Зміст
Добірка наукової літератури з теми "Avions – Carburants – Développement durable"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Avions – Carburants – Développement durable".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Avions – Carburants – Développement durable"
Molinier, Stéphane. "Introduction." Annales des Mines - Réalités industrielles Mai 2024, no. 2 (June 14, 2024): 6–10. http://dx.doi.org/10.3917/rindu1.242.0006.
Повний текст джерелаFaury, Guillaume. "Prospective des marchés mondiaux de l’aéronautique, décarbonation et stratégie d’Airbus." Annales des Mines - Réalités industrielles Mai 2024, no. 2 (June 14, 2024): 15–17. http://dx.doi.org/10.3917/rindu1.242.0015.
Повний текст джерелаNormand, Thibaud, and Éric Dalbies. "Les défis de la propulsion aéronautique décarbonée." Annales des Mines - Réalités industrielles Mai 2024, no. 2 (June 14, 2024): 56–60. http://dx.doi.org/10.3917/rindu1.242.0056.
Повний текст джерелаde Zotti, Alain, and André Bourdais. "Airbus pionnier d’une aviation durable, pour un monde ouvert et respectueux de l’environnement." Annales des Mines - Réalités industrielles Mai 2024, no. 2 (June 14, 2024): 76–81. http://dx.doi.org/10.3917/rindu1.242.0076.
Повний текст джерелаDoyon, Sabrina. "Environnement." Anthropen, 2016. http://dx.doi.org/10.17184/eac.anthropen.007.
Повний текст джерелаДисертації з теми "Avions – Carburants – Développement durable"
Vásquez, Salcedo Wenel Naudy. "Biο jet fuels prοductiοn frοm lignοcellulοsic biοmass : butyl levulinate a prοmising mοlecule tοwards the develοpment οf sustainable aviatiοn fuels". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR12.
Повний текст джерелаIn the context of the aviation sector, which poses significant challenges due to the complexity and stringent standards of fuel, our research proposal gains particular relevance. We aim to develop an integrated approach that fully valorizes lignocellulosic biomass into jet fuels, thereby contributing to the sustainable development of society. Lignocellulosic biomass is a renewable resource that can be used as feedstock to produce high-value materials and chemicals, such as jet fuel. This type of biomass valorization includes many transformation steps, for which the kinetics and the thermal risk of the chemical reaction are not necessarily known. This work focuses on a specific compound: butyl levulinate (BL). This compound can be obtained from lignocellulosic biomass and can be transformed into gamma-valerolactone (GVL) via hydrogenation. The GVL is a vital platform molecule that can serve as a feedstock to produce substitutes for fossil fuels like gasoline, diesel, and jet fuels. The main objectives of this research are: 1) To develop a robust and reliable kinetic model for BL hydrogenation to produce GVL. Here, we seek to develop a kinetic model experimentally in different thermal modes of operation, i.e., isothermal, isoperibolic, and adiabatic. This model type not only predicts kinetics and the corresponding heat-flow rate but also allows the assessment of the thermal risk related to the chemical reaction. The experiments for developing this kinetic model were performed in the calorimeter reactor Mettler-Toledo RC1. 2) The complete valorization of lignocellulosic biomass targets the industrial scale. Therefore, the continuous production of GVL from BL should be assessed. In that sense, we studied the thermal stability of the continuous production of GVL from BL in a CSTR reactor (continuous stirred tank reactor). 3) One of the intriguing aspects of our research is the potential use of butyl levulinate (BL) as a fuels additive. We have conducted a thorough assessment of the suitability of BL as a kerosene additive, aiming to understand how its addition affects the combustion efficiency and operating limits in a gas turbine combustion chamber. The results obtained concerning the kinetic model showed that the Non-Competitive Langmuir-Hinshelwood models predict the experimental data of concentration and temperature for BL hydrogenation with good accuracy. The thermal risk analysis, linked to BL hydrogenation, showed that the energy released during the reaction is relatively low, ΔH_{hyd} = -35.28 kJ/mol +/- 1.00 kJ/mol, and subsequently the thermal stability study showed that for values of Ua > 1500 W/m³/K in a continuous reactor, the risk of thermal instabilities is low. The evaluation of BL as a kerosene additive showed that adding up to 20% of BL into Kerosene does not significantly change the physical properties, neither the combustion efficiency nor the operating limits in the operating conditions considered during the combustion assessment
En el contexto del sector de la aviación, que plantea importantes retos debido a la complejidad y a los estrictos estándares de combustible, nuestra propuesta de investigación cobra especial relevancia. Nuestro objetivo es desarrollar un enfoque integrado que valorice plenamente labiomasa lignocelulósica en combustibles para aviones, contribuyendo así al desarrollo sostenible de la sociedad. La biomasa lignocelulósica es un recurso renovable que se puede utilizar como materia prima para producir materiales y productos químicos de alto valor, como el combustible para aviones. Este tipo de valorización de la biomasa incluye muchas etapas de transformación, para las cuales no necesariamente se conoce la cinética y el riesgo térmico de la reacción química. Este trabajo se centra en un compuesto específico: el levulinato de butilo (BL). Este compuesto se puede obtener a partir de biomasa lignocelulósica y se puede transformar en gamma-valerolactona (GVL) mediante hidrogenación. El GVL es una molécula plataforma vital que puede servir como materia prima para producir sustitutos de combustibles fósiles como la gasolina, el diésel y los combustibles para aviones. Los principales objetivos de esta investigación son: 1. Desarrollar un modelo cinético robusto y fiable para la hidrogenación de BL para producir GVL. Aquí, buscamos desarrollar un modelo cinético experimentalmente en diferentesmodos de operación térmica, es decir, isotérmico, isoperibólico y adiabático. Este tipo de modelo no solo predice la cinética y el flujo de calor correspondiente, sino que también permite evaluar el riesgo térmico relacionado con la reacción química. Los experimentos para el desarrollo de este modelo cinético se realizaron en el reactor calorímetro Mettler-Toledo RC1. 2. La valorización completa de la biomasa lignocelulósica se dirige a la escala industrial. Por lo tanto, debe evaluarse la producción continua de GVL a partir de BL. En ese sentido, estudiamos la estabilidad térmica de la producción continua de GVL a partir de BL en un reactor CSTR (reactor continuo de tanque agitado). 3. Uno de los aspectos intrigantes de nuestra investigación es el potencial uso del levulinato de butilo (BL) como aditivo de combustibles. Hemos llevado a cabo una evaluación exhaustiva de la idoneidad del BL como aditivo de queroseno, con el objetivo de comprender cómo su adición afecta la eficiencia de la combustión y los límites de funcionamiento en una cámara de combustión de turbina de gas. Los resultados obtenidos en relación con el modelo cinético mostraron que los modelos no competitivos de Langmuir-Hinshelwood predicen los datos experimentales de concentración y temperatura para la hidrogenación de BL con buena precisión. El análisis de riesgo térmico, vinculado a la hidrogenación BL, mostró que la energía liberada durante la reacción es relativamente baja, ΔH_{hyd} = -35.28 kJ/mol +/- 1.00 kJ/mol, y posteriormente el estudio de estabilidad térmica mostró que para valores de Ua > 1500 W/m ³/K en un reactor continuo, el riesgo de inestabilidades térmicas es bajo. La evaluación del BL como aditivo de queroseno mostró que la adición de hasta un 20% de BL al queroseno no cambia significativamente las propiedades físicas, ni la eficiencia de la combustión ni los límites de funcionamiento en las condiciones de funcionamiento consideradas durante la evaluación de la combustión
Delhay, Jérôme. "Développement d'un dispositif d'analyse quantittative de particules de suie par incandescence induite par laser (LII) : application à la mesure d'émissions polluantes des turbines aéronautiques." Lille 1, 2007. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2007/50376-2007-83.pdf.
Повний текст джерелаGaillot, Tiphaine. "Évaluation de l’impact des émissions aériennes sur le changement climatique : développement de la méthode d’Analyse du Cycle de Vie et recommandations pour la sélection de carburants alternatifs." Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS538.pdf.
Повний текст джерелаGiven the increase in demand from the aviation sector and its emissions, we need to assess the impact of aviation on the environment. This thesis focuses on the impact of aviation emissions on climate change. This category is the most impacted by subsonic aircraft. Various levers have been deployed to mitigate this impact, including the incorporation of alternative fuels. The Life Cycle Assessment method is the one used in this work. The aim is to assess all emissions having a direct and indirect impact on climate change during a long-haul or short-haul, for the fossil fuel Jet A-1, and alternative jet fuels such as FT-SPK (paraffinic kerosene from Fischer-Tropsch synthesis) and hydrogen. As most of the fuel is burnt at high altitude during the cruise phase and the majority of emissions have a greater impact at cruising altitudes, we first look at the nature of emissions at high altitude and their impact on climate change, based on GWP (global warming potential) at different time horizons. The assessment of high-altitude emissions for different types of jet fuel over 20 and 100-year time horizons illustrated the crucial role of short-lived climate forcers, especially nitrogen oxides and contrails-cirrus. In a second stage, the scope of the air transport assessment has been extended to include the airport, the aircraft, and the production and use of the fuel. These results demonstrate the importance of high-altitude emissions and the production phase in the complete assessment. The thesis concludes with an assessment of the impact of emissions during the use and production phase of fuel mix in 2050, based on the different energy demands specific to the of the International Energy Agency (IEA) report published in 2022. The development of low-emission processes, as well as changes in behavior and the implementation of specific sobriety policies, are essential to reducing the environmental impact of the aviation sector
Pillain, Baptiste. "Définition des indicateurs clés de performance et évaluation multicritère de filières durables de recyclage des polymères renforcés de fibres de carbone issus de l’industrie aéronautique." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0630/document.
Повний текст джерелаThe global consumption of carbon-fiber reinforced plastic (CFRP) is constantly growing since the last decade, leading to the need to create a recycling sector able to manage the amount of carbon fibers currently consumed and representing the amount of waste to be treated in the future. This thesis focus on the creation of a methodology for evaluating the sustainability potential for the implementation of a carbon fiber reinforced plastics recycling (CFRP) sector. CFRP coming from the aeronautics sector as well as other sectors such as the automobile and wind-energy industries. This methodology aims at identifying the most relevant indicators and associated methods, but also aims at the creation and adaptation of indicators to best assess the environmental and socioeconomic impacts of this recycling sector. The final result of this work, is the creation of a sustainability assessment methodology dedicated to the carbon fiber recycling sector, considering the different sustainability pillars. However this methodology also define more widely a tool that helps to identify sustainability performance indicators and that can be applied to other sectors if necessary