Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Barrier discharge.

Статті в журналах з теми "Barrier discharge"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Barrier discharge".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Avdeev, S. M., G. N. Zvereva, E. A. Sosnin, and V. F. Tarasenko. "XeI barrier discharge excilamp." Optics and Spectroscopy 115, no. 1 (July 2013): 28–36. http://dx.doi.org/10.1134/s0030400x13070035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Laroussi, M., I. Alexeff, J. P. Richardson, and F. F. Dyer. "The resistive barrier discharge." IEEE Transactions on Plasma Science 30, no. 1 (February 2002): 158–59. http://dx.doi.org/10.1109/tps.2002.1003972.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dong, Lifang, Zengqian Yin, Xuechen Li, Zhifang Chai, and Long Wang. "Spatiotemporal dynamics of discharge filaments in dielectric barrier discharges." Journal of Electrostatics 57, no. 3-4 (March 2003): 243–50. http://dx.doi.org/10.1016/s0304-3886(02)00164-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zeng-Qian, Yin, Dong Li-Fang, Chai Zhi-Fang, Li Xue-Chen, and Wang Long. "Temporal Behaviour of Micro-discharge in Dielectric Barrier Discharges." Chinese Physics Letters 19, no. 10 (October 2002): 1476–79. http://dx.doi.org/10.1088/0256-307x/19/10/324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ussenov, Y. A., T. S. Ramazanov, M. T. Gabdullin, M. K. Dosbolayev, and T. T. Daniyarov. "Investigation of electrical and optical properties of dielectric barrier discharge." Physical Sciences and Technology 2, no. 1 (2015): 9–12. http://dx.doi.org/10.26577/2409-6121-2015-2-1-9-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sun, Yanzhou, Mi Zeng, and Zhiyong Cui. "Research on Electrical Characteristics of Dielectric Barrier Discharge and Dielectric Barrier Corona Discharge." Japanese Journal of Applied Physics 51 (September 20, 2012): 09MF15. http://dx.doi.org/10.1143/jjap.51.09mf15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sun, Yanzhou, Mi Zeng, and Zhiyong Cui. "Research on Electrical Characteristics of Dielectric Barrier Discharge and Dielectric Barrier Corona Discharge." Japanese Journal of Applied Physics 51, no. 9S2 (September 1, 2012): 09MF15. http://dx.doi.org/10.7567/jjap.51.09mf15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Park, Insun, Sang-You Kim, Inje Kang, Min-keun Bae, Yoonje Lee, Yeongtak Song, Tae Ho Lim, and Kyu-Sun Chung. "Comparison of AC plasma jets between dielectric barrier discharge and surface barrier discharge." Clinical Plasma Medicine 9 (February 2018): 7. http://dx.doi.org/10.1016/j.cpme.2017.12.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pan, Yuyang, Yaohua Li, Yaya Dou, Guangsheng Fu, and Lifang Dong. "A square superlattice pattern formed through complex interactions among volume discharges and surface discharge in dielectric barrier discharge." Physics of Plasmas 29, no. 5 (May 2022): 053502. http://dx.doi.org/10.1063/5.0082128.

Повний текст джерела
Анотація:
We report a square superlattice pattern with two interleaving grids [(line-grid) and (rod-grid)] and three lattices composed of discrete spots [spot, halo, and spot(w)] in dielectric barrier discharge. The spatiotemporal dynamics is measured by intensified charge-coupled device, photomultiplier tubes, and high-speed video camera. It is found that the line-grid is composed of direction-selective surface discharges, which are induced by wall charge of spot, compressed by wall charge of spot(w), and guided by wall charge of random spots in rod. The rod-grid and the following halo consist of random volume discharges, which are affected by the distribution of wall charges of spot(w), spot, and line-grid. The pattern is formed through a series of complex interactions among volume discharges and surface discharge. These results will promote the study on interaction between volume discharge and surface discharge in dielectric barrier discharge.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Erofeev, M. V., D. V. Schitz, V. S. Skakun, E. A. Sosnin, and V. F. Tarasenko. "Compact dielectric barrier discharge excilamps." Physica Scripta 82, no. 4 (September 14, 2010): 045403. http://dx.doi.org/10.1088/0031-8949/82/04/045403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Schitz, D. V., M. V. Erofeev, V. S. Skakun, V. F. Tarasenko, and S. M. Avdeev. "Air-cooled barrier-discharge excilamps." Instruments and Experimental Techniques 51, no. 6 (November 2008): 886–89. http://dx.doi.org/10.1134/s0020441208060195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Malanichev, V. E., M. V. Malashin, S. I. Moshkunov, and V. Yu Khomich. "Dielectric barrier discharge plasma reactor." High Energy Chemistry 50, no. 4 (July 2016): 304–7. http://dx.doi.org/10.1134/s0018143916040111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Neunnan, DS, and MJ Brennan. "The Dielectric Barrier Discharge: A Bright Spark for Australia's Future." Australian Journal of Physics 48, no. 3 (1995): 543. http://dx.doi.org/10.1071/ph950543.

Повний текст джерела
Анотація:
A dielectric barrier or silent discharge is the name given to a transient gas discharge occurring between two electrodes separated by one or two layers of dielectric material. They have formed the basis of commercial ozonisers for nearly a century but, despite the maturity of this technology, significant experimental and theoretical questions remain to be answered about the operation of these discharges before they can be fully exploited in new applications. Of particular interest is the potential that dielectric barrier discharges display for development as sources of intense, monochromatic, incoherent UV/VUV radiation. This paper briefly outlines the current status of the field with regard to research into the operation and UV/VUV radiative spectroscopy of dielectric barrier discharges. Some applications of these sources are briefly discussed and some of the theoretical models proposed to explain their operation are outlined. The paper concludes with a summary and outlook of the experimental and theoretical project that is being set up under a collaborative venture by CQU and ANU to study dielectric barrier discharges.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Yin Zeng-Qian, Wang Long, Dong Li-Fang, Li Xue-Chen, and Chai Zhi-Fang. "The mapping equation of micro-discharge in dielectric barrier discharges." Acta Physica Sinica 52, no. 4 (2003): 929. http://dx.doi.org/10.7498/aps.52.929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Wang, Yanhui, Hong Shi, Jizhong Sun, and Dezhen Wang. "Period-two discharge characteristics in argon atmospheric dielectric-barrier discharges." Physics of Plasmas 16, no. 6 (June 2009): 063507. http://dx.doi.org/10.1063/1.3155447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Zhang, Yang, Wang, Jia, Yuan, Zhao, and Wang. "Discharge Regimes Transition and Characteristics Evolution of Nanosecond Pulsed Dielectric Barrier Discharge." Nanomaterials 9, no. 10 (September 26, 2019): 1381. http://dx.doi.org/10.3390/nano9101381.

Повний текст джерела
Анотація:
Discharge regime transition in a single pulse can present the breakdown mechanism of nanosecond pulsed dielectric barrier discharge. In this paper, regime transitions between streamer, diffuse, and surface discharges in nanosecond pulsed dielectric barrier discharge are studied experimentally using high resolution temporal–spatial spectra and instantaneous exposure images. After the triggering time of 2–10 ns, discharge was initiated with a stable initial streamer channel propagation. Then, transition of streamer-diffuse modes could be presented at the time of 10–34 ns, and a surface discharge can be formed sequentially on the dielectric plate. In order to analyze the possible reason for the varying discharge regimes in a single discharge pulse, the temporal–spatial distribution of vibrational population of molecular nitrogen N2 (C3Πu, v = 0,1,2) and reduced electric field were calculated by the temporal–spatial emission spectra. It is found that at the initial time, a distorted high reduced electric field was formed near the needle electrode, which excited the initial streamer. With the initial streamer propagating to the dielectric plate, the electric field was rebuilt, which drives the transition from streamer to diffuse, and also the propagation of surface discharge.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Zhu, Ping, Lifang Dong, Jing Yang, Ben Li, and Chao Zhang. "Vibration of Discharge Filaments in a Dielectric Barrier Discharge." IEEE Transactions on Plasma Science 42, no. 8 (August 2014): 1990–94. http://dx.doi.org/10.1109/tps.2014.2325932.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Qian, Muyang, Congying Yang, Sanqiu Liu, Gengsong Ni, and Jialiang Zhang. "Discharge Characteristics of an Atmospheric Dielectric-Barrier Discharge Jet." IEEE Transactions on Plasma Science 43, no. 5 (May 2015): 1780–86. http://dx.doi.org/10.1109/tps.2015.2418812.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Bereka, V. O., and I. P. Kondratenko. "MATCHING OF COMPATIBLE WORK OF SHORT HIGH-VOLTAGE PULSES OF TENSION GENERATOR AND WATER TREATMENT CHAMBER BY DINT OF PULSE BARRIER DISCHARGE." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2021, no. 60 (December 10, 2021): 21–27. http://dx.doi.org/10.15407/publishing2021.60.021.

Повний текст джерела
Анотація:
A technique for calculating the parameters of a magnetic switch as an element of a generator of short high-voltage pulses of tension to coordinate its compatible work with a water treatment chamber by dint of pulse barrier discharge is shown. The expediency and efficiency of using such a switch as an element that, by shunting, the discharge chamber, discharges the barrier to the arrival of the next voltage pulse has been confirmed. It is proved that with the accepted geometrical dimensions of the discharge chamber and the amplitude of the pulse voltage, provided that the magnetic switch is present that it is possible to increase the practical use of electricity by ~ 40% due to that which was accumulated in the dielectric barrier in one discharge. Ref.10, fig. 5.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Li, Xuechen, Jingdi Chu, Qi Zhang, Panpan Zhang, Pengying Jia, and Jinling Geng. "Performance of a large-scale barrier discharge plume improved by an upstream auxiliary barrier discharge." Applied Physics Letters 109, no. 20 (November 14, 2016): 204102. http://dx.doi.org/10.1063/1.4966558.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Florkowski, Marek, Dariusz Krześniak, Maciej Kuniewski, and Paweł Zydroń. "Partial Discharge Imaging Correlated with Phase-Resolved Patterns in Non-Uniform Electric Fields with Various Dielectric Barrier Materials." Energies 13, no. 11 (May 26, 2020): 2676. http://dx.doi.org/10.3390/en13112676.

Повний текст джерела
Анотація:
This paper describes a correlation of partial discharge phase-resolved patterns with an optical imaging performed in a non-uniform electric field configuration. The influence of different dielectric barrier materials, placed on the plane electrode, on the discharge propagation and surface landing was investigated. The investigations were focused on the corona at positive polarity of AC high voltage. It was found that the initial positive corona stage is similar for all cases whereas the discharge propagation and surface landing strongly depends on the barrier material properties. The observed streamer discharge modes have been described by the geometrical measures such as stem length, stretch of a discharge profile on the dielectric barrier surface and an hemispherical envelope of discharge filaments. Since various dielectrics reveal different properties of charge accumulation and surface neutralization, the charge memory effect may be visible and can be related to the ability to create and sustain of additional electric field component. It may refer to subsequent discharges as well as to conditions faced at the voltage polarity reversal. The correspondence between different forms of phase-resolved patterns have been associated with the modes of streamer discharges observed by optical imaging. Presented methodology poses huge potential for both scientific investigations on underlying discharge phenomena as well as on the application in future diagnostic systems of HV insulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Sinha, Sanjai, John Dillon, Savira Kochhar Dargar, Alexi Archambault, Paul Martin, Brittney A. Frankel, Jennifer Inhae Lee, Amanda S. Carmel, and Monika Safford. "What to expect that you’re not expecting: A pilot video education intervention to improve patient self-efficacy surrounding discharge medication barriers." Health Informatics Journal 25, no. 4 (August 31, 2018): 1595–605. http://dx.doi.org/10.1177/1460458218796644.

Повний текст джерела
Анотація:
The objective of this study was to test the feasibility of video discharge education to improve self-efficacy in dealing with medication barriers around hospital discharge. We conducted a single-arm intervention feasibility trial to evaluate the use of video education in participants who were being discharged home from the hospital. The scores of pre- and post-intervention self-efficacy involving medication barriers were measured. We also assessed knowledge retention, patient and nursing feedback, follow-up barrier assessments, and hospital revisits. A total of 40 patients participated in this study. Self-efficacy scores ranged from 5 to 25. Median pre- and post-intervention scores were 21.5 and 23.5, respectively. We observed a median increase of 2.0 points from before to after the intervention (p = 0.046). In total, 95 percent of participants reported knowledge retention and 90 percent found the intervention to be helpful. Video discharge education improved patient self-efficacy surrounding discharge medication challenges among general medicine inpatients. Patients and nurses reported satisfaction with the video discharge education.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Dineff, Peter, and Dilyana Gospodinova. "Electrode configurations and non-uniform dielectric barrier discharge properties." Facta universitatis - series: Electronics and Energetics 22, no. 2 (2009): 217–26. http://dx.doi.org/10.2298/fuee0902217d.

Повний текст джерела
Анотація:
Interesting types of AC discharges in ambient air at atmospheric pressure for the generation of non-thermal plasma at/on dielectric surfaces were investigated. Pin-to-plane dielectric barrier discharge (PTP-DBD) was sustained in the electrode configurations combining electrode components of both corona and DBD - metallic pins, or triangle spikes electrode, situated single- or double-in-line and metallic plate electrode covered with a dielectric barrier. It was investigated experimentally and theoretically the burning mode of a PTP-DBD in ambient air at atmospheric pressure. The PTP-DBD behavior with single- or double-in-line spikes high voltage electrode was discussed. The PTP-DBD is a new DBD-based discharge. .
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Shcherbanev, S. A., S. A. Stepanyan, N. A. Popov, and S. M. Starikovskaia. "Dielectric barrier discharge for multi-point plasma-assisted ignition at high pressures." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, no. 2048 (August 13, 2015): 20140342. http://dx.doi.org/10.1098/rsta.2014.0342.

Повний текст джерела
Анотація:
Nanosecond surface dielectric barrier discharge (nSDBD) is an efficient tool for a multi-point plasma-assisted ignition of combustible mixtures at elevated pressures. The discharge develops as a set of synchronously propagated from the high-voltage electrode charged channels (streamers), with a typical density up to a few streamers per millimetre of the length of the electrode. In combustible mixtures, nSDBD initiates numerous combustion waves propagating from the electrode. Very little is known about nSDBD at high pressures. This work presents a comparative experimental study of the surface dielectric barrier discharge initiated by high-voltage pulses ( U =±(20–60) kV) of different polarities in air at elevated pressures ( P =1–6 atm). Discharge morphology, deposited energy and velocity of the discharge front propagation are analysed. Differences between the discharges of positive and negative polarity, as well as the changes in the discharge morphology with changing of a gas mixture composition,
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Tresselt, K., G. Miehlich, A. Groengroeft, S. Melchior, K. Berger, and C. Harms. "Harbour sludge as barrier material in landfill cover systems." Water Science and Technology 37, no. 6-7 (March 1, 1998): 307–13. http://dx.doi.org/10.2166/wst.1998.0766.

Повний текст джерела
Анотація:
Sediment dredged from the port of Hamburg is treated and stored upland in a storage facility. The site is covered by a system of topsoil above a sand drainage layer and a barrier layer made of processed harbour sludge in order to minimize the input of water after completion of the site. In 1995 in-situ investigations have started to study the hydraulic properties, the water balance and the water quality of the cover system of the storage site Francop in Hamburg. Two lysimeters (500 m2 each) were constructed. During the first dry year after the construction of the lysimeters discharge rates <0.05 mm/d were measured below the sludge barrier. The hydraulic gradients indicate downward water movement in the sludge barrier during the summer and the winter of 1996. The chemical composition of the discharge below the barrier is typical for sludge pore water. An increase of the discharge above the sludge barrier neither led to an increase of discharges nor to changes in the concentration of the water compounds below the barrier. We assume that up to now there is no preferential flow through the sludge barrier. The cover system including the sludge barrier performs very well. The monitoring of the lysimeters is continued.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Liu, Shuhai, and Manfred Neiger. "Double discharges in unipolar-pulsed dielectric barrier discharge xenon excimer lamps." Journal of Physics D: Applied Physics 36, no. 13 (June 19, 2003): 1565–72. http://dx.doi.org/10.1088/0022-3727/36/13/321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

FENG, Jianyu, Lifang DONG, Caixia LI, Ying LIU, Tian DU, and Fang HAO. "Hollow hexagonal pattern with surface discharges in a dielectric barrier discharge." Plasma Science and Technology 19, no. 5 (March 31, 2017): 055401. http://dx.doi.org/10.1088/2058-6272/aa594a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Gu, Jian-Guo, Ya Zhang, Ming-Xiang Gao, Hong-Yu Wang, Quan-Zhi Zhang, Lin Yi, and Wei Jiang. "Enhancement of surface discharge in catalyst pores in dielectric barrier discharges." Journal of Applied Physics 125, no. 15 (April 21, 2019): 153303. http://dx.doi.org/10.1063/1.5082568.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Ren, Chenhua, Bangdou Huang, Jintao Qiu, Cheng Zhang, Bo Qi, Weijiang Chen, and Tao Shao. "Is an extended barrier-free discharge under nanosecond-pulse excitation really diffuse?" Journal of Physics D: Applied Physics 55, no. 23 (March 11, 2022): 235204. http://dx.doi.org/10.1088/1361-6463/ac4f0d.

Повний текст джерела
Анотація:
Abstract A homogeneous discharge with a large volume is a desirable plasma source for many applications. Nanosecond-pulsed high-voltage (HV) excitation is believed to be a promising strategy for obtaining homogeneous or diffuse discharges at atmospheric pressure. In this paper, using a knife–plate geometry driven by a nanosecond-pulsed generator, a diffuse plasma sheet with a gap distance of 1 cm and a length of 12 cm is generated in atmospheric air, maintaining a low gas temperature of ∼330 K. However, time-resolved images reveal that the discharge, which appears diffuse to the naked eye, actually consists of multiple individual streamers that propagate from knife (HV) to plate (ground). The appearance of two processes, namely primary and secondary streamers, is consistently verified by discharge images, electric field evolution and fluid simulation. This further proves that the entire discharge belongs to an intermediate state between corona and spark. This work aids a deeper understanding of the intrinsic characters of similar diffuse discharges and optimizing parameters in practical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Okazaki, Ken, and Tomohiro Nozaki. "Ultrashort pulsed barrier discharges and applications." Pure and Applied Chemistry 74, no. 3 (January 1, 2002): 447–52. http://dx.doi.org/10.1351/pac200274030447.

Повний текст джерела
Анотація:
Atmospheric pressure nonequilibrium plasmas have made a recent remarkable progress in formation techniques including atmospheric pressure glow discharge (APG), dielectric barrier discharge (DBD), corona discharge, surface discharge, ultrashort pulsed discharge, etc., and are expanding their applications into the field of energy and environment as well as material conversion processes. This paper will especially focus on a large improvement of DBD by combining it with squared ultrashort high voltage pulses and various applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Khomich, V. Yu, M. V. Malashin, S. I. Moshkunov, and E. A. Shershunova. "Dielectric Barrier Discharge in Atmospheric Air for Different Barrier Materials." Acta Physica Polonica A 127, no. 4 (April 2015): 1298–300. http://dx.doi.org/10.12693/aphyspola.127.1298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Matsuno, Hiromitsu, Tatsushi Igarashi, Nobuyuki Hishinuma, Fumitoshi Takemoto, Yoshinori Aiura, Kunio Kasaki, Masashi Okamoto, and Tatsimi Hiramoto. "Dielectric barrier discharge-driven excimer lamp." JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 79, Appendix (1995): 313–14. http://dx.doi.org/10.2150/jieij1980.79.appendix_313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Watanabe, Yoshio, Hideto Kurimoto, and Takayuki Nitta. "Investigation of Barrier Discharge Lamp Model." JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN 91, no. 5 (2007): 258–65. http://dx.doi.org/10.2150/jieij.91.258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Matra, Khanit, and Sommavan Wongkuan. "Non-thermal Dielectric Barrier Discharge Generator." Procedia Computer Science 86 (2016): 313–16. http://dx.doi.org/10.1016/j.procs.2016.05.085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Xu, Xueji. "Dielectric barrier discharge — properties and applications." Thin Solid Films 390, no. 1-2 (June 2001): 237–42. http://dx.doi.org/10.1016/s0040-6090(01)00956-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Shang, J. S., F. Roveda, and P. G. Huang. "Electrodynamic force of dielectric barrier discharge." Journal of Applied Physics 109, no. 11 (June 2011): 113301. http://dx.doi.org/10.1063/1.3585853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ayan, H., G. Fridman, A. F. Gutsol, V. N. Vasilets, A. Fridman, and G. Friedman. "Nanosecond-Pulsed Uniform Dielectric-Barrier Discharge." IEEE Transactions on Plasma Science 36, no. 2 (April 2008): 504–8. http://dx.doi.org/10.1109/tps.2008.917947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

McLarnon, C. R., and V. K. Mathur. "Nitrogen Oxide Decomposition by Barrier Discharge." Industrial & Engineering Chemistry Research 39, no. 8 (August 2000): 2779–87. http://dx.doi.org/10.1021/ie990754q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Levko, D. S., and A. N. Tsymbalyuk. "Ethanol conversion in a barrier discharge." Technical Physics Letters 41, no. 3 (March 2015): 228–30. http://dx.doi.org/10.1134/s1063785015030104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Malanichev, V. E., M. V. Malashin, S. I. Moshkunov, S. V. Nebogatkin, V. Yu Khomich, and V. M. Shmelev. "Studying barrier-discharge-stimulated plasmachemical reactions." Technical Physics Letters 43, no. 5 (May 2017): 460–62. http://dx.doi.org/10.1134/s1063785017050224.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Hu, Jing, Wei Li, Chengbin Zheng, and Xiandeng Hou. "Dielectric Barrier Discharge in Analytical Spectrometry." Applied Spectroscopy Reviews 46, no. 5 (July 2011): 368–87. http://dx.doi.org/10.1080/05704928.2011.561511.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Prieto, Graciela, Kazunori Takashima, Akira Mizuno, Oscar Prieto, and Carlos R. Gay. "Dielectric Barrier Discharge for Ammonia Production." Plasma Chemistry and Plasma Processing 33, no. 1 (December 20, 2012): 337–53. http://dx.doi.org/10.1007/s11090-012-9428-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Köhler, Jürgen. "Dielectric barrier discharge pumped N_2 laser." Applied Optics 33, no. 18 (June 20, 1994): 3812. http://dx.doi.org/10.1364/ao.33.003812.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Shang, J. S., and P. G. Huang. "Modeling of ac dielectric barrier discharge." Journal of Applied Physics 107, no. 11 (June 2010): 113302. http://dx.doi.org/10.1063/1.3415526.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Eliasson, B., W. Egli, and U. Kogelschatz. "Modelling of dielectric barrier discharge chemistry." Pure and Applied Chemistry 66, no. 6 (January 1, 1994): 1275–86. http://dx.doi.org/10.1351/pac199466061275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Plaksin, Vadim Yu, Oleksiy V. Penkov, Min Kook Ko, and Heon Ju Lee. "Exhaust Cleaning with Dielectric Barrier Discharge." Plasma Science and Technology 12, no. 6 (December 2010): 688–91. http://dx.doi.org/10.1088/1009-0630/12/6/10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Sorokin, A. R. "Barrier open discharge at atmospheric pressure." Technical Physics Letters 29, no. 5 (May 2003): 373–76. http://dx.doi.org/10.1134/1.1579798.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Zanin, A. L., A. W. Liehr, A. S. Moskalenko, and H. G. Purwins. "Voronoi diagrams in barrier gas discharge." Applied Physics Letters 81, no. 18 (October 28, 2002): 3338–40. http://dx.doi.org/10.1063/1.1518775.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Guo, Cheng’an, Fei Tang, Jin Chen, Xiaohao Wang, Sichun Zhang, and Xinrong Zhang. "Development of dielectric-barrier-discharge ionization." Analytical and Bioanalytical Chemistry 407, no. 9 (November 25, 2014): 2345–64. http://dx.doi.org/10.1007/s00216-014-8281-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Tombrink, Sven, Saskia Müller, Richard Heming, Antje Michels, Peter Lampen, and Joachim Franzke. "Liquid analysis dielectric capillary barrier discharge." Analytical and Bioanalytical Chemistry 397, no. 7 (May 30, 2010): 2917–22. http://dx.doi.org/10.1007/s00216-010-3844-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії