Добірка наукової літератури з теми "Autophagic bodies"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Autophagic bodies".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Autophagic bodies"
Stefaniak, Szymon, Łukasz Wojtyla, Małgorzata Pietrowska-Borek, and Sławomir Borek. "Completing Autophagy: Formation and Degradation of the Autophagic Body and Metabolite Salvage in Plants." International Journal of Molecular Sciences 21, no. 6 (March 23, 2020): 2205. http://dx.doi.org/10.3390/ijms21062205.
Повний текст джерелаHariri, Mehrdad, Ghania Millane, Marie-Pierre Guimond, Ginette Guay, James W. Dennis, and Ivan R. Nabi. "Biogenesis of Multilamellar Bodies via Autophagy." Molecular Biology of the Cell 11, no. 1 (January 2000): 255–68. http://dx.doi.org/10.1091/mbc.11.1.255.
Повний текст джерелаBjørkøy, Geir, Trond Lamark, Andreas Brech, Heidi Outzen, Maria Perander, Aud Øvervatn, Harald Stenmark, and Terje Johansen. "p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death." Journal of Cell Biology 171, no. 4 (November 14, 2005): 603–14. http://dx.doi.org/10.1083/jcb.200507002.
Повний текст джерелаWleklik, Karolina, Szymon Stefaniak, Katarzyna Nuc, Małgorzata Pietrowska-Borek, and Sławomir Borek. "Identification and Potential Participation of Lipases in Autophagic Body Degradation in Embryonic Axes of Lupin (Lupinus spp.) Germinating Seeds." International Journal of Molecular Sciences 25, no. 1 (December 20, 2023): 90. http://dx.doi.org/10.3390/ijms25010090.
Повний текст джерелаTakeshige, K., M. Baba, S. Tsuboi, T. Noda, and Y. Ohsumi. "Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction." Journal of Cell Biology 119, no. 2 (October 15, 1992): 301–11. http://dx.doi.org/10.1083/jcb.119.2.301.
Повний текст джерелаYang, Zhifen, Ju Huang, Jiefei Geng, Usha Nair, and Daniel J. Klionsky. "Atg22 Recycles Amino Acids to Link the Degradative and Recycling Functions of Autophagy." Molecular Biology of the Cell 17, no. 12 (December 2006): 5094–104. http://dx.doi.org/10.1091/mbc.e06-06-0479.
Повний текст джерелаBaba, M., K. Takeshige, N. Baba, and Y. Ohsumi. "Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization." Journal of Cell Biology 124, no. 6 (March 15, 1994): 903–13. http://dx.doi.org/10.1083/jcb.124.6.903.
Повний текст джерелаEpple, Ulrike D., Ivet Suriapranata, Eeva-Liisa Eskelinen, and Michael Thumm. "Aut5/Cvt17p, a Putative Lipase Essential for Disintegration of Autophagic Bodies inside the Vacuole." Journal of Bacteriology 183, no. 20 (October 15, 2001): 5942–55. http://dx.doi.org/10.1128/jb.183.20.5942-5955.2001.
Повний текст джерелаLi, Qingrong, Xiaojuan Deng, Wanying Yang, Zhijun Huang, Gianluca Tettamanti, Yang Cao, and Qili Feng. "Autophagy, apoptosis, and ecdysis-related gene expression in the silk gland of the silkworm (Bombyx mori) during metamorphosis." Canadian Journal of Zoology 88, no. 12 (December 2010): 1169–78. http://dx.doi.org/10.1139/z10-083.
Повний текст джерелаDernovics, Áron, György Seprényi, Zsolt Rázga, Ferhan Ayaydin, Zoltán Veréb та Klára Megyeri. "Phenol-Soluble Modulin α3 Stimulates Autophagy in HaCaT Keratinocytes". Biomedicines 11, № 11 (10 листопада 2023): 3018. http://dx.doi.org/10.3390/biomedicines11113018.
Повний текст джерелаДисертації з теми "Autophagic bodies"
Castets, Julie. "Caractérisation fonctionnelle d’une protéine à L’intersection entre le métabolisme des lipides et L’autophagie chez arabidopsis." Electronic Thesis or Diss., Bordeaux, 2024. https://theses.hal.science/tel-05000653.
Повний текст джерелаAutophagy is an intracellular degradation process conserved across eukaryotes and critical for plant development and physiology. Autophagy relies on the formation of specialized membrane vesicles, called autophagosome, that encapsulate and traffic cargo to the lytic vacuole. Upon fusion with the tonoplast, autophagic bodies are released inside the vacuolar lumen and rapidly hydrolyzed to guarantee cargo degradation. How plant vacuoles deal with the large influx of autophagic bodies upon autophagy induction and how the membrane of the autophagic body is specifically hydrolyzed remain completely unknown. Upstream of this project, immuno-isolation of autophagy compartments identified an atypical phospholipase, LCAT4, as a putative component of the autophagy machinery. Studying the subcellular localization of LCAT4 revealed its associatation with early and late autophagy compartments, including autophagic bodies. Upon starvation, LCAT4 massively relocates inside the vacuole lumen using autophagy as a transport system, suggesting that LCAT4 could be involved in the disruption of autophagic membrane and/or cargo in the vacuole. Seedlings knocked-out for LCAT4 do not show defects in physiology or autophagic flux, suggesting that the activity of LCAT4 could be compensated by additional phospholipases. Indeed, LCAT3, the closest homolog of LCAT4 co-localizes with autophagic bodies under starvation. Fluorescent and electronic microscopy analyses demonstrate an accumulation of autophagic bodies inside the vacuole in the double lcat3 lcat4 knock out mutant and this is correlated with a significant slowdown in the autophagic flux. Together, this work characterizes novel actors of the autophagy machinery thus shading light on the penultimate step of this critical process for plant tolerance to environmental stresses
Shah, Khyati H. "REGULATION, COMPOSITION AND FUNCTIONS OF RNP GRANULES IN QUIESCENT CELLS OF SACCHAROMYCES CEREVISIAE." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417541239.
Повний текст джерелаLajoie, Patrick. "Regulation of receptor signaling and membrane trafficking by beta1,6-branched n-glycans and caveolin-1/cholesterol membrane domain organization." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/336.
Повний текст джерелаVanderperre, Solène. "Analyse d'interactions Hox/Cofacteur à l'échelle super-résolutive et contrôle transcriptionnel de l'autophagie chez la drosophile." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN048.
Повний текст джерелаTranscriptional regulation is essential for all cellular functions and is the subject of a number of studies. Technological advances in the field of microscopy open new opportunities to visualize different steps of this mechanism. In particular, it allows visualizing individual TFs at the super resolution scale in vivo.However, an isolated TF is not sufficient to tightly regulate the activation or repression of a target gene. Indeed, different complexes need to cooperate to achieve this level of accurate control. The observation of binary protein-protein interactions bound on a specific DNA sequence would be an asset to decipher the complex mechanism of transcription.The first part of my thesis project consisted to establish the tools allowing the visualization of different Hox-cofactor complexes on a specific target sequence, at confocal resolution and super-resolution. These tools were applied to quantify a specific enrichment of Hox/Exd complexes on a well characterized enhancer called fkh250. This enhancer is regulating the expression of a Drosophila salivary gland gene named forkhead (fkh). I combined Bimolecular Fluorescent Complementation (BiFC) (confocal resolution) or BiFC-PALM (super-resolution) with the ParB/INT system to simultaneously detect Hox/Exd complexes bound to the fkh250 enhancer,respectively.My results confirm a specific enrichment of Hox/Exd complexes on several fkh250 enhancers. Moreover, my preliminary results show the possibility to perform bi-colour PALM for revealing in the same nucleus the Hox/Exd complexes and its target DNA sequences.The second part of my project revealed a new interaction between Hox proteins and a nuclear matrix component, the Lamin C (LamC), in the context of transcriptional repression of autophagy related genes (atg) in Drosophila larval fat body. This work revealed a typical profile of co-expression of Hox and LamC in Drosophila fat body nuclei. This profile was imaged through confocal Lightning microscopy. These results also revealed the importance of genomic loci positionning for the fine control of transcription
Su, Yu-Cheng, and 蘇育正. "Eburicoic acid, an active triterpenoid from the fruiting bodies of basswood cultivated Antrodia cinnamomea, induces ER stress-mediated autophagy in human hepatoma cells." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/85067814339771723291.
Повний текст джерела國立臺灣大學
食品科技研究所
100
Liver cancer is the second leading cause of cancer deaths in Taiwan as per the 2011 statistics, and ranks the fourth in cancer related mortality in the world. Hence to maintain a healthy liver is a big issue in Taiwan. Recent researches have shown that Antrodia cinnamomea, a Taiwan-specific medicinal mushroom, can manipulate biological activities, including hepatoprotection, anti-inflammation, anti-HBV activity, anticancer activity, etc. The active constituents include polysaccharides, benzenoids, triterpenoids, steroids, etc., and among them triterpenoids are the most prominent because of their potent anticancer effects. In this study, the anti-liver cancer activity and molecular mechanisms of eburicoic acid, the second most abundant triterpenoid from the fruiting bodies of basswood cultivated Antrodia cinnamomea was investigated using the human hepatoma Hep 3B cells. The results show that eburicoic acid effectively reduced Hep 3B cell viability within 24 hours, and the IC50 was 18.4 μM, which was equivalent to 8.7 μg/mL. Besides, eburicoic acid induced conversion of LC3-Ⅰto LC3-Ⅱ and a large number of autophagosomes/autophagolysosomes formation, but increasing of hypodiploid proportion or cell lysis obviously in Hep 3B cells. So the principal mode of Hep 3B cell death induced by eburicoic acid was autophagy, rather than apoptosis or necrosis. In depth investigation for the molecular mechanisms, revealed that eburicoic acid firstly promoted ROS generation and ATP depletion, leading to ER stress, followed by elevated cytosolic calcium ion concentration and BiP expression, downregulated phosphorylation of DAPK, upregulated phosphorylation of Beclin-1, JNK, and Bcl-2, and finally induced autophagy in Hep 3B cells. These results indicate that eburicoic acid has significant anti-liver cancer effects and more distinctive mechanisms. Coupled with these findings and the high content of eburicoic acid in the fruiting bodies of basswood cultivated Antrodia cinnamomea, eburicoic acid has the potential for mass production and to assist cancer therapy.
Книги з теми "Autophagic bodies"
Pilon, Rachel, and Naomi William. Secrets of Autophagy: The Powerful Healing of Autophagy Uses Your Bodies Natural Intelligence to Promote Anti Ageing . Learn How to Initiate It Through Extended Water, Intermittent Fasting and More. Independently Published, 2018.
Знайти повний текст джерелаЧастини книг з теми "Autophagic bodies"
Waguri, Satoshi, and Masaaki Komatsu. "Chapter 9 Biochemical and Morphological Detection of Inclusion Bodies in Autophagy‐Deficient Mice." In Autophagy in Disease and Clinical Applications, Part C, 181–96. Elsevier, 2009. http://dx.doi.org/10.1016/s0076-6879(08)04009-3.
Повний текст джерелаAhmad Joyia, Faiz, Ghulam Mustafa, and Muhammad Sarwar Khan. "Chloroplast Recycling and Plant Stress Tolerance." In Physiology. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.114852.
Повний текст джерела