Добірка наукової літератури з теми "Barrier discharge"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Barrier discharge".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Barrier discharge"

1

Avdeev, S. M., G. N. Zvereva, E. A. Sosnin, and V. F. Tarasenko. "XeI barrier discharge excilamp." Optics and Spectroscopy 115, no. 1 (July 2013): 28–36. http://dx.doi.org/10.1134/s0030400x13070035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Laroussi, M., I. Alexeff, J. P. Richardson, and F. F. Dyer. "The resistive barrier discharge." IEEE Transactions on Plasma Science 30, no. 1 (February 2002): 158–59. http://dx.doi.org/10.1109/tps.2002.1003972.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dong, Lifang, Zengqian Yin, Xuechen Li, Zhifang Chai, and Long Wang. "Spatiotemporal dynamics of discharge filaments in dielectric barrier discharges." Journal of Electrostatics 57, no. 3-4 (March 2003): 243–50. http://dx.doi.org/10.1016/s0304-3886(02)00164-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zeng-Qian, Yin, Dong Li-Fang, Chai Zhi-Fang, Li Xue-Chen, and Wang Long. "Temporal Behaviour of Micro-discharge in Dielectric Barrier Discharges." Chinese Physics Letters 19, no. 10 (October 2002): 1476–79. http://dx.doi.org/10.1088/0256-307x/19/10/324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ussenov, Y. A., T. S. Ramazanov, M. T. Gabdullin, M. K. Dosbolayev, and T. T. Daniyarov. "Investigation of electrical and optical properties of dielectric barrier discharge." Physical Sciences and Technology 2, no. 1 (2015): 9–12. http://dx.doi.org/10.26577/2409-6121-2015-2-1-9-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sun, Yanzhou, Mi Zeng, and Zhiyong Cui. "Research on Electrical Characteristics of Dielectric Barrier Discharge and Dielectric Barrier Corona Discharge." Japanese Journal of Applied Physics 51 (September 20, 2012): 09MF15. http://dx.doi.org/10.1143/jjap.51.09mf15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sun, Yanzhou, Mi Zeng, and Zhiyong Cui. "Research on Electrical Characteristics of Dielectric Barrier Discharge and Dielectric Barrier Corona Discharge." Japanese Journal of Applied Physics 51, no. 9S2 (September 1, 2012): 09MF15. http://dx.doi.org/10.7567/jjap.51.09mf15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Park, Insun, Sang-You Kim, Inje Kang, Min-keun Bae, Yoonje Lee, Yeongtak Song, Tae Ho Lim, and Kyu-Sun Chung. "Comparison of AC plasma jets between dielectric barrier discharge and surface barrier discharge." Clinical Plasma Medicine 9 (February 2018): 7. http://dx.doi.org/10.1016/j.cpme.2017.12.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pan, Yuyang, Yaohua Li, Yaya Dou, Guangsheng Fu, and Lifang Dong. "A square superlattice pattern formed through complex interactions among volume discharges and surface discharge in dielectric barrier discharge." Physics of Plasmas 29, no. 5 (May 2022): 053502. http://dx.doi.org/10.1063/5.0082128.

Повний текст джерела
Анотація:
We report a square superlattice pattern with two interleaving grids [(line-grid) and (rod-grid)] and three lattices composed of discrete spots [spot, halo, and spot(w)] in dielectric barrier discharge. The spatiotemporal dynamics is measured by intensified charge-coupled device, photomultiplier tubes, and high-speed video camera. It is found that the line-grid is composed of direction-selective surface discharges, which are induced by wall charge of spot, compressed by wall charge of spot(w), and guided by wall charge of random spots in rod. The rod-grid and the following halo consist of random volume discharges, which are affected by the distribution of wall charges of spot(w), spot, and line-grid. The pattern is formed through a series of complex interactions among volume discharges and surface discharge. These results will promote the study on interaction between volume discharge and surface discharge in dielectric barrier discharge.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Erofeev, M. V., D. V. Schitz, V. S. Skakun, E. A. Sosnin, and V. F. Tarasenko. "Compact dielectric barrier discharge excilamps." Physica Scripta 82, no. 4 (September 14, 2010): 045403. http://dx.doi.org/10.1088/0031-8949/82/04/045403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Barrier discharge"

1

Vander, Wielen Lorraine C. "Dielectric barrier discharge-initiated fiber modification." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/7091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vander, Wielen Lorraine C. "Dielectric barrier discharge-initiated fiber modification." Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/ipstetd-1054/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Roveda, Fabio <1984&gt. "Numerical analysis of Dielectric Barrier Discharge." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4572/.

Повний текст джерела
Анотація:
A numerical investigation of dielectric barrier discharge aimed to simulate the electro hydro dynamic interaction is presented. A discharge drift diffusive model according to the Townsend avalanche is described and used to duplicate the plasma kinetics of a DBD actuator. The discharge characteristics dependence upon dielectric material and applied voltage are simulated and the EHD force field according to a simplified approach is presented and discussed. The coupling of DBD results with a fluid dynamic code is also shown. Finally, a new non invasive diagnostic technique for EHD interaction based on Schlieren imaging is computationally validated.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stanfield, Scott Alan II. "A SPECTROSCOPIC INVESTIGATION OF A SURFACE-DISCHARGE-MODE, DIELECTRIC BARRIER DISCHARGE." Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1261582116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dufresne, Michel 1962. "Fluid model of dielectric barrier gas discharge." Thesis, McGill University, 1997. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=34520.

Повний текст джерела
Анотація:
A two-fluid model of dielectric barrier gas discharge is presented in this thesis. The model predicts the physical structure of the gas discharge obtained between two electrodes, when one is covered with a dielectric material: It predicts the distribution of the electron and ion particle densities, electron energy, and electric field strength. It is a self-consistent numerical model, in which the dielectric properties of the dielectric material are included and the geometry of the electrodes is taken into account, thus coupling the charged-particle transport to the electric field.
New boundary conditions are developed for the electron gas at the anode; the results indicate that the common boundary conditions frequently used in the literature give solutions with non-physical behavior. The new boundary conditions give solutions with the expected physical behavior.
The equations of the model are formulated numerically using a Galerkin finite element method and solved using the Newton iteration method. New universal matrices for the finite element method are presented which can be used to construct complex finite element matrices, by replacing integrals with matrix products, in a consistent and uniform manner independent of element shape, dimensionality, and order.
Solutions for DC, pulse-waveform and time-harmonic applied electrode voltages for geometries with and without a dielectric barrier are presented. The regulating effect of the dielectric barrier by surface charge accumulation is shown for discharge under constant applied voltage, assuming a static temperature for the electron gas, for the full self-consistent model. Also, simulations of dielectric barrier discharge with applied pulse-waveform voltages are compared with simulations of applied time-harmonic voltages. The results show very similar period-averaged electric fields, electron temperature profiles, charged particle densities, and total conduction current densities. However, a much higher period-integrated ionization rate is obtained from voltage pulse simulations, compared to time-harmonic voltage simulations. Therefore, we obtain a greater reaction rate for an equivalent conduction current, in a period-averaged sense, for a discharge driven by pulse-waveform applied voltages than with time-harmonic applied voltages. Such a difference was not observed for simulations without the dielectric barrier.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dufresne, Michel. "Fluid model of dielectric barrier gas discharge." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ36971.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Grundmann, Sven. "Transition control using dielectric barrier discharge actuators /." Aachen : Shaker, 2008. http://d-nb.info/990886751/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhou, Yingjia. "Optimisation of ozone generation using dielectric barrier discharge." Thesis, University of Strathclyde, 2017. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=30240.

