Добірка наукової літератури з теми "Barley – Water requirements; Barley – Yields; Plants, Effect of drought on"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Barley – Water requirements; Barley – Yields; Plants, Effect of drought on".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Barley – Water requirements; Barley – Yields; Plants, Effect of drought on"

1

Krček, M., P. Slamka, K. Olšovská, M. Brestič, and M. Benčíková. "Reduction of drought stress effect in spring barley (Hordeum vulgare L.) by nitrogen fertilization." Plant, Soil and Environment 54, No. 1 (January 14, 2008): 7–13. http://dx.doi.org/10.17221/2781-pse.

Повний текст джерела
Анотація:
An effect of nitrogen rates (0.0 g, 1.0 g, 2.0 g N per pot) on NRA (nitrate reductase activity) in leaves of spring barley (cultivar Kompakt) was investigated in a pot experiment. Plants were grown under optimum moisture regime and drought stress was induced during the growth stages of tillering, shooting and earing. Before and after respective stress period plants were grown under optimal water regime. In all the fertilized and unfertilized treatments, NRA was significantly higher under optimal water regime than in drought stress conditions. Nitrogen fertilization alleviated adverse effects of drought stress on the yields of grain; the rate of 1 g N per pot increased the grain yield of plants stressed during tillering 3.73 times compared to unfertilized and stressed treatment. When the stress was induced during shooting or earing grain yields declined by over 50% compared to optimal water regime; when compared with stressed and unfertilized treatment, the rate of 1 g N however increased yield by 29% (stress at shooting) and 55% (stress at earing). NRA values were significantly higher when plants were grown under optimum water regime than under stress conditions as well as when fertilized with nitrogen compared to unfertilized control both under optimum water regime and drought stress.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sabagh, Ayman EL, Akbar Hossain, Md Shohidul Islam, Celaleddin Barutcular, Saddam Hussain, Mirza Hasanuzzaman, Tauseef Akram, et al. "Drought and salinity stresses in barley: Consequences and mitigation strategies." June 2019, no. 13(06) 2019 (June 20, 2019): 810–20. http://dx.doi.org/10.21475/ajcs.19.13.06.p1286.

Повний текст джерела
Анотація:
Recent trends show reductions in crop productivity worldwide due to severe climatic change. Different abiotic stresses significantly affect the growth and development of plants, leading to decreased crop yields. Salinity and drought stresses are the most common abiotic stresses, especially in arid and semi–arid regions, and are major constraints for barley production. The present review attempts to provide comprehensive information related to barley plant responses and adaptations to drought and salinity stresses, including physiological and agronomic, in order to alleviate the adverse effect of stresses in barley. These stresses reduce assimilation rates, as they decrease stomatal conductance, disrupt photosynthetic pigments, reduce gas exchange, enhance production of reactive oxygen species, and lead to decreased plant growth and productivity. This review focuses on the strategies plants use to respond and adapt to drought and salinity stress. Plants utilize a range of physiological and biochemical mechanisms such as adaptation strategies, through which the adverse effects can be mitigated. These include soil management practices, crop establishment, as well as foliar application of anti-oxidants and growth regulators that maintain an appropriate level of water in the leaves to facilitate adjustment of osmotic and stomatal performance. The present review highlighted the adverse effect of drought and salinity stresses barley and their mitigation strategies for sustainable barley production under changing climate. They review also underscored that exogenous application of different antioxidants could play a significant role in the alleviation of salinity and drought stress in plant systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Volkmar, K. M., and C. Chang. "Influence of hydrophilic gel polymers on water relations and growth and yield of barley and canola." Canadian Journal of Plant Science 75, no. 3 (July 1, 1995): 605–11. http://dx.doi.org/10.4141/cjps95-105.

Повний текст джерела
Анотація:
Hydrophilic super-absorbent polymers retain large amounts of plant-available moisture and have been promoted for use as soil amendments in drought-prone regions. This controlled-environment study evaluated the capacity of two commercial polymer gels, Grogel and Transorb, to mitigate the effects of recurring moderate water-deficit stress (dry-down to 50% field capacity before rewatering) on growth and yield of barley and canola. Rates of 0.03, 0.12, 0.47 and 1.87 g polymer kg−1 sandy loam soil (1, 4, 16 and 64 times the recommended commercial application rate) were tested. Plants were grown at a soil moisture content of approximately 50% of field capacity. Neither polymer was effective at the commercially recommended rate. Barley and canola grain yields were unaffected at any Grogel rate, and Transorb had no effect on barley grain yield. Grogel at the highest rate enhanced early shoot mass, mature biomass production and grain yield of barley and increased leaf RWC. Canola had greater early and late vegetative biomass, but pod yield was not increased by Grogel at any rate. Transorb was most effective at four times the recommended rate, significantly increasing tiller and fertile spike number and mature biomass production at that rate. Leaf RWC were unaffected by Transorb treatment. Grogel stimulated root growth of barley but had no effect on roots of canola. Both polymers tended to increase consumptive water use. Spatial restriction was found to drastically reduce the water retention of both polymers and limit the absorbency of both polymers in this study. The high rates of polymer required to elicit a crop yield response under relatively mild water-deficit conditions limit the value of these polymers for agricultural field use of the crop species tested. Key words: Barley, canola, drought, hydrophilic polymer, soil conditioner, water stress
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Haberle, Jan, Renata Duffková, Ivana Raimanová, Petr Fučík, Pavel Svoboda, Vojtěch Lukas, and Gabriela Kurešová. "The 13C Discrimination of Crops Identifies Soil Spatial Variability Related to Water Shortage Vulnerability." Agronomy 10, no. 11 (October 31, 2020): 1691. http://dx.doi.org/10.3390/agronomy10111691.

Повний текст джерела
Анотація:
Spatial variability of crop growth and yields is the result of many interacting factors. The contribution of the factors to variable yields is often difficult to separate. This work studied the relationships between the 13C discrimination (Δ13C) of plants and the spatial variability of field soil conditions related to impacts of water shortage on crop yield. The 13C discrimination, the indicator of water shortage in plants, 15N (δ15N) discrimination, and nitrogen (N) content were determined in grains of winter wheat, spring barley, and pea. The traits were observed at several dozens of grid spots in seven fields situated in two regions with different soil and climate conditions between the years 2017 and 2019. The principles of precision agriculture were implemented in some of the studied fields and years by variable rate nitrogen fertilization. The Δ13C significantly correlated with grain yields (correlation coefficient from 0.66 to 0.94), with the exception of data from the wetter year 2019 at the site with higher soil water capacity. The effect of drought was demonstrated by statistically significant relationships between Δ13C in dry years and soil water capacity (r from 0.46 to 0.97). The significant correlations between Δ13C and N content of seeds and soil water capacity agreed with the expected impact of water shortage on plants. The 13C discrimination of crop seeds was confirmed as a reliable indicator of soil spatial variability related to water shortage. Stronger relationships were found in variably fertilized areas.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Islam, Md Saiful. "Growth and Yield Performance of Selected Wheat Genotypes at Variable Irrigation Management." Journal of Advanced Agriculture & Horticulture Research 1, no. 1 (June 25, 2021): 24–32. http://dx.doi.org/10.55124/jahr.v1i1.40.

Повний текст джерела
Анотація:
The experiment was conducted in the Agronomy Field, Sher-e-Bangla Agricultural University (SAU), Dhaka-1207 during the period of November 17, 2016 to March 29, 2017 on growth and yield performance of selected wheat genotypes at variable irrigation. In this experiment, the treatment consisted of three varieties viz. V1 = BARI Gom 26, V2 = BARI Gom 28, V3 = BARI Gom 30, and four different irrigations viz. I0 = No Irrigation throughout the growing season, I1 = One irrigation (Irrigate at CRI stage), I2= Two irrigation (Irrigate at CRI and grain filling), I3= Three irrigation (irrigate at CRI, booting and grain filling stages). The experiment was laid out in two factors split plot with three replications. The collected data were statistically analyzed for evaluation of the treatment effect. Results showed that a significant variation among the treatments in respect majority of the observed parameters. Results showed significant variation in almost every parameter of treatments. The highest Plant height, number of effective tillers hill-1, spike length, number of grain spike-1 was obtained from BARI Gom-30. The highest grain weight hectare-1 (3.44 ton) was found from wheat variety BARI Gom-30. All parameters of wheat showed statistically significant variation due to variation of irrigation. The maximum value of growth, yield contributing characters, seed yield was observed with three irrigation (irrigate at CRI, booting and grain filling stages). The interaction between different levels of variety and irrigation was significantly influenced on almost all growth and yield contributing characters, seed yield. The highest yield (3.99 t ha-1) was obtained from BARI Gom-30 with three irrigation (irrigate at CRI, booting and grain filling stages). The optimum growth and higher yield of wheat cv. BARI Gom-30 could be obtained by applying three irrigations at CRI, booting and grain filling stages. Introduction Wheat (Triticumaestivum L.) is one of the most important cereal crops cultivated all over the world. Wheat production was increased from 585,691 thousand tons in 2000 to 713,183 thousand tons in 2013 which was ranked below rice and maize in case of production (FAO, 2015). In the developing world, need for wheat will be increased 60 % by 2050 (Rosegrant and Agcaoili, 2010). The International Food Policy Research Institute projections revealed that world demand for wheat will increase from 552 million tons in 1993 to 775 million tons by 2020 (Rosegrantet al.,1997). Wheat grain is the main staple food for about two third of the total population of the world. (Hanson et al., 1982). It supplies more nutrients compared with other food crops. Wheat grain is rich in food value containing 12% protein, 1.72% fat, 69.60% carbohydrate and 27.20% minerals (BARI, 2006). It is the second most important cereal crop after rice in Bangladesh. So, it is imperative to increase the production of wheat to meet the food requirement of vast population of Bangladesh that will secure food security. During 2013-14 the cultivated area of wheat was 429607 ha having a total production of 1302998 metric tons with an average yield of 3.033 metric tons ha-1whereas during 2012-13 the cultivated area of wheat was 416522 ha having a total production of 1254778 metric tons with an average yield of 3.013 tons ha-1 (BBS, 2014). Current demand of wheat in the country is 3.0-3.5 million tons. Increasing rate of consumption of wheat is 3% per year (BBS, 2013). Wheat production is about 1.0 milllion from 0.40 million hectares of land. Bangladesh has to import about 2.0-2.5-million-ton wheat every year. Wheat is grown all over Bangladesh but wheat grows more in Dhaka, Faridpur, Mymensingh, Rangpur, Dinajpur, Comilla districts. Wheat has the umpteen potentialities in yield among other crops grown in Bangladesh. However, yield per hectare of wheat in Bangladesh is lower than other wheat growing countries in the world due to various problems. Increasing food production of the country in the next 20 years to much population growth is a big challenge in Bangladesh. It is more difficult because, land area devoted to agriculture will decline and better-quality land and water resources will be divided to the other sector of national economy. In order to grow more food from marginal and good quality lands, the quality of natural resources like seed, water, varieties and fuel must be improved and sustained. Variety plays an important role in producing high yield of wheat because different varieties responded differently for their genotypic characters, input requirement, growth process and the prevailing environment during growing season. In Bangladesh the wheat growing season (November-March) is in the driest period of the year. Wheat yield was declined by 50% owing to soil moisture stress. Irrigation water should be applied in different critical stages of wheat for successful wheat production. Shoot dry weight, number of grains, grain yield, biological yield and harvest index decreased to a greater extent when water stress was imposed at the anthesis stage while water stress was imposed at booting stage caused a greater reduction in plant height and number of tillers (Gupta et al., 2001). Determination of accurate amount of water reduces irrigation cost as well as checks ground water waste. Water requirements vary depending on the stages of development. The pick requirement is at crown root initiation stage (CRI). In wheat, irrigation has been recommended at CRI, flowering and grain filling stages. However, the amount of irrigation water is shrinking day by day in Bangladesh which may be attributed to filling of pond river bottom. Moreover, global climate change scenarios are also responsible for their scarcity of irrigation water. So, it is essential to estimate water saving technique to have an economic estimate of irrigation water. Information on the amount of irrigation water as well as the precise sowing time of wheat with change in climate to expedite wheat production within the farmer’s limited resources is inadequate in Bangladesh. The need of water requirement also varies with sowing times as the soil moisture depletes with the days after sowing in Bangladesh as there is scanty rainfall after sowing season of wheat in general in the month of November. With above considerations, the present research work was conducted with the following objectives: To evaluate yield performance of selected wheat genotypes(s) at variable irrigation management. To identify the suitable genotype (s) of wheat giving higher yield under moisture stress condition. Materials and Methods Description of the experimental site The experiment was conducted in the Research Field, Sher-e-Bangla Agricultural University (SAU), Dhaka-1207 during the period of November, 2016 to March, 2017 to observe the growth and yield performance of selected wheat genotypes at variable irrigation management. The experimental field is located at 23041´ N latitude and 90º 22´ E longitude at a height of 8.6 m above the sea level belonging to the Agro-ecological Zone “AEZ-28” of Madhupur Tract (BBS, 2013). Soil characteristics The soil of the research field is slightly acidic in reaction with low organic matter content. The selected plot was above flood level and sufficient sunshine was available having available irrigation and drainage system during the experimental period. Soil samples from 0-15 cm depths were collected from experimental field. The experimental plot was also high land, having pH 5.56. Climate condition The experimental field was situated under sub-tropical climate; usually the rainfall is heavy during Kharifseason, (April to September) and scanty in Rabi season (October to March). In Rabi season temperature is generally low and there is plenty of sunshine. The temperature tends to increase from February as the season proceeds towards kharif. Rainfall was almost nil during the period from November 2016 to March 2017 and scanty from February to September. Planting material The test crop was wheat (Triticumaestivum). Three wheat varieties BARI Gom-26, BARI Gom-28 and BARI Gom-30 were used as test crop and were collected from Bangladesh Agricultural Research Institute (BARI), Joydebpur, Gazipur. Treatments The experiment consisted of two factors and those were the wheat genotypes and irrigation. Three wheat genotypes and four irrigations were used under the present study. Factor A: three wheat varieties- V1 = BARI Gom-26, V2 = BARI Gom-28 and V3= BARI Gom-30. Factor B: four irrigations- I0 = No Irrigation throughout the growing season, I1 = One irrigation (Irrigate at CRI stage), I2= Two irrigation (Irrigate at CRI and grain filling) and I3= Three irrigation (Irrigate at CRI, booting and grain filling stages). The experiment was laid out in a split plot design with three replications having irrigation application in the main plots, verities in the sub plots. There were 12 treatments combinations. The total numbers of unit plots were 36. The size of unit plot was 2 m x 2 m = 4.00 m2. The distances between sub-plot to sub-plot, main plot to main plot and replication to replication were, 0.75, 0.75 and 1.5 m, respectively. Statistical analysis The collected data on each plot were statistically analyzed to obtain the level of significance using the computer-based software MSTAT-C developed by Gomez and Gomez, 1984. Mean difference among the treatments were tested with the least significant difference (LSD) test at 5 % level of significance. Results and Discussion Plant height Plant height varied significantly among the tested three varieties (Table 1). At, 75 DAS, BARI Gom 30 showed the tallest plant height (34.72 cm) and BARI Gom 26 recorded the shortest plant height (32.32 cm). At, 90 DAS, BARI Gom 30 recorded the highest plant height (76.13 cm) was observed from BARI Gom 26. However, BARI Gom 26 recorded the shortest plant height (75.01 cm) which was also statistically similar with BARI Gom 28. Islam and Jahiruddin (2008) also concluded that plant height varied significantly due to various wheat varieties. Plant height of wheat showed statistically significant variation due to amount of irrigation at 75, 90 DAS under the present trial (Table 2). At 75 DAS, the tallest plant (34.78 cm) was recorded from I3 (Three irrigation) while the shortest plant (32.02 cm) was observed from I0 (No Irrigation throughout the growing season) treatment. At 60 DAS, the tallest plant (77.51 cm) was found from I3, which was statistically similar with I2 (Two irrigation) and I1 (One irrigation). The shortest plant (71.29 cm) was observed from I0. Plant height was likely increased due to applying higher amount of irrigation compared to less amount of irrigation. Sultana (2013) stated that increasing water stress declined the plant height. Interaction effect of variety and different amount of irrigation showed significant differences on plant height of wheat at 75 and 90 DAS (Table 3). The highest plant height at 30 was 38.00 cm obtained from V3I3 treatment combination. The shortest plant height at 30 was 30.67 cm obtained from V1I0 treatment combination. At 60 DAS, plant height was 78.50 cm obtained from V3I3 and lowest was 69.83 cm obtained from V1I0 treatment combination, which was statistically similar with V2I0 and 3I0 treatment combination. Table 1. Effect of variety on plant height of wheat at different days after sowing Table 2. Effect of irrigation on plant height of wheat at different days after sowing Table 3. Interaction effect of variety and irrigation on plant height of wheat Number of effective tiller hill-1 Number of effective tillers hill-1of wheat was not varied significantly due to varieties (Table 4). BARI Gom 30 produced the highest number of effective tillers hill-1 (9.33) and the lowest number of effective tillers hill-1(8.58) was observed in BARI Gom 26. Different levels of irrigation varied significantly in terms of number of effective tillers hill-1 of wheat at harvest under the present trial (Table 5). The highest number of effective tillers hill-1 9.89 was recorded from I3 treatment, while the corresponding lowest number of effective tillers hill-1 were 7.89 observed in I0 treatment. Sultana (2013) stated that increasing water stress reduced the number of tillers per hill. Variety and irrigation showed significant differences on number of effective tillers hill-1 of wheat due to interaction effect (Table 6). The highest number of effective tillers hill-1 10.33 were observed from V3I3 treatment combination, while the corresponding lowest number of effective tillers hill-1 as 7.33 were recorded from V1I0 treatment combination. Number of non-effective tiller hill-1 Number of non-effective tillers hill-1of wheat was not varied significantly due to varieties (Table 4). BARI Gom 26 produced the highest number of non-effective tillers hill-1 (1.33) and the lowest number of non-effective tillers hill-1(1.00) was observed in BARI Gom 30. Different levels of irrigation varied significantly in terms of number of non-effective tillers hill-1 of wheat at harvest under the present trial (Table 5). The highest number of non-effective tillers hill-1 (2.00) was recorded from I0, while the corresponding lowest number of non-effective tillers hill-1 (0.67) was observed in I3. Variety and irrigation showed significant differences on number of non-effective tillers hill-1 of wheat due to interaction effect (Table 6). The highest number of non-effective tillers hill-1 (2.33) were observed from V1I0 treatment combination, while the corresponding lowest number of non-effective tillers hill-1 (0.33) were recorded from V3I2 treatment combination. Table 4. Effect of variety on yield and yield contributing characters of wheat Table 5. Effect of irrigation on yield and yield contributing characters of wheat Table 6. Interaction effect of variety and irrigation on yield and yield contributing characters of wheat Spike length (cm) Insignificant variation was observed on spike length (cm) at applied three types of modern wheat variety as BARI Gom-26 (V1), BARI Gom-28 (V2), and BARI Gom-30 (V3). From the experiment with that three types of varieties BARI Gom-30 (V3) (8.46 cm) given the largest spike length and BARI Gom-26 (V1) (8.08 cm) was given the lowest spike length (Table 4). Similar result was found using with different type varieties by Hefniet al. (2000). Different irrigation application has a statistically significant variation on spike length as irrigated condition (I3) was given the maximum result (9.17 cm) and non-irrigated condition (I0) given the lowest spike length (7.17 cm) (Table 5). Interaction effect of improved wheat variety and irrigation showed significant differences on spike length. Results showed that the highest spike length was obtained from V3I3 (10.33 cm). On the other hand, the lowest spike length was observed at V1I0 (6.50cm) treatment combination (Table 6). Grain spike-1 Significant variation was observed on grain spike-1 at these applied three types of modern wheat variety. The BARI Gom-30 (V3) (37.75) given the maximum number of grain spike-1 and BARI Gom-26 (V1) (36.92) was given the lowest number of grain spike-1, which was statistically similar with V2 treatment (Table 4). Different wheat genotypes have significant effect on grain spike-1 observed also by Rahman et al. (2009). Different irrigation application has a statistically significant variation on grain spike-1 as the irrigation condition (I3) was given the maximum result (39.33), which was statistically similar with I2 and non-irrigated condition (I0) given the lowest grain spike-1 (34.56) (Table 5). Sarkar et al. (2010) also observed that irrigation have a significant effect on grain spike-1. Interaction effect of improved wheat variety and irrigation showed significant differences on grain spike-1. Results showed that the highest grain spike-1 was obtained from V3I3 (41.0). On the other hand, the lowest grain spike-1 was observed at V1Io (34.00) which were also statistically similar with V3Io (34.67) (Table 6). 3Thousand Seed weight There was significant variation was observed on thousand seed weight due to different types of modern wheat variety. The wheat variety of BARI Gom-30 (V3) (50.40 g) given the maximum thousand seed weight and statistically different from BARI Gom-28 (V2) (46.74 g). BARI Gom-26 (V1) (46.22 g) was given the lowest thousand seed weight (Table 7). Rahman et al. (2009), Islam et al. (2015) also conducted experiment with different variety and observed have effect of varieties on yield. Different irrigation application has a statistically significant variation on thousand seed weight. The I3 was given the maximum thousand seed weight (48.91) and non-irrigated condition (I0) given the lowest yield (46.13 g) (Table 8). Sarkar et al. (2010), Baser et al. (2004) reported that grain yield under non-irrigated conditions was reduced by approximately 40%. Bazzaet al. (1999) reported that one water application during the tillering stage allowed the yield to be lower only than that of the treatment with three irrigations but Meenaet al. (1998) reported that wheat grain yield was the highest with 2 irrigations (2.57 ton/ha in 1993 and 2.64 ton/ha) at flowering and/or crown root initiation stages. Wheat is sown in November to ensure optimal crop growth and avoid high temperature and after that if wheat is sown in the field it faces high range of temperature for its growth and development as well as yield potential. Islam et al. (2015) reported that late planted wheat plants faced a period of high temperature stress during reproductive stages causing reduced kernel number spike-1 as well as the reduction of grain yield. Interaction effect of improved wheat variety and irrigation showed significant differences on thousand seed weight (Table 9). Results showed that the highest thousand seed weight (52.33 g) was obtained from V3I3 which was statistically similar with V3I2 (52.06 g). On the other hand, the lowest yield (45.36 g) was observed at V1I1. Table 7. Effect of variety on yield and yield of wheat Table 8. Effect of irrigation on yield and yield of wheat Table 9. Interaction effect of variety and irrigation on yield and yield of wheat Grain yield (t ha-1) Different wheat varieties showed significant difference for grain weight hectare-1 (Table 7). The highest grain yield hectare-1 (3.44 ton) was found from wheat variety BARI Gom-30 (V3), which was statistically similar with V2, whereas the lowest (3.21 ton) was observed from wheat variety BARI gom 26. Rahman et al. (2009), Islam et al. (2015) also conducted experiment with different variety and observed have effect of varieties on yield. Significant difference was observed for yield for different irrigation application. The three irrigation (I3) was given the maximum yield (3.74 t ha-1), which was statistically similar with I2 treatment and non-irrigated condition (I0) given the lowest yield (2.97 t ha-1) (Table 8). Sarkar et al. (2010), Baser et al. (2004) reported that grain yield under non-irrigated conditions was reduced by approximately 40%. Bazzaet al. (1999) reported that one water application during the tillering stage allowed the yield to be lower only than that of the treatment with three irrigations but Meenaet al. (1998) reported that wheat grain yield was the highest with 2 irrigations (2.57 ton/ha in 1993 and 2.64 ton/ha) at flowering and/or crown root initiation stages. Wheat is sown in November to ensure optimal crop growth and avoid high temperature and after that if wheat is sown in the field it faces high range of temperature for its growth and development as well as yield potential. Islam et al. (2015) reported that late planted wheat plants faced a period of high temperature stress during reproductive stages causing reduced kernel number spike-1 as well as the reduction of grain yield. Interaction effect of improved wheat variety and irrigation showed significant differences on yield (t ha-1). Results showed that the highest yield (3.99 t ha-1) was obtained from V3I3, which was statistically similar with V2I3 and V3I2. On the other hand, the lowest yield (2.93 t ha-1) was observed at V1I0 (Table 7). Straw yield (t ha-1) Applied three types of wheat variety have a statistically significant variation on straw yield (t ha-1). The maximum straw yield (1.95 t ha-1) was obtained from BARI Gom-30 and BARI Gom-26 (V1) was given the lowest straw yield (1.87 t ha-1), which was statistically similar with V2 treatment. Different irrigation application has a statistically significant variation on straw yield (t ha-1) of wheat. The I3 treatment for straw yield (2.01 t ha-1) was given the maximum result and non-irrigated condition (I0) given the lowest (1.80 t ha-1). Similar results were found by Ali and Amin (2004) through his experiment. Interaction effect of improved wheat variety and irrigation showed significant differences on straw yield (t ha-1). The highest straw yield (2.08 t ha-1) was obtained from V3I3 which was statistically similar with V3I2 (2.07 t ha-1) treatment combination. On the other hand, the lowest straw yield (1.78 t ha-1) was observed at V1Io, which was statistically similar with V2I0 (2.07 t ha-1) treatment combination. Biological yield Significant variation was attained for biological yield for different wheat varieties. The variety BARI Gom-30 given the maximum biological yield (5.39 t ha-1) and BARI Gom-26 (V1) was given the lowest biological yield (5.078 t ha-1). Different irrigation application has a statistically significant variation biological yield (t ha-1) of wheat. The I3 treatment for biological yield (5.76 t ha-1) was given the maximum result and non-irrigated condition (I0) given the lowest (4.77 t ha-1). Similar results were found by Ali and Amin (2004) through his experiment. At the time of biological yield (t ha-1) consideration with variety and irrigation statistically significance variation was observed as maximum biological yield (t ha-1) at V3I3 (6.07 t ha-1). On the other hand, the lowest result was given at V1Io (4.72 tha-1). Summary And Conclusion It may be concluded within the scope and limitation of the present study that the optimum growth and higher yield of wheat cv. BARI Gom-30 could be obtained by applying three irrigations at irrigate at CRI, booting and grain filling stages. However, further studies are necessary to arrive at a definite conclusion. References Ali, M. N.; and Amin, M.S. Effect of single irrigation and sowing date on growth and yield of wheat. M. S. thesis, SAU, Dhaka, Bangladesh. 2004. (Bangladesh Agricultural Research Institute). Hand book of Agricultural Technology. Joydebpur, Gazipur. 2006, 9. Baser, I.; Sehirali, S.; Orta, H.; Erdem, T.; Erdem, Y.; Yorganclar, O. Effect of different water stresses on the yield and yield components of winter wheat. Cereal Res. Comn. 2004, 32(2), 217-223. Bazza, S. S.; Awasthi, M. K.; Nema, R. K. Studies on Water Productivity and Yields Responses of Wheat Based on Drip Irrigation Systems in Clay Loam Soil. Indian J. Sci. Tech. 1999, 8(7), 650-654. Bangladesh Bureau of Statistics, Ministry of Planning, Government of the Peoples Republic of Bangladesh, Dhaka. 2013. Bangladesh Bureau of Statistics, Ministry of Planning, Government of the Peoples Republic of Bangladesh, Dhaka. 2014. K. A.; Gomez, A. A. Statistical Procedures for Agricultural Research. 2nd edition. John Willy and Sons, New York. 1984, 28-192. Gupta, P. K.; Gautam, R. C.; Ramesh, C. R. Effect of water stress on different stages of wheat cultivation. Plant Nutri. and Fert. Sci. 2001, 7(2), 33-37. Hanson, M.; Farooq, M.; Shabir, G.; Khan, M. B.; Zia, A. B.; Lee, D. G. Effect of date sowing and rate of fertilizers on the yield of wheat under irrigated condition. J. Agril. & Biol. 1982, 14(4), 25-31. Hefni, S.; Sajjad, A.; Hussain M. I.; Saleem, M. Growth and yield response of three wheat varieties to different seeding densities. J. Agric. Biol. 2000, 3(2), 228-229. Islam, S.; Islam, S.; Uddin, M. J.; Mehraj, H.; Jamal Uddin, A. F. M. Growth and yield response of wheat to irrigation at different growing stages. J. Agron. Agril. Res. 2015, 6(1), 70-76. Meena, B. N.; Tunio, S. D.; Shah, S. Q. A.; Sial, M. A.; Abro, S. A. Studies on grain and grain yield associated traits of bread wheat (Triticum aestivum L.) varieties under water stress conditions. Pakistan J. Agril. Engin. Vet. Sci. 1998, 24(2), 5-9. Rahman, M. ; Hossain, A.; Hakim, M. A.; Kabir, M. R; Shah, M. M. R. Performance of wheat genotypes under optimum and late sowing condition. Int. J. Sustain Crop Prod. 2009, 4(6), 34-39. Rosegrant, M. W.; Agcaoili, M. Global food demand, supply, and price prospects to 2010. Washington, DC: Int. Food Policy Res. Inst. 2010. Rosegrant, M. W.; Sombilla, M. A.; Gerpacio R. V.; Ringler, C. Global food markets and US exports in the twenty-first century. Paper prepared for the Illinois World Food and Sustainable Agriculture Program Conference ‘Meeting the Demand for Food in the 21st Century: Challenges and Opportunities for Illinois Agriculture’, 1997. Sarker, S.; Singh, S. K.; Singh, S. R.; Singh, A. P. Influence of initial profile water status and nitrogen doses on yield and evapotranspiration rate of dryland barley. Indian Soc. Soil Sci. 2010, 47(1), 22-28. Sultana, F. Effect of irrigation on yield and water use of wheat. M.S. Thesis, Dept. of Irrigation and Water Management. Bangladesh Agril. Univ., Mymensingh. 2013.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Barley – Water requirements; Barley – Yields; Plants, Effect of drought on"

1

Trần, Văn Điền 1961. "Physiological traits for screening drought resistance in barley." 1997. http://web4.library.adelaide.edu.au/theses/09A/09at772.pdf.

Повний текст джерела
Анотація:
Bibliography: leaves 187-203. Evaluates critically a number of physiological traits which may be related to drought resistance in cereals and examines the feasibility of using these screening techniques in selecting more drought resistant genotypes of barley for South Australia.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dien, Tran Van. "Physiological traits for screening drought resistance in barley." Thesis, 1997. http://hdl.handle.net/2440/110192.

Повний текст джерела
Анотація:
Evaluates critically a number of physiological traits which may be related to drought resistance in cereals and examines the feasibility of using these screening techniques in selecting more drought resistant genotypes of barley for South Australia
Thesis (M.Ag.Sc.) -- University of Adelaide, Dept. of Plant Science, 1998
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії