Добірка наукової літератури з теми "Bacterial transcriptome"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Bacterial transcriptome".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Bacterial transcriptome"
Navarrete-López, Paula, Victoria Asselstine, María Maroto, Marta Lombó, Ángela Cánovas, and Alfonso Gutiérrez-Adán. "RNA Sequencing of Sperm from Healthy Cattle and Horses Reveals the Presence of a Large Bacterial Population." Current Issues in Molecular Biology 46, no. 9 (September 19, 2024): 10430–43. http://dx.doi.org/10.3390/cimb46090620.
Повний текст джерелаMorcillo, Rafael, Juan Vílchez, Song Zhang, Richa Kaushal, Danxia He, Hailing Zi, Renyi Liu, Karsten Niehaus, Avtar Handa, and Huiming Zhang. "Plant Transcriptome Reprograming and Bacterial Extracellular Metabolites Underlying Tomato Drought Resistance Triggered by a Beneficial Soil Bacteria." Metabolites 11, no. 6 (June 9, 2021): 369. http://dx.doi.org/10.3390/metabo11060369.
Повний текст джерелаNobori, Tatsuya, André C. Velásquez, Jingni Wu, Brian H. Kvitko, James M. Kremer, Yiming Wang, Sheng Yang He, and Kenichi Tsuda. "Transcriptome landscape of a bacterial pathogen under plant immunity." Proceedings of the National Academy of Sciences 115, no. 13 (March 12, 2018): E3055—E3064. http://dx.doi.org/10.1073/pnas.1800529115.
Повний текст джерелаPassalacqua, Karla D., Anjana Varadarajan, Brian D. Ondov, David T. Okou, Michael E. Zwick, and Nicholas H. Bergman. "Structure and Complexity of a Bacterial Transcriptome." Journal of Bacteriology 191, no. 10 (March 20, 2009): 3203–11. http://dx.doi.org/10.1128/jb.00122-09.
Повний текст джерелаCornforth, Daniel M., Justine L. Dees, Carolyn B. Ibberson, Holly K. Huse, Inger H. Mathiesen, Klaus Kirketerp-Møller, Randy D. Wolcott, Kendra P. Rumbaugh, Thomas Bjarnsholt, and Marvin Whiteley. "Pseudomonas aeruginosa transcriptome during human infection." Proceedings of the National Academy of Sciences 115, no. 22 (May 14, 2018): E5125—E5134. http://dx.doi.org/10.1073/pnas.1717525115.
Повний текст джерелаBeisser, Daniela, Nadine Graupner, Christina Bock, Sabina Wodniok, Lars Grossmann, Matthijs Vos, Bernd Sures, Sven Rahmann, and Jens Boenigk. "Comprehensive transcriptome analysis provides new insights into nutritional strategies and phylogenetic relationships of chrysophytes." PeerJ 5 (January 10, 2017): e2832. http://dx.doi.org/10.7717/peerj.2832.
Повний текст джерелаChaudhuri, Roy R., Lu Yu, Alpa Kanji, Timothy T. Perkins, Paul P. Gardner, Jyoti Choudhary, Duncan J. Maskell, and Andrew J. Grant. "Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome." Microbiology 157, no. 10 (October 1, 2011): 2922–32. http://dx.doi.org/10.1099/mic.0.050278-0.
Повний текст джерелаGonzález-Torres, Pedro, Leszek P. Pryszcz, Fernando Santos, Manuel Martínez-García, Toni Gabaldón, and Josefa Antón. "Interactions between Closely Related Bacterial Strains Are Revealed by Deep Transcriptome Sequencing." Applied and Environmental Microbiology 81, no. 24 (October 2, 2015): 8445–56. http://dx.doi.org/10.1128/aem.02690-15.
Повний текст джерелаDing, Ting, and Yong Li. "Quorum sensing inhibitory effects of vanillin on the biofilm formation of Pseudomonas fluorescens P07 by transcriptome analysis." SDRP Journal of Food Science & Technology 5, no. 7 (2021): 275–92. http://dx.doi.org/10.25177/jfst.5.7.ra.10686.
Повний текст джерелаHorlock, Anthony D., Rachel L. Piersanti, Rosabel Ramirez-Hernandez, Fahong Yu, Zhengxin Ma, KwangCheol C. Jeong, Martin J. D. Clift, et al. "Uterine infection alters the transcriptome of the bovine reproductive tract three months later." Reproduction 160, no. 1 (July 2020): 93–107. http://dx.doi.org/10.1530/rep-19-0564.
Повний текст джерелаДисертації з теми "Bacterial transcriptome"
McQuillan, Jonathan. "Bacterial-nanoparticle interactions." Thesis, University of Exeter, 2010. http://hdl.handle.net/10036/3101.
Повний текст джерелаMuñoz, Bodnar Alejandra. "Function of TALE1Xam in cassava bacterial blight : a transcriptomic approach." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20009.
Повний текст джерелаXanthomonas axonopodis pv. manihotis (Xam) is a gram negative bacteria causing the Cassava Bacterial Blight (CBB) in Manihot esculenta Crantz . Cassava represents one of the most important sources of carbohydrates for around one billion people around the world as well as a source of energy due to its high starch levels content. The CBB disease represents an important limitation for cassava massive production and little is known about this pathosystem. Bacterial pathogenicity often relies on the injection in eucaryotic host cells of effector proteins via a type III secretion system (TTSS). Between all the type III effectors described up to now, Transcription Activator-Like Type III effectors (TALE) appear as particularly interesting. Once injected into the plant cell, TAL effectors go into the nucleus cell and modulate the expression of target host genes to the benefit of the invading bacteria by interacting directly with plant DNA. In Xam, only one gene belonging to this family has been functionally studied so far. It consists on TALE1xam. This work aim to identify cassava genes whose expression will be modified upon the presence of TALE1xam. By means of cassava plants challenged with Xam Δ TALE1xam vs. Xam + TALE1xam together with the TAL effectors code, statistical analyses between RNAseq experiments and a microarray containing 5700 cassava genes, we seek out direct TALE1xam target genes. Hence, through transcriptomic, functional qRT validation and specific artificial TALEs design we proposed that TALE1xam is potentially interacting with a Heat Shock Transcription Factor B3. Moreover we argue that this gene is responsible of the susceptibility during Xam infection. Furthermore this work represents the first complete transcriptomic approach done in the cassava/Xam interaction and open enormous possibilities to understand and study CBB
Galletti, Maria Fernanda Bandeira de Melo. "Efeitos da temperatura e da alimentação sanguínea sobre o perfil de expressão gênica de Rickettsia rickettsii durante a infecção do carrapato-vetor Amblyomma aureolatum." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/42/42135/tde-03062014-082614/.
Повний текст джерелаRickettsia rickettsii is the causative agent of Rocky Mountain Spotted Fever, which is the most lethal spotted fever rickettsiosis that affects humans. The main tick species that transmits R. rickettsii in the metropolitan area of São Paulos city is Amblyomma aureolatum. When an infected and starving tick begins blood feeding from a vertebrate host, R. rickettsii is exposed to a temperature elevation and to components in the blood meal. These two environmental stimuli have been previously associated with the reactivation of rickettsial virulence in ticks, but the factors responsible for this phenotype conversion have not been completely elucidated. The main aim of the present work was to determine the effects of these two environmental stimuli on the R. rickettsii transcriptional profile during A. aureolatum infection. We initially established an effective system for rickettsia propagation to generate a substantial quantity of genetic material for microarray standardization. For that, for the first time, we established an in vitro infection of the virulent Brazilian R. rickettsii strain in the BME26 tick embryonic cell line from Rhipicephalus (Boophilus) microplus. Using customized oligonucleotide microarrays, we analyzed the effects of a 10°C temperature elevation and a blood meal on the transcriptional profile of R. rickettsii infecting whole organs of Amblyomma aureolatum female ticks. This is the first bacterial transcriptome study of the Rickettsia genus when infecting a natural tick vector. Although both stimuli significantly increased the bacterial load, blood feeding had a greater effect, also modulating five-fold more genes than the temperature upshift. Among the genes induced by blood-feeding, some encode virulence factors, such as Type IV Secretion System (T4SS) components, suggesting that this important bacterial transport system is used to secrete effectors during the acquisition of the blood meal by the tick. Using an in silico conserved domain analysis of hypothetical proteins, we identified additional T4SS components of R. rickettsii that were never previously described. Blood-feeding also up-regulated the expression of antioxidant enzymes, which might correspond to an attempt by R. rickettsii to protect itself against the deleterious effects of free radicals produced by fed ticks. Finally, we studied the transcriptional profile of selected genes of R. rickettsii on the salivary glands and midguts of male and female ticks by microfluidic RT-qPCR. Results showed that temperature upshift and blood feeding modulate specific sets of genes in each tissue, allowing for the establishment of a tissue-specific transcriptional signature. The modulated genes identified in this study require further functional analysis and may have potential as future targets for vaccine development.
Findeiß, Sven. "Expanding the repertoire of bacterial (non-)coding RNAs." Doctoral thesis, Universitätsbibliothek Leipzig, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-67816.
Повний текст джерелаRamos, Cruz Ana Raquel. "Characterization of the surface of segmented filamentous bacteria from the unicellular to filamentous stage." Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5192.
Повний текст джерелаBellac, Caroline. "Pathomechanisms of bacterial meningitis based on transcriptome analysis : role of kynurenine 3-hydroxylase and galectin-3/-9 in brain injury /." [S.l.] : [s.n.], 2007. http://www.zb.unibe.ch/download/eldiss/07bellac_c.pdf.
Повний текст джерелаGupta, Shishir Kumar [Verfasser], Thomas [Gutachter] Dandekar, and Roy [Gutachter] Gross. "Re-annotation of Camponotus floridanus Genome and Characterization of Innate Immunity Transcriptome Responses to Bacterial Infections / Shishir Kumar Gupta ; Gutachter: Thomas Dandekar, Roy Gross." Würzburg : Universität Würzburg, 2017. http://d-nb.info/1171132700/34.
Повний текст джерелаKupper, Maria [Verfasser], Roy [Gutachter] Gross, and Heike [Gutachter] Feldhaar. "The immune transcriptome and proteome of the ant Camponotus floridanus and vertical transmission of its bacterial endosymbiont Blochmannia floridanus / Maria Kupper ; Gutachter: Roy Gross, Heike Feldhaar." Würzburg : Universität Würzburg, 2017. http://d-nb.info/1123505934/34.
Повний текст джерелаRey, Camille. "Cytosolic bacterial subversions of mucosal immunity : a study of microfold (M) cell and enterocyte infections by S. flexneri and L. monocytogenes." Thesis, Sorbonne Paris Cité, 2018. https://theses.md.univ-paris-diderot.fr/Rey_camille_1_va_20180321.pdf.
Повний текст джерелаCytosolic bacterial pathogens S. flexneri and L. monocytogenes subvert extracellular mucosal immunity by inducing their uptake and intracellular lifestyle in the intestinal epithelium. Within the host, they are able to rapidly escape their internalization vacuole, invade the cytosol and escape cellular degradation by spreading from cell-to-cell. Antigen sampling M cells overlying immune induction sites are targeted by these pathogens to initiate intestinal invasion. However, the intracellular lifestyle of these pathogens within M cells, the mechanism of spread of the infection toneigh boring enterocytes from this entry point and the mechanism of S. flexneri evasion of adaptive immunity is poorly characterized. We present a novel physiologic model of apical S. flexneri infection of human in vitro M cells which recapitulates the early steps of epithelial invasion. We show that a subset of S. flexneri is rapidly transcytosed, within 15 minutes, through M cells. We establish a newtime-lapse imaging approach of M cell infections, which reveals that another subset of bacteriainduces apical ruffling upon entry, vacuolar rupture and replicates within the M cells at later timepoints. Remarkably, these bacteria are able to spread from M cells to neighboring cells by actinbased-motility, which we show constitutes the main route of basolateral spreading of the infection.As we extend our study to L. monocytogenes, we observe that unlike S. flexneri, the bacterium diverts M cell transcytosis via the virulence factor ActA. However, we discover that L. monocytogenes spreads within the epithelium exclusively by actin-based motility, similar to S. flexneri. We propose that subversion of M cell transcytosis and avoidance of underlying immune tissues are features shared by cytosolic pathogens, allowing their escape from induction of adaptive immunity.In addition, we submit a pipeline of fluorescence-based single cell sorting of enterocytes atsuccessive stages of infection combined with transcriptional analysis by multiplex qPCR. This methodreveals the production of distinct responses in host enterocytes according to subcellular pathogen localizations. We observe the production of a strong bystander response involving multiplecorrelated host pathways in non-infected enterocytes. Moreover, we detect the output of distinct host response patterns according to vacuolar or cytosolic bacterial localizations in infectedenterocytes. We further show that the virulence effector OspF contributes to dampen infected host responses and disrupt otherwise correlated host signaling pathways. To conclude, our studies expose new immune subversion strategies linked to the intracellular life styles of cytosolic enteric bacteria, highlighting the importance of M cells in initial bacterial dissemination and diversion of adaptive immunity, and the organization and disruption of innate immune responses provoked in enterocytes during infection
Tufail, Muhammad Aammar. "Use of plant growth promoting endophytic bacteria to alleviate the effects of individual and combined abiotic stresses on plants as an innovative approach to discover new delivery strategies for bacterial bio-stimulants." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/305571.
Повний текст джерелаЧастини книг з теми "Bacterial transcriptome"
Ying, Bei-Wen, and Tetsuya Yomo. "Comparative Analyses of Bacterial Transcriptome Reorganisation in Response to Temperature Increase." In Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 757–65. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119004813.ch73.
Повний текст джерелаAkama, Takeshi, Kazuaki Nakamura, Akito Tanoue, and Koichi Suzuki. "Design of Tiling Arrays and Their Application to Bacterial Transcriptome Analysis." In Methods in Molecular Biology, 23–34. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-607-8_2.
Повний текст джерелаChan, Kok-Gan. "Transcriptome Analysis of Bacterial Response to Heat Shock Using Next-Generation Sequencing." In Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, 754–56. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119004813.ch72.
Повний текст джерелаAl Kadi, Mohamad, and Daisuke Okuzaki. "Unfolding the Bacterial Transcriptome Landscape Using Oxford Nanopore Technology Direct RNA Sequencing." In Methods in Molecular Biology, 269–79. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2996-3_19.
Повний текст джерелаSnyder, Lori A. S. "Transcriptomes." In Bacterial Genetics and Genomics, 105–19. 2nd ed. Boca Raton: Garland Science, 2024. http://dx.doi.org/10.1201/9781003380436-9.
Повний текст джерелаRice, Scott A., and Bert C. Lampson. "Bacterial Reverse Transcriptase and msDNA." In Molecular Evolution of Viruses — Past and Present, 23–32. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1407-3_3.
Повний текст джерелаFields, Matthew W. "Transcriptome Analysis of Metal-Reducing Bacteria." In Microbial Metal and Metalloid Metabolism, edited by Dwayne A. Elias, 211—P1. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817190.ch12.
Повний текст джерелаZhang, Wei, Edward G. Dudley, and Joseph T. Wade. "Genomic and Transcriptomic Analyses of Foodborne Bacterial Pathogens." In Genomics of Foodborne Bacterial Pathogens, 311–41. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7686-4_10.
Повний текст джерелаKuipers, Oscar P., Anne de Jong, Richard J. S. Baerends, Sacha A. F. T. van Hijum, Aldert L. Zomer, Harma A. Karsens, Chris D. den Hengst, Naomi E. Kramer, Girbe Buist, and Jan Kok. "Transcriptome analysis and related databases of Lactococcus lactis." In Lactic Acid Bacteria: Genetics, Metabolism and Applications, 113–22. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-2029-8_7.
Повний текст джерелаDermastia, Marina, Michael Kube, and Martina Šeruga-Musić. "Transcriptomic and Proteomic Studies of Phytoplasma-Infected Plants." In Phytoplasmas: Plant Pathogenic Bacteria - III, 35–55. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9632-8_3.
Повний текст джерелаТези доповідей конференцій з теми "Bacterial transcriptome"
Konnova, T. A., A. S. Balkin, T. T. Ismailov, T. C. Ermekkaliev, S. A. Dmitrieva, N. E. Gogolev, and Yu V. Gogolev. "Transcriptome responses of ABA-degrading bacteria Novosphingobium sp.P6W." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-225.
Повний текст джерелаSagawa, Cintia. "Identification of HLB Susceptibility Genes in a Citrus Population Generated Using Multiplexed CRISPR/Cas9 Gene Editing." In IS-MPMI Congress. IS-MPMI, 2023. http://dx.doi.org/10.1094/ismpmi-2023-6.
Повний текст джерелаDarie, A., D. M. Schumann, L. Grize, K. Jahn, M. J. Herrmann, W. Strobel, H. Hirsch, M. Tamm, and D. Stolz. "Host transcriptomic signature for viral and bacterial infection at exacerbation of COPD–The longitudinal PAX-I study." In ERS International Congress 2022 abstracts. European Respiratory Society, 2022. http://dx.doi.org/10.1183/13993003.congress-2022.2600.
Повний текст джерелаЗвіти організацій з теми "Bacterial transcriptome"
Crowley, David E., Dror Minz, and Yitzhak Hadar. Shaping Plant Beneficial Rhizosphere Communities. United States Department of Agriculture, July 2013. http://dx.doi.org/10.32747/2013.7594387.bard.
Повний текст джерелаRon, Eliora, and Eugene Eugene Nester. Global functional genomics of plant cell transformation by agrobacterium. United States Department of Agriculture, March 2009. http://dx.doi.org/10.32747/2009.7695860.bard.
Повний текст джерелаFluhr, Robert, and Maor Bar-Peled. Novel Lectin Controls Wound-responses in Arabidopsis. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7697123.bard.
Повний текст джерелаSela, Shlomo, and Michael McClelland. Desiccation Tolerance in Salmonella and its Implications. United States Department of Agriculture, May 2013. http://dx.doi.org/10.32747/2013.7594389.bard.
Повний текст джерелаMinz, Dror, Stefan J. Green, Noa Sela, Yitzhak Hadar, Janet Jansson, and Steven Lindow. Soil and rhizosphere microbiome response to treated waste water irrigation. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598153.bard.
Повний текст джерелаIudicone, Daniele, and Marina Montresor. Omics community protocols. EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d3.19.
Повний текст джерелаSessa, Guido, and Gregory B. Martin. molecular link from PAMP perception to a MAPK cascade associated with tomato disease resistance. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597918.bard.
Повний текст джерела