Повний текст джерела
Анотація:
The aims of the research include understanding the fundamental kinetics of ozone generation using dielectric barrier discharge and investigating the potential to optimize the process to improve ozone generation efficiency. The kinetics of ozone generation and its limitations are reviewed. The discharge characteristics of single filaments are investigated by analysing its equivalent circuit and the distribution of current magnitude. The parallel-plane electrode is used for the investigation of the relationship between current distribution, reduced electric field and ozone generation efficiency. The maximum ozone efficiency of the experiment is 207 g/kWh at the reduced electric field of 120 Td. With the increase of reduced electric field from 120 Td to 280 Td, the ozone generation efficiency drops to 109 g/kWh. The meshed electrode configuration was employed to optimize the ozone efficiency. The highest ozone efficiency achieved is over 330 g/kWh at ~ 100 Td which is twice higher than the commercial ozone generator. It is found that the distribution of external current amplitude using meshed electrode is narrower compared to planar plates. To further understand ozone generation kinetics, the gas discharge is generated at cryogenic temperature of -183 °C using liquid oxygen. The liquid ozone is produced and the highest ozone efficiency achieved is ~ 460 g/kWh. The ozone dissociation reactions involving atomic oxygen and free electrons and the humidity effect at cryogenic temperature of -183 °C were effectively limited.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Grundmann, Sven [Verfasser]. "Transition Control using Dielectric Barrier Discharge Actuators / Sven Grundmann." Aachen : Shaker, 2008. http://d-nb.info/1161304355/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Urabe, Keiichiro. "Spectroscopic Study of Dielectric Barrier Discharge at Atmospheric Pressure." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/157532.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Barrier discharge"

1

Troia, Nina. Overall summary of findings: Length of stay and costs of treatment, client characteristics and barriers to discharge among clients placed in the intensive treatment programs at Northern Wisconsin Center and Southern Wisconsin Center. [Madison, Wis.?]: Wisconsin Dept. of Health and Family Services, Office of Strategic Finance, Evaluation Section, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Flórez Rubio, David Magín. Power Supplies for Dialectric Barrier Discharges. Power Supplies for Dialectric Barrier Discharges. Editorial Pontificia Universidad Javeriana, 2018. http://dx.doi.org/10.11144/javeriana.9789587813838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Robert, Wintgen. Ch.10 Limitation periods, Art.10.11. Oxford University Press, 2015. http://dx.doi.org/10.1093/law/9780198702627.003.0211.

Повний текст джерела
Анотація:
This commentary analyses Article 10.11 of the UNIDROIT Principles of International Commercial Contracts (PICC) concerning the right of restitution with regard to limitation periods. Under Art 10.9(1), the expiration of the limitation period does not extinguish the right but only bars its enforcement, thus making the time-barred obligation a legal ground for voluntary performance. If there has been performance in order to discharge an obligation, Art 10.11 stipulates that there is no right of restitution merely because the limitation period has expired. The use of the word ‘merely’ implies that a restitutionary claim can be based on grounds other than the expiry of the limitation period.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pisinger, Charlotta, and Serena Tonstad. Smoking. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199656653.003.0010.

Повний текст джерела
Анотація:
Smoking causes all forms of cardiovascular disease (CVD): there is no safe level of smoking. The health benefits of quitting smoking are immediate. In patients with coronary heart disease smoking cessation results in a dramatic decline in future cardiovascular events and reduces cardiovascular death; it is the most effective and cheapest treatment for preventing new or recurrent CVD. Tobacco dependence should be regarded as a chronic disease with a lifelong risk of relapse. Making treatment readily available and reducing barriers to treatment increase the likelihood that smokers will accept treatment. Medication and follow-up should be arranged for all smokers upon hospital discharge and in outpatient settings. High priority should be given to identification and documentation of the smoking status of all patients, and systematic provision of cessation support. Clinicians should also ask about exposure to second-hand smoke and should play an active role in advocating for stronger tobacco controls.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pisinger, Charlotta, and Serena Tonstad. Smoking. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199656653.003.0010_update_001.

