenges for New Design Concepts." In Design Technology for Heterogeneous Embedded Systems, 279–301. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-1125-9_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hills, Gage, H. S. Philip Wong, and Subhasish Mitra. "Beyond-Silicon Devices: Considerations for Circuits and Architectures." In Beyond-CMOS Technologies for Next Generation Computer Design, 1–19. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90385-9_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bouvet, Didier, László Forró, Adrian M. Ionescu, Yusuf Leblebici, Arnaud Magrez, Kirsten E. Moselund, Giovanni A. Salvatore, Nava Setter, and Igor Stolitchnov. "Materials and Devices for Nanoelectronic Systems Beyond Ultimately Scaled CMOS." In Nanosystems Design and Technology, 23–44. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0255-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

De Man, Hugo, and Hugo De Man. "Design Technology for Advanced Digital Systems in CMOS and Beyond." In Design, Automation, and Test in Europe, 269–73. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6488-3_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Resta, Giovanni V., Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. "Functionality-Enhanced Devices: From Transistors to Circuit-Level Opportunities." In Beyond-CMOS Technologies for Next Generation Computer Design, 21–42. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90385-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nourbakhsh, Amirhasan, Lili Yu, Yuxuan Lin, Marek Hempel, Ren-Jye Shiue, Dirk Englund, and Tomás Palacios. "Heterogeneous Integration of 2D Materials and Devices on a Si Platform." In Beyond-CMOS Technologies for Next Generation Computer Design, 43–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90385-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Beyond CMOS technologie"

1

Ham, Donhee, and David Scott. "ES1: Beyond CMOS - emerging technologies." In 2010 IEEE International Solid- State Circuits Conference - (ISSCC). IEEE, 2010. http://dx.doi.org/10.1109/isscc.2010.5433854.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Young, Ian. "Technology Options for Beyond-CMOS." In ISPD '17: International Symposium on Physical Design. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3036669.3041225.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sotomayor Torres, C. M., J. Ahopelto, M. W. M. Graef, R. M. Popp, and W. Rosenstiel. "Beyond CMOS - benchmarking for future technologies." In 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE 2012). IEEE, 2012. http://dx.doi.org/10.1109/date.2012.6176445.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kawanaka, Shigeru, Akira Hokazono, Nobuaki Yasutake, Kosuke Tatsumura, Masato Koyama, and Yoshiaki Toyoshima. "Advanced CMOS Technology beyond 45nm Node." In 2007 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA). IEEE, 2007. http://dx.doi.org/10.1109/vtsa.2007.378967.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fettweis, Gerhard P. "Electronics beyond CMOS (introduction)." In 2012 IEEE Technology Time Machine (TTM). IEEE, 2012. http://dx.doi.org/10.1109/ttm.2012.6509054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Prendergast, James. "Electronics beyond CMOS (challenger)." In 2012 IEEE Technology Time Machine (TTM). IEEE, 2012. http://dx.doi.org/10.1109/ttm.2012.6509059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Turner, Richard M., and Kristina M. Johnson. "CMOS position detectors for peak location." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.thb.7.

Повний текст джерела
Анотація:
In this paper, the design and operation of application specific photodetectors (ASPD’s) for correlation plane processing is presented. In addition to image processing and optical measurement technologies, recent advances in spatial light modulator technology have furthered the need for detectors that perform functions beyond detection of an intensity value.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Knechtel, Johann. "Hardware Security For and Beyond CMOS Technology." In ISPD '20: International Symposium on Physical Design. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3372780.3378175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Knechtel, Johann. "Hardware Security for and beyond CMOS Technology." In ISPD '21: International Symposium on Physical Design. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3439706.3446902.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zografos, O., A. De Meester, E. Testa, M. Soeken, P. E. Gaillardon, G. De Micheli, L. Amaru, P. Raghavan, F. Catthoor, and R. Lauwereins. "Wave pipelining for majority-based beyond-CMOS technologies." In 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2017. http://dx.doi.org/10.23919/date.2017.7927195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії