Добірка наукової літератури з теми "Axial induction motor"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Axial induction motor".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Axial induction motor"
Solomin, Vladimir A., Andrej V. Solomin, Larisa L. Zamshina, and Nadejda A. Trubitsina. "Determination of the axial force of a cylindrical linear induction motor with rotational-translational movement of the secondary element." Modern Transportation Systems and Technologies 8, no. 1 (January 15, 2022): 50–66. http://dx.doi.org/10.17816/transsyst20228150-66.
Повний текст джерелаKeskin Arabul, Fatma, Ibrahim Senol, and Yasemin Oner. "Performance Analysis of Axial-Flux Induction Motor with Skewed Rotor." Energies 13, no. 19 (September 23, 2020): 4991. http://dx.doi.org/10.3390/en13194991.
Повний текст джерелаKarlov, O., I. Kondratenko, R. Kryshchuk, and A. Raschepkin. "AXIAL MAGNETIC FORCES OF THE AXIAL ARC-STATOR INDUCTION MOTOR WITH DISC BIMETALLIC ROTOR." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2018, no. 50 (July 18, 2018): 71–78. http://dx.doi.org/10.15407/publishing2018.50.071.
Повний текст джерелаÁlvarez, A., P. Suárez, D. Cáceres, X. Granados, B. Pérez, and J. M. Ceballos. "Disk-shaped superconducting rotor for an axial flux induction motor." Physica C: Superconductivity 398, no. 3-4 (November 2003): 157–60. http://dx.doi.org/10.1016/s0921-4534(03)01291-7.
Повний текст джерелаLi, S., Y. Fan, J. Fang, W. Qin, G. Lv, and J. H. Li. "HTS axial flux induction motor with analytic and FEA modeling." Physica C: Superconductivity 494 (November 2013): 230–34. http://dx.doi.org/10.1016/j.physc.2013.04.021.
Повний текст джерелаBenoudjit, A. Guettafi, N. Nait SaÏ, A. "Axial Flux Induction Motor for On-Wheel Drive Propulsion System." Electric Machines & Power Systems 28, no. 12 (December 2000): 1107–25. http://dx.doi.org/10.1080/073135600449017.
Повний текст джерелаEt. al., V. Ramesh Babu,. "Reconfiguration of Propulsion System Topology Using Axial Flux Machines in Electric Vehicles." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 2 (April 10, 2021): 802–9. http://dx.doi.org/10.17762/turcomat.v12i2.1088.
Повний текст джерелаJagiela, Mariusz, and Tomasz Garbiec. "Determination of best rotor length in solid-rotor induction motor with axial slitting." Archives of Electrical Engineering 61, no. 2 (June 1, 2012): 267–76. http://dx.doi.org/10.2478/v10171-012-0022-2.
Повний текст джерелаPetryna, Janusz. "How the axial flux of an induction motor can be used?" Science, Technology and Innovation 5, no. 2 (June 30, 2019): 34–43. http://dx.doi.org/10.5604/01.3001.0013.2874.
Повний текст джерелаUENO, Satoshi, and Yohji OKADA. "Vector Control of an Induction Type Axial Gap Combined Motor-Bearing." Transactions of the Japan Society of Mechanical Engineers Series C 66, no. 641 (2000): 131–37. http://dx.doi.org/10.1299/kikaic.66.131.
Повний текст джерелаДисертації з теми "Axial induction motor"
Пальчиков, Олег Олегович. "Оптимізація технічного рівня індукційних електромеханічних та статичних перетворювачів з обертовим магнітним полем". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/26765.
Повний текст джерелаThe thesis for granting the Degree of Candidate of Technical sciences in the specialty 05.09.01 – electrical machines and apparatus. – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2017. The thesis is devoted to questions of development of mathematical models of parameters of steady state and comparison of electromagnetic systems’ variants of squirrel-cage induction motors and transformers with a rotating magnetic field by criteria of weight, cost, active power losses, reactive power and generalized criteria, which has been obtained by the ideal point method. The method of objective functions with relative technical level indications and relative controlled variables has been used for solution of assigned tasks. In mathematical models of parameters of steady state of axial electromagnetic systems of mentioned converters the uneven radial distribution of magnetic induction in the magnetic circuit elements has been taken into account. For induction motors with internal and external rotors, and an axial magnetic flux, including sectioning of magnetic core, and transformers with a rotating magnetic field the optimum geometrical ratios have been determined. It has been shown, that an application of non-traditional variants of electromagnetic systems of induction converters could significantly improve indications of electrotechnical systems, for example the replacement of induction motors with an internal rotor on induction motors with an external rotor and an axial magnetic flux has been recommended, when the number of pole pairs was 1–3 and 3–4 respectively. Also ways to increase the starting torque of induction motors have been considered, and the method of determining efficiency and power factors of induction converters, depending on the controlled variables, has been developed.
Пальчиков, Олег Олегович. "Оптимизация технического уровня индукционных электромеханических и статических преобразователей с вращающимся магнитным полем". Thesis, Национальный университет кораблестроения им. адмирала Макарова, 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/26768.
Повний текст джерелаThe thesis for granting the Degree of Candidate of Technical sciences in the specialty 05.09.01 – electrical machines and apparatus. – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2017. The thesis is devoted to questions of development of mathematical models of parameters of steady state and comparison of electromagnetic systems’ variants of squirrel-cage induction motors and transformers with a rotating magnetic field by criteria of weight, cost, active power losses, reactive power and generalized criteria, which has been obtained by the ideal point method. The method of objective functions with relative technical level indications and relative controlled variables has been used for solution of assigned tasks. In mathematical models of parameters of steady state of axial electromagnetic systems of mentioned converters the uneven radial distribution of magnetic induction in the magnetic circuit elements has been taken into account. For induction motors with internal and external rotors, and an axial magnetic flux, including sectioning of magnetic core, and transformers with a rotating magnetic field the optimum geometrical ratios have been determined. It has been shown, that an application of non-traditional variants of electromagnetic systems of induction converters could significantly improve indications of electrotechnical systems, for example the replacement of induction motors with an internal rotor on induction motors with an external rotor and an axial magnetic flux has been recommended, when the number of pole pairs was 1–3 and 3–4 respectively. Also ways to increase the starting torque of induction motors have been considered, and the method of determining efficiency and power factors of induction converters, depending on the controlled variables, has been developed.
López, López José. "Nuevas aportaciones al motor eléctrico de flujo axial con rotor conductor sin material ferromagnético." Doctoral thesis, Universitat Politècnica de Catalunya, 2000. http://hdl.handle.net/10803/6297.
Повний текст джерелаSe estudia el comportamiento térmico de un motor comercial de flujo axial y se comprueba el aumento de potencia que es capaz de suministrar el motor, siempre que se puedan disipar las pérdidas por efecto joule y se eviten daños en los bobinados.
Se realiza un trabajo de desarrollo de materiales composites a base de polvo de hierro para evitar las pérdidas en el núcleo de hierro. También se determinan los límites de la densidad de corriente alcanzable al refrigerar directamente por agua.
Paralelamente se ensaya un motor comercial trifásico de flujo axial de cuatro pares de polos con rotor de aluminio, para estudiar las conexiones más favorables entre fases que provoquen el mejor desplazamiento del rotor.
Se construye un primer prototipo, de cuatro pares de polos, formado por dos semiestátores de doce espiras cada uno (una espira por polo y fase). Se prueba con y sin núcleo ferromagnético.
Los conductores son tubo de cobre hueco con una sección importante.
Esta segunda parte de la tesis, consiste en la construcción de una serie de prototipos que consiguen la inyección eficaz de fuertes densidades de corriente en el estátor metálico. Se escoge un sistema que trabaja como transformador de intensidad. A partir de un núcleo de transformador y con una relación de transformación adecuada, se generan las corrientes adecuadas para hacer girar el rotor. Son los llamados inductores primarios (alimentación de red) y el inductor secundario (transformación a fuente de corriente, que interacciona directamente con el rotor).
Se escogen varias geometrías, máscaras y disposiciones para optimizar la eficacia de los planos activos. Los planos activos son caminos definidos por cortes sobre la pieza de cobre, de forma
similar a las pistas de los circuitos integrados. Se estudia la casuística a temperatura ambiente y
a temperatura de nitrógeno líquido.
Se construyen 6 prototipos que presentan diferentes estructuras, formas y planos activos entre sí.
La finalidad de estos prototipos es la obtención de un campo magnético rotativo credo por las corrientes que circulan por los planos activos.
En el tercero de estos prototipos se obtiene un mapa de campo magnético con sonda Hall a diferentes temperaturas (ambiente y temperatura de nitrógeno líquido) para verificar, o no, la obtención de desfases de forma similar a los obtenidos en algunas máquinas con las espiras de sombra. Los mapas de campo magnético permiten obtener el orden de magnitud de las intensidades que pasan por el inductor secundario. Se contrastan estos valores con otros obtenidos mediante espiras exploradoras y registros en osciloscopio.
En los prototipos siguientes se realizan conexiones de dos núcleos inductores a la vez que trabajan en monofásico con un desfase de 90º eléctricos entre ellos. Se obtiene un resultado aceptable en el prototipo 7.
This work analyzes electric axial flux motors without ferromagnetic elements and a conductor rotor. We build different prototypes whit a magnetic axial flux and very high currents densities.
After different experiments for perform the system, it build a first prototype whit height twelve poles and aluminium rotor. The conductor is a pipe of copper.
Then it build the prototypes, whit one only inductor or two inductors, that work in monofasic and with higher currents densities, like a intensity transformer. The rotor has a conductor disc.
They are defined the "primary inductors" and "secondary inductor". The secondary inductor is the "active plain". The active plain is a conductor when they are defined different ways for the
induced current by de primary inductor. The purpose of these actives plains is to obtain a rotatory magnetic field.
We perform the behaviour at ambient and liquid nitrogen temperature. It obtains the magnetic map in these temperatures and permits to have information about the magnitude of the currents induced in the prototypes. In a prototype with two inductors we have acceptable results.
Štaffa, Jiří. "Ztráty jednofázového asynchronního motoru s trvale připojeným kondenzátorem." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221263.
Повний текст джерелаDolisy, Bastien. "Étude d’un moteur supraconducteur à flux axial avec une transmission magnétique supraconductrice intégrée." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0079/document.
Повний текст джерелаThe study of an axial-field high temperature superconducting (HTS) motor for applications requiring high torque densities is proposed. The HTS motor consists of a stator with copper winding and an inductor with superconducting coils. A HTS magnetic coupler is used as a part of the system, to transmit the torque from the HTS motor to the load. This solution is a good alternative to the usually used torques tubes as it results in the reduction of conduction thermal losses and offers an intrinsic protection against overloads. To evaluate the performance of the studied device, a 3D electromagnetic analytical model has been developed. This model takes into account the dependence on the applied magnetic field and temperature of the HTS material. Finally, a genetic algorithms optimization of the studied device is carried out to find the optimum geometric dimensions. The results show that the proposed solution (machine with magnetic coupling) is about 2 to 3,5 times more compact than a conventional machine drive solution. An axial-field HTS motor with integrated magnetic coupling has been also designed, constructed and tested. The test results have been checked by 3D finite element computations
Частини книг з теми "Axial induction motor"
Daher, Georges, Stéphane Régnier, and Sinan Haliyo. "A Rotary Induction Actuator for Kinesthetic and Tactile Rendering." In Haptics: Science, Technology, Applications, 155–63. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06249-0_18.
Повний текст джерелаKonar, Pratyay, Parth Sarathi Panigrahy, and Paramita Chattopadhyay. "Tri-Axial Vibration Analysis Using Data Mining for Multi Class Fault Diagnosis in Induction Motor." In Mining Intelligence and Knowledge Exploration, 553–62. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26832-3_52.
Повний текст джерелаТези доповідей конференцій з теми "Axial induction motor"
Kalo, Ashish Kumar, Ankita Dwivedi, R. K. Srivastava, and Durgesh Kumar Banchhor. "Experiences with Axial-Flux induction motor." In 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE). IEEE, 2015. http://dx.doi.org/10.1109/epetsg.2015.7510124.
Повний текст джерелаCaricchi, F. "Axial flux electromagnetic differential induction motor." In Seventh International Conference on Electrical Machines and Drives. IEE, 1995. http://dx.doi.org/10.1049/cp:19950824.
Повний текст джерелаDwivedi, Ankita, S. K. Gupta, S. K. Singh, and R. K. Srivastava. "Experiences with axial flux sheet rotor induction motor." In 2015 IEEE IAS Joint Industrial and Commercial Power Systems / Petroleum and Chemical Industry Conference (ICPSPCIC). IEEE, 2015. http://dx.doi.org/10.1109/cicps.2015.7974062.
Повний текст джерелаMushid, F. C., and D. G. Dorrell. "Review of axial flux induction motor for automotive applications." In 2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD). IEEE, 2017. http://dx.doi.org/10.1109/wemdcd.2017.7947738.
Повний текст джерелаZhang, C., K. J. Tseng, and T. D. Nguyen. "Analysis and comparison of axial flux PM synchronous motor and induction motor." In Energy Conference (IPEC 2010). IEEE, 2010. http://dx.doi.org/10.1109/ipecon.2010.5697060.
Повний текст джерелаFulnecck, Jan, and Stanislav Misak. "Stator current and axial magnetic flux analysis of induction motor." In 2018 International Conference on Diagnostics in Electrical Engineering (Diagnostika). IEEE, 2018. http://dx.doi.org/10.1109/diagnostika.2018.8526025.
Повний текст джерелаShuo, Li, Fan Yu, Zhu Xi, and Qin Wei. "New structure of axial flux induction motor and characterization analysis." In 2011 International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2011. http://dx.doi.org/10.1109/icems.2011.6073906.
Повний текст джерелаReyes, Nicolas, Mario A. Tapia, Juan A. Tapia, Werner Jara, and Alvaro E. Hoffer. "Multiphysical Design of an Axial Induction Motor with an Anisotropic Rotor." In 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA). IEEE, 2018. http://dx.doi.org/10.1109/ica-acca.2018.8609856.
Повний текст джерелаUeno, S., and Y. Okada. "Vector control of an induction type axial gap combined motor-bearing." In 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, 1999. http://dx.doi.org/10.1109/aim.1999.803274.
Повний текст джерелаBanchhor, Durgesh Kumar, and Ashwin Dhabale. "Design, Modeling, and Analysis of Dual Rotor Axial Flux Induction Motor." In 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE, 2018. http://dx.doi.org/10.1109/pedes.2018.8707644.
Повний текст джерела