Повний текст джерела
Анотація:
Smoking causes all forms of cardiovascular disease (CVD): there is no safe level of smoking. The health benefits of quitting smoking are immediate. In patients with coronary heart disease smoking cessation results in a dramatic decline in future cardiovascular events and reduces cardiovascular death; it is the most effective and cheapest treatment for preventing new or recurrent CVD. Tobacco dependence should be regarded as a chronic disease with a lifelong risk of relapse. Making treatment readily available and reducing barriers to treatment increase the likelihood that smokers will accept treatment. Medication and follow-up should be arranged for all smokers upon hospital discharge and in outpatient settings. High priority should be given to identification and documentation of the smoking status of all patients, and systematic provision of cessation support. Clinicians should also ask about exposure to second-hand smoke and should play an active role in advocating for stronger tobacco controls.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Barrier discharge"

1

Vander Wielen, L. C., and A. J. Ragauskas. "Fiber Modification Via Dielectric-Barrier Discharge." In Modified Fibers with Medical and Specialty Applications, 215–29. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-3794-5_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bansode, Avinash S., Aumir Beg, Swanandi Pote, Bushra Khan, Rama Bhadekar, Alok Patel, S. V. Bhoraskar, and V. L. Mathe. "Dielectric Barrier Discharge Plasma for Endodontic Treatment." In Biomedical Engineering Systems and Technologies, 89–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44485-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Blajan, Marius, Akihiko Ito, Jaroslav Kristof, and Kazuo Shimizu. "Flow Control by Dielectric Barrier Discharge Microplasma." In Advances in Intelligent Systems and Computing, 169–75. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67459-9_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Subedi, Deepak Prasad, Ujjwal Man Joshi, and Chiow San Wong. "Dielectric Barrier Discharge (DBD) Plasmas and Their Applications." In Plasma Science and Technology for Emerging Economies, 693–737. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4217-1_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Creyghton, Yves, Rogier Meijer, Paul Verweij, Frank van der Zanden, and Paul Leenders. "Surface Dielectric Barrier Discharge Jet for Skin Disinfection." In Plasma for Bio-Decontamination, Medicine and Food Security, 301–10. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2852-3_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pal, Suparna, R. Sriram, M. V. Srisha Rao, and G. Jagadeesh. "Effect of Dielectric Barrier Discharge Plasma in Supersonic Flow." In 28th International Symposium on Shock Waves, 867–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25685-1_133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Araoka, N., N. Takamura, Y. Sasaki, M. Mizusaki, M. Matsuda, T. Namihira, and M. Hanai. "Observation of Propagation Phenomenon of Air Discharge Penetrating Through Insulator Barrier in Discharge Path." In Lecture Notes in Electrical Engineering, 410–19. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31680-8_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nozaki, Tomohiro, Yoshihito Kimura, Ken Okazaki, and Shigeru Kado. "Controlled Growth of Carbon Nanotubes Using Pulsed Glow-Barrier Discharge." In Plasma Processes and Polymers, 477–87. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605584.ch35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sirghi, Lucel, Florentina Samoila, and Viorel Anita. "Cleaning of Silica Surfaces by Surface Dielectric Barrier Discharge Plasma." In Advances in Intelligent Systems and Computing, 255–59. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46490-9_35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Šimor, Marcel, and Yves Creyghton. "Treatment of Polymer Surfaces with Surface Dielectric Barrier Discharge Plasmas." In Atmospheric Pressure Plasma Treatment of Polymers, 27–81. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118747308.ch2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Barrier discharge"

1

Wang, Yongjie, Zengqian Yin, Mingqiang Huang, and Jingyu Wan. "The influence of barrier on dielectric barrier discharge." In International Symposium on Photoelectronic Detection and Imaging 2011. SPIE, 2011. http://dx.doi.org/10.1117/12.900815.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gulec, A., and L. Oksuz. "Characteristics of Dielectric Barrier Discharge." In SIXTH INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION. AIP, 2007. http://dx.doi.org/10.1063/1.2733438.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhou, Linghe, Tao Wang, Scott Macgregor, Mark Wilson, Igor Timoshkin, and Martin Given. "NO removal and discharge characteristics using dielectric barrier discharge." In 2017 IEEE 21st International Conference on Pulsed Power (PPC). IEEE, 2017. http://dx.doi.org/10.1109/ppc.2017.8291245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shang, Joseph. "Electromagnetic Field of Dielectric Barrier Discharge." In 36th AIAA Plasmadynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-5182.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ishida, Takahiro, Keisuke Hirasawa, Masaharu Dozen, and Yuki Tada. "Appearance of DC dielectric barrier discharge." In 2011 International Symposium on Electrical Insulating Materials (ISEIM). IEEE, 2011. http://dx.doi.org/10.1109/iseim.2011.6826332.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Blajan, Marius, and Kazuo Shimizu. "Characteristics of dielectric barrier discharge microplasma." In 2013 IEEE Industry Applications Society Annual Meeting. IEEE, 2013. http://dx.doi.org/10.1109/ias.2013.6682462.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sosnin, Edward A., Mikhail I. Lomaev, Alexei N. Panchenko, Victor S. Skakun, and Victor F. Tarasenko. "Glow-and-barrier-discharge efficient excilamps." In International Conference on Atomic and Molecular Pulsed Lasers, edited by Victor F. Tarasenko, Georgy V. Mayer, and Gueorgii G. Petrash. SPIE, 1998. http://dx.doi.org/10.1117/12.311958.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mercado-Cabrera, A., O. G. Godoy-Cabrera, R. Valencia-Alvarado, R. López-Callejas, S. R. Barocio, R. Peña-Eguiluz, A. Muñoz-Castro, A. de la Piedad-Beneitez, and E. León del Villar. "NO’x Treatment by Dielectric Barrier Discharge." In PLASMA AND FUSION SCIENCE: 16th IAEA Technical Meeting on Research using Small Fusion Devices; XI Latin American Workshop on Plasma Physics. AIP, 2006. http://dx.doi.org/10.1063/1.2405939.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tsai, Tsung-Chan, and David Staack. "Investigation of discharge uniformity in helium dielectric barrier discharge jets." In 2012 IEEE 39th International Conference on Plasma Sciences (ICOPS). IEEE, 2012. http://dx.doi.org/10.1109/plasma.2012.6383356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liu, Weili, Lifang Dong, Hongfang Wang, and Yafeng He. "Optical measurement of discharge pattern in dielectric barrier discharge system." In Photonics Asia 2007, edited by Yongtian Wang, Theo T. Tschudi, Jannick P. Rolland, and Kimio Tatsuno. SPIE, 2007. http://dx.doi.org/10.1117/12.757652.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Barrier discharge"

1

V.K. Mathur. MERCURY OXIDIZATION IN NON-THERMAL PLASMA BARRIER DISCHARGE SYSTEM. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/839988.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Estevadeordal, Jordi, and Sivaram Gogineni. Low-Speed Flow Control Using Dielectric Barrier Discharge (DBD). Fort Belvoir, VA: Defense Technical Information Center, December 2006. http://dx.doi.org/10.21236/ada463519.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Meichle, R. H. Safety assessment of discharge chute isolation barrier preparation and installation. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10189662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Meichle, R. H. Safety assessment of discharge chute isolation barrier preparation and installation. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10116852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Meichle, R. H. Safety assessment of discharge chute isolation barrier preparation and installation. Revision 1. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10191539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Meichle, R. H. Safety assessment of discharge chute isolation barrier preparation and installation activities. Revision 3. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/10116583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

G. Rewoldt, K.W. Hill, R. Nazikian, W.M. Tang, H Shirai, Y. Sakamoto, Y. Kishimoto, S.Ide, and and T. Fujita. Radial Patterns of Instability and Transport in JT-60U Internal Transport Barrier Discharges. Office of Scientific and Technical Information (OSTI), February 2001. http://dx.doi.org/10.2172/775688.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Underwood, Thomas C. Development of a Lumped Element Circuit Model for Approximation of Dielectric Barrier Discharges. Fort Belvoir, VA: Defense Technical Information Center, August 2011. http://dx.doi.org/10.21236/ada558393.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bhattarai, Rabin, Yufan Zhang, and Jacob Wood. Evaluation of Various Perimeter Barrier Products. Illinois Center for Transportation, May 2021. http://dx.doi.org/10.36501/0197-9191/21-009.

Повний текст джерела
Анотація:
Construction activities entail substantial disturbance of topsoil and vegetative cover. As a result, stormwater runoff and erosion rates are increased significantly. If the soil erosion and subsequently generated sediment are not contained within the site, they would have a negative off-site impact as well as a detrimental influence on the receiving water body. In this study, replicable large-scale tests were used to analyze the ability of products to prevent sediment from exiting the perimeter of a site via sheet flow. The goal of these tests was to compare products to examine how well they retain sediment and how much ponding occurs upstream, as well as other criteria of interest to the Illinois Department of Transportation. The products analyzed were silt fence, woven monofilament geotextile, Filtrexx Siltsoxx, ERTEC ProWattle, triangular silt dike, sediment log, coconut coir log, Siltworm, GeoRidge, straw wattles, and Terra-Tube. Joint tests and vegetated buffer strip tests were also conducted. The duration of each test was 30 minutes, and 116 pounds of clay-loam soil were mixed with water in a 300 gallon tank. The solution was continuously mixed throughout the test. The sediment-water slurry was uniformly discharged over an 8 ft by 20 ft impervious 3:1 slope. The bottom of the slope had a permeable zone (8 ft by 8 ft) constructed from the same soil used in the mixing. The product was installed near the center of this zone. Water samples were collected at 5 minute intervals upstream and downstream of the product. These samples were analyzed for total sediment concentration to determine the effectiveness of each product. The performance of each product was evaluated in terms of sediment removal, ponding, ease of installation, and sustainability.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tipton, Kelley, Brian F. Leas, Nikhil K. Mull, Shazia M. Siddique, S. Ryan Greysen, Meghan B. Lane-Fall, and Amy Y. Tsou. Interventions To Decrease Hospital Length of Stay. Agency for Healthcare Research and Quality (AHRQ), September 2021. http://dx.doi.org/10.23970/ahrqepctb40.

Повний текст джерела
Анотація:
Background. Timely discharge of hospitalized patients can prevent patient harm, improve patient satisfaction and quality of life, and reduce costs. Numerous strategies have been tested to improve the efficiency and safety of patient recovery and discharge, but hospitals continue to face challenges. Purpose. This Technical Brief aimed to identify and synthesize current knowledge and emerging concepts regarding systematic strategies that hospitals and health systems can implement to reduce length of stay (LOS), with emphasis on medically complex or vulnerable patients at high risk for prolonged LOS due to clinical, social, or economic barriers to timely discharge. Methods. We conducted a structured search for published and unpublished studies and conducted interviews with Key Informants representing vulnerable patients, hospitals, health systems, and clinicians. The interviews provided guidance on our research protocol, search strategy, and analysis. Due to the large and diverse evidence base, we limited our evaluation to systematic reviews of interventions to decrease hospital LOS for patients at potentially higher risk for delayed discharge; primary research studies were not included, and searches were restricted to reviews published since 2010. We cataloged the characteristics of relevant interventions and assessed evidence of their effectiveness. Findings. Our searches yielded 4,364 potential studies. After screening, we included 19 systematic reviews reported in 20 articles. The reviews described eight strategies for reducing LOS: discharge planning; geriatric assessment or consultation; medication management; clinical pathways; inter- or multidisciplinary care; case management; hospitalist services; and telehealth. All reviews included adult patients, and two reviews also included children. Interventions were frequently designed for older (often frail) patients or patients with chronic illness. One review included pregnant women at high risk for premature delivery. No reviews focused on factors linking patient vulnerability with social determinants of health. The reviews reported few details about hospital setting, context, or resources associated with the interventions studied. Evidence for effectiveness of interventions was generally not robust and often inconsistent—for example, we identified six reviews of discharge planning; three found no effect on LOS, two found LOS decreased, and one reported an increase. Many reviews also reported patient readmission rates and mortality but with similarly inconsistent results. Conclusions. A broad range of strategies have been employed to reduce LOS, but rigorous systematic reviews have not consistently demonstrated effectiveness within medically complex, high-risk, and vulnerable populations. Health system leaders, researchers, and policymakers must collaborate to address these needs.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії