Добірка наукової літератури з теми "Autonomous vehicle fleet"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Autonomous vehicle fleet".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Autonomous vehicle fleet"
Mendes, Lucas Mestres, Manel Rivera Bennàssar, and Joseph Y. J. Chow. "Comparison of Light Rail Streetcar Against Shared Autonomous Vehicle Fleet for Brooklyn–Queens Connector in New York City." Transportation Research Record: Journal of the Transportation Research Board 2650, no. 1 (January 2017): 142–51. http://dx.doi.org/10.3141/2650-17.
Повний текст джерелаGandomani, Roxana, Moataz Mohamed, Amir Amiri, and Saiedeh Razavi. "System Optimization of Shared Mobility in Suburban Contexts." Sustainability 14, no. 2 (January 13, 2022): 876. http://dx.doi.org/10.3390/su14020876.
Повний текст джерелаHyland, Michael F., and Hani S. Mahmassani. "Taxonomy of Shared Autonomous Vehicle Fleet Management Problems to Inform Future Transportation Mobility." Transportation Research Record: Journal of the Transportation Research Board 2653, no. 1 (January 2017): 26–34. http://dx.doi.org/10.3141/2653-04.
Повний текст джерелаHartmann, Martin, and Peter Vortisch. "A German Passenger Car and Heavy Vehicle Stock Model: Towards an Autonomous Vehicle Fleet." Transportation Research Record: Journal of the Transportation Research Board 2672, no. 46 (June 17, 2018): 55–63. http://dx.doi.org/10.1177/0361198118782042.
Повний текст джерелаMoreno, Ana T., Andrzej Michalski, Carlos Llorca, and Rolf Moeckel. "Shared Autonomous Vehicles Effect on Vehicle-Km Traveled and Average Trip Duration." Journal of Advanced Transportation 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/8969353.
Повний текст джерелаSoni, Aakash, and Huosheng Hu. "Formation Control for a Fleet of Autonomous Ground Vehicles: A Survey." Robotics 7, no. 4 (November 1, 2018): 67. http://dx.doi.org/10.3390/robotics7040067.
Повний текст джерелаReichsöllner, Emanuel, Andreas Freymann, Mirko Sonntag, and Ingo Trautwein. "SUMO4AV: An Environment to Simulate Scenarios for Shared Autonomous Vehicle Fleets with SUMO Based on OpenStreetMap Data." SUMO Conference Proceedings 3 (September 29, 2022): 83–94. http://dx.doi.org/10.52825/scp.v3i.113.
Повний текст джерелаChen, Hong Yun, Yan Qiang Li, Zi Hui Zhang, and Yong Wang. "Test Method for Decision Planning of Autonomous Vehicles Based on DQN Algorithm." E3S Web of Conferences 253 (2021): 03022. http://dx.doi.org/10.1051/e3sconf/202125303022.
Повний текст джерелаSchlenther, Tilmann, Kai Martins-Turner, Joschka Felix Bischoff, and Kai Nagel. "Potential of Private Autonomous Vehicles for Parcel Delivery." Transportation Research Record: Journal of the Transportation Research Board 2674, no. 11 (September 10, 2020): 520–31. http://dx.doi.org/10.1177/0361198120949878.
Повний текст джерелаHogeveen, Peter, Maarten Steinbuch, Geert Verbong, and Auke Hoekstra. "Quantifying the Fleet Composition at Full Adoption of Shared Autonomous Electric Vehicles: An Agent-based Approach." Open Transportation Journal 15, no. 1 (May 17, 2021): 47–60. http://dx.doi.org/10.2174/1874447802115010047.
Повний текст джерелаДисертації з теми "Autonomous vehicle fleet"
He, Mingzhe, and Xinyu Lin. "Connected Tyres : Real-time Tyre Monitoring System for Fleet& Autonomous Vehicles with Tyre WearEstimation through Sensor Fusion." Thesis, KTH, Fordonsdynamik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-290080.
Повний текст джерелаDäck är en viktig del för fordon, eftersom de är den enda kontaktpunktenmellan fordonet och vägen. Intelligenta däck är ett trendigt nytt ämne i däckindustrin.De är utformade för att övervaka olika däcktillstånd och skicka dennainformation till både förare och fjärrservrar. Examensarbetet är inriktat på ettförslag till ett däckövervakningssystem i realtid för fordonsflottor och autonomafordon och inkluderar en däckslitagesmodell och anslutning. Det inkluderaratt utveckla en slitagemodell och analys av den aktuella däcktrycksövervakningsfunktionengenom att studera Volvos fordonspark som är utrustade medVolvos webbmolntjänst. Däckens slitagemodell övervakar indirekt slitbanedjupetpå alla fyra däck genom att identifiera egenskaper mellan slitna och nyadäck. De två egenskaperna identifieras genom att övervaka och analysera fordonshastighet och bromssignaler. De två egenskaperna är inmatade i ett röstningsschemasom avgör när ett slitet däck upptäcks. Testfordonet var en VolvoXC40 med tre typer av däck, vinterdäck samt nya och slitna sommardäck.Modellen ger 90 % noggrannhet för 10 uppsättningar testdata, slumpmässigtvalda från alla dataset på Hällered provbana (Sverige). Anslutningen genomfördataöverföringen av rådata från onCAN och FlexRay-signaler lagrade ienVolvoswebbmolntjänst till däcksövervakningssystemet. Signalerna filtrerasoch samplas på nytt för att skapa de nödvändiga signalerna till däcktrycksövervakningssystemetoch däckslitagemodellen. Två signaler, kalibreringsstatusoch iTPMS-status, används för att utföra en statistisk analys av däcktrycketgenom att kategorisera kalibreringsstatus och däcktrycksförhållanden. Projektetsresultat är ett gränssnitt byggt på MATLAB GUI för demonstration avfordonsidentifiering och däcktillstånd. med inbäddad däckslitagemodell ochanslutning.
Paul, Johanna. "Design and development of a graphical user interface for the monitoring process of an automated guided vehicle fleet." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281289.
Повний текст джерелаMånga olika autonomt körande mobila robotar används för industriell transport av material eller varor i samband med interna logistiska processer till följd av olika användningsfall. Problemet för de användare som behöver övervaka robotarna är att varje tillverkare tillhandahåller sitt eget grafiska användargränssnitt (GUI) med olika driftsätt och visuella utformningar, vilket kräver olika utbildningar och ständig växling mellan mjukvara. Denna uppsats visar därför design- och utvecklingsprocessen för ett grafiskt användargränssnitt i form av en webbapplikation för övervakningsprocessen för en samling av automatiserade guidade fordon från olika tillverkare, och svarar på följande fråga: "Vilka är de viktigaste kriterierna vid utformningen av ett grafiskt användargränssnitt med hög användbarhet för övervakningsprocessen av automatiserade guidade fordonsamlingar, oboeroande av tillverkare?” För att svara på frågan analyserades befintliga grafiska användargränssnitt från olika tillverkare, samt intervjuer med utvecklare och slutanvändare av GUI:erna utfördes. Krav härleddes sedan, baserat på vilka skisser, wireframing och hifi -prototyper som har utförts. Användbarhetstest och en heuristisk utvärdering valdes för att kontinuerligt förbättra applikationen och dess användbarhet. Som ett resultat kan följande sex huvudkriterier härledas, de sammanfattar de viktigaste punkterna att tänka på när man utformar ett sådant GUI: förmåga att administrera, anpassningsförmåga, observerbarhet, analyserbarhet, robot- och jobbmedvetenhet och intervention.
Bsaybes, Sahar. "Models and algorithms for fleet management of autonomous vehicles." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC114/document.
Повний текст джерелаThe VIPAFLEET project aims at developing a framework to manage a fleet of IndividualPublic Autonomous Vehicles (VIPA). We consider a fleet of cars distributed at specifiedstations in an industrial area to supply internal transportation, where the cars can beused in different modes of circulation (tram mode, elevator mode, taxi mode). The goalis to develop and implement suitable algorithms for each mode in order to satisfy all therequests either under an economic point aspect or under a quality of service aspect, thisby varying the studied objective functions.We model the underlying online transportation system as a discrete event basedsystem and propose a corresponding fleet management framework, to handle modes,demands and commands. We consider three modes of circulation, tram, elevator andtaxi mode. We propose for each mode appropriate online algorithms and evaluate theirperformance, both in terms of competitive analysis and practical behavior by computationalresults. We treat in this work, the pickup and delivery problem related to theTram mode and the Elevator mode the pickup and delivery problem with time windowsrelated to the taxi mode by means of flows in time-expanded networks
Wegener, Jan-Thierry. "Redeployment in Convoys of Fleets of Shared Vehicles." Thesis, Clermont-Ferrand 2, 2016. http://www.theses.fr/2016CLF22722/document.
Повний текст джерелаCarsharing is a modern way of car rental, attractive to customers who make only occasional use of a car on demand. In a carsharing system, a fleet of cars is distributed at specified stations in an urban area, customers can take a car at any time and station and return it at any time and station, provided that there is a car available at the start station and a free place at the destination station. To ensure the latter, customers have to book their demands in advance. For operating such a system in a satisfactory way, the stations have to keep a good ratio between the total number of places and the number of cars in each station, in order to serve as many requests as possible. This leads to the problem of balancing the load of the stations, called Relocation Problem: an operator has to monitor the load and to decide when and how to move cars from “overfull” stations to “underfull” ones. We consider an innovative carsharing system, where the cars are partly autonomous, which allows to build wireless convoys of cars leaded by a special vehicle, such that the whole convoy is moved by only one driver. This setting is similar to bikesharing, where trucks can simultaneously move several bikes during the relocation process. In this thesis, we address the dynamic and static aspects of the Relocation Problem. The “Dynamic Relocation Problem” describes the situation when cars can be moved between stations during the working hours in order to satisfy the needs of the customers. Hereby, the operator has to make decisions dynamically according to the current situation. In the “Static Relocation Problem” we assume that there is no (or only little) interaction by customers with the system. This situation occurs when the carsharing system is prepared for the next day, i.e., the relocation process is performed during the night. We model the Relocation Problem in the framework of a metric task system. Afterwards, we theoretically analyze both problems and give strategies to solve them. Finally, we perform some computational experiments to examine the applicability of the presented algorithms in practice
Rattanasiri, Pareecha. "Optimisation of a fleet of autonomous underwater vehicles to minimise energy dissipation." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/366503/.
Повний текст джерелаMohamed, Ahmed Mohamed Mahmoud. "Contrôle et commande d'une flotte de véhicules autonomes." Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0626.
Повний текст джерелаThe works of this thesis are focused on the control and command of a fleet of many vehicles (4 to 10 vehicles). A longitudinal control is proposed based on the decentralized global approach, for which the information of the leader and the predecessor are assumed to be available to compute the control law using a linearization control by inverse dynamics. This control concept allows to follow a reference speed imposed by the leading vehicle, while respecting a safety distance (variable and constant) to avoid collisions. The longitudinal control is coupled with the lateral control that uses a sliding mode approach to follow the leader's desired trajectory. In addition, different sliding mode observers are developed. These observers are intended to calculate the nonlinear dynamics in the controls of each vehicle. The fleet is treated secondly in the multi-lane trajectories (line configuration). Two control approaches are proposed to control the vehicles in the different lanes (three lanes: i, j and k). The vehicles are controlled in the first strategy to follow the speed of the leader. However, in the second approach, the desired speed of the leader is modified when a lateral movement is present in order to respect the fleet notion. The vehicles are also controlled to avoid obstacles and switch to the next lane by generating an obstacle avoidance trajectory that takes into account the safety distance between the vehicles and the obstacle, and between the vehicles themselves
Lin, Chun-Ting, and 林峻廷. "A Study on the Effect of Autonomous Vehicle PenetrationRate in Urban Mix-fleet Traffic." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/932qyx.
Повний текст джерела國立臺灣大學
機械工程學研究所
106
Autonomous car has a high possibility to become the mainstream in the future road. However, motorcycle plays a non-negligible part role in Taiwanese urban traffic. About 65% of motor vehicles are motorcycle.The effect of autonomous on mix-fleet traffic is not yet well evaluated. This research is based on microscopic traffic simulation. And models of normal driver car, motorcycle, autonomous car, autonomous car with platooning function are built respectively. The simulation is done by program application. The model of normal driver using action point model, motorcycle using force field model, and autonomous car using intelligent driver model, autonomous car with platooning function using model that follow the acceleration of car in front.We verified the models of normal driver car and motorcycle by aerial video. The result indicates that autonomous car has no influence on traffic flow. On the other hand, autonomous with platooning function has a significant growth with the increasing number of autonomous cars in pure car traffic. Autonomous with platooning function has different influence in mix-fleet traffic with respect to different percentage of motorcycles. Traffic flow increase 95.4% with no motorcycle, but only increase 5.8% with 75%motorcycles. The exist of motorcycle will decrease the advantage of autonomous with platooning function on traffic flow.
Lopes, João Carlos Quintal. "Designing a fleet of Shared Autonomous Electric Vehicles and its charging stations through simulation." Master's thesis, 2022. http://hdl.handle.net/10316/99423.
Повний текст джерелаOs veículos autónomos são o futuro da mobilidade automóvel, com a tecnologia de mobilidade autónoma sendo já uma realidade. A era dos carros autónomos está a chegar e a transição de condutores humanos para condutores robôs irá se iniciar em breve, sendo, por isso, importante a preparação para essa transição. Esta preparação é feita de várias formas e em diversas áreas. Neste trabalho, o foco não foi na tecnologia automóvel, nem em legislação e questões éticas, mas sim, no estudo da mobilidade de uma frota de veículos autónomos elétricos partilhados (conhecidos popularmente em inglês como “shared autonomous electric vehicles” ou “SAEV”), numa região específica e na sua respectiva rede rodoviária. Mais especificamente, em conceber e simular um hipotético e futuro sistema de transporte para a Região de Coimbra (NUTS III), em Portugal. Há três características base para este sistema de transporte: automação, boleia partilhada (conhecido popularmente em inglês como “ridesharing”) e energia elétrica. Foi desenvolvida uma metodologia para conceber um sistema SAEV e os seus respectivos componentes, usando simulação. O procedimento geral do modelo, o desenvolvimento do modelo e a análise pós-simulação foram descritos. A metodologia inclui um modelo de simulação baseado em agentes, com zonas, viajantes e veículos como agentes, permitindo que estes interajam, sendo esta interação baseada em dados de entrada e certos parâmetros definidos. O modelo de simulação baseado em agentes (“agent-based model simulation” ou “ABM” em inglês) foi desenvolvido para realizar o estudo de mobilidade. Foram testados diferentes tempos máximos de espera para verificar como variava o tamanho da frota de veículos. Adicionalmente, o carregamento dos veículos foi estudado em termos de quantidade e localização. Os resultados obtidos apresentam uma redução de curva logarítmica no tamanho da frota de veículos, à medida que o tempo máximo de espera aumenta.
Autonomous vehicles are the future of car mobility and the technology is already up and running presently. The era of self-driving cars is upon us and the transition from human drivers to robot drivers will happen sooner rather than later, and it is, therefore, important to prepare for it. This preparation comes in many forms and is done in many different areas. This work did not focus on vehicle technology nor on legislation and ethical questions, but rather on studying the mobility of a fleet of shared autonomous electric vehicles (SAEV) in a region and its respective road network. In particular, designing and simulating a hypothetical future transport service for the Region of Coimbra (NUTS III), in Portugal. The characteristics of this transport system are threefold: automation, ridesharing and electric power. A methodology was developed to design an SAEV system and its components using simulation. The general model procedure, model development and post-simulation analysis were described. The methodology includes an agent-based simulation model with zones, travelers and vehicles as agents, allowing for them to interact based on input data and defined parameters. The agent-based simulation model was developed to carry out this mobility study. Different maximum waiting times were tested, to verify how the vehicle fleet size varied. In addition, vehicle charging was studied in terms of quantity and location distribution. The obtained results show a logarithmic decrease in the vehicle fleet size, as maximum waiting time is increased.
FCT
Silva, Ana Margarida Oliveira da Costa e. "A mission planning framework for fleets of connected drones." Master's thesis, 2021. http://hdl.handle.net/10773/31385.
Повний текст джерелаA utilização de drones aéreos tem-se vindo a popularizar à medida que estes se tornam mais acessíveis, quer em termos económicos quer em usabilidade. Atualmente, estes veículos são capazes de apresentar dimensões reduzidas e uma boa relação de custo-benefício, o que potencia que diversos serviços e aplicações suportados por redes de drones aéreos estejam a emergir. Alguns cenários que beneficiam da utilização de drones aéreos são a monitorização de situações de emergência e catástrofes naturais, a patrulha de áreas urbanas e apoio às forças policiais e aplicações turísticas como a transmissão de vídeo em tempo real de pontos de interesse. É comum que o controlo do drone esteja dependente de intervenção humana nestas situações, o que requer profissionais especializados no seu controlo. No entanto, nos últimos anos têm surgido diversas soluções que possibilitam o vôo autónomo destes veículos, minimizando a interferência manual. Perante a enorme diversidade de casos de aplicação, muitas das soluções existentes para o controlo autónomo focam-se em cenários específicos de intervenção. Existem também plataformas de planeamento genérico de missões, mas que na sua maioria apenas permitem missões constituídas por conjuntos lineares de pontos a ser percorridos. Estas situações traduzem-se num suporte a missões que é pouco flexível. Nesta dissertação propomos uma infraestrutura modular passível de ser utilizada em cenários variados, possibilitando o controlo autónomo de uma frota de drones aéreos num contexto de missão e a sua monitorização. Esta plataforma tem dois componentes principais, um integrado no computador a bordo do veículo e o outro no controlo terrestre. O primeiro permite a comunicação com o controlador de vôo para que se possa recolher diversos dados de telemetria e enviar instruções de movimento para o drone. O segundo permite monitorizar esses dados e enviar os comandos remotamente, possibilitando também um planeamento robusto de missões com múltiplos drones. Uma missão pode ser descrita num script que o módulo terrestre interpreta, enviando os comandos para os veículos atribuídos. Estas missões podem descrever diversos caminhos, modificando o comportamento dos drones de acordo com factores externos, como a leitura de um sensor. Também é possível definir plugins para serem reutilizados em várias missões, como por exemplo, integrando um algoritmo que garante que todos os drones mantêm a conectividade. A solução foi avaliada em cenários com um único drone e com a colaboração de múltiplos drones. Os testes foram executados em ambiente simulado e também num ambiente com drones reais. O comportamento observado nas missões é semelhante em ambos os cenários.
Mestrado em Engenharia de Computadores e Telemática
Hsiao, Yu-Chieh, and 蕭宇杰. "Duckiepond: A Reproducible, Low-cost, and ML-Compatible Education and Research Platform for a Fleet of Autonomous Maritime Vehicles." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/9n9kmp.
Повний текст джерела國立交通大學
電控工程研究所
108
Duckiepond is an education and research platform of a fleet of autonomous surface vehicles “Duckieboats”designed to be reproducible in hardware, and yet flexible to develop in software and machine learning (ML) compatible. The Duckiepond platform is built upon the Ducki- etown and AI Driving Olympics platform: Duckieboats rely only on one monocular camera, IMU, and GPS, and perform all ML processing using onboard embedded computers. It sup- ports commonly used middleware (ROS and MOOS-IvP) and containerize software packages in Docker, making it easy to deploy. The powerful learning-based together with classic methods enable basic maritime missions: track and trail, navigation, and coordinate among Duckieboats to avoid collisions. The Duckieboat has been operating in a man-made lake, reservoir and river environments. The platform also includes autonomy education materials for maritime missions. We wish that the communities across related domains will adopt the platform for education and research
Книги з теми "Autonomous vehicle fleet"
Wang, Yuanzhe, and Danwei Wang. Collaborative Fleet Maneuvering for Multiple Autonomous Vehicle Systems. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5798-7.
Повний текст джерелаLAND.TECHNIK 2022. VDI Verlag, 2022. http://dx.doi.org/10.51202/9783181023952.
Повний текст джерелаThomas, Brent, Christopher K. Gilmore, and Michael Chaykowsky. Autonomous Unmanned Aerial Vehicles for Blood Delivery: A UAV Fleet Design Tool and Case Study. RAND Corporation, The, 2020.
Знайти повний текст джерелаGilmore, Christopher, Michael Chaykowsky, and Brent Thomas. Autonomous Unmanned Aerial Vehicles for Blood Delivery: A UAV Fleet Design Tool and Case Study. RAND Corporation, 2019. http://dx.doi.org/10.7249/rr3047.
Повний текст джерелаЧастини книг з теми "Autonomous vehicle fleet"
Trommer, Stefan, Lars Kröger, and Tobias Kuhnimhof. "Potential Fleet Size of Private Autonomous Vehicles in Germany and the US." In Road Vehicle Automation 4, 247–56. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60934-8_20.
Повний текст джерелаSandau, Alexander, and Jorge Marx Gómez. "New Era of Fleet Management Systems for Autonomous Vehicles." In Progress in IS, 319–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65687-8_28.
Повний текст джерелаBaiou, Mourad, Aurélien Mombelli, and Alain Quilliot. "Monitoring a Fleet of Autonomous Vehicles Through A* Like Algorithms and Reinforcement Learning." In Recent Advances in Computational Optimization, 111–33. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06839-3_7.
Повний текст джерелаDziubany, Matthias, Sam Kopp, Lars Creutz, Jens Schneider, Anke Schmeink, and Guido Dartmann. "Artificial Intelligence for Fleets of Autonomous Vehicles: Desired Requirements and Solution Approaches." In Smart Transportation, 55–83. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367808150-4.
Повний текст джерелаPrestifilippo, Giovanni. "Artificial Intelligence for Autonomous Vehicle Fleets: Desired Requirements, Solutions and a Best Practice Project." In Smart Transportation, 18–28. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367808150-2.
Повний текст джерелаMacher, Georg, Eric Armengaud, Christian Kreiner, Eugen Brenner, Christoph Schmittner, Zhendong Ma, Helmut Martin, and Martin Krammer. "Integration of Security in the Development Lifecycle of Dependable Automotive CPS." In Research Anthology on Artificial Intelligence Applications in Security, 101–42. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7705-9.ch006.
Повний текст джерелаMacher, Georg, Eric Armengaud, Christian Kreiner, Eugen Brenner, Christoph Schmittner, Zhendong Ma, Helmut Martin, and Martin Krammer. "Integration of Security in the Development Lifecycle of Dependable Automotive CPS." In Research Anthology on Artificial Intelligence Applications in Security, 101–42. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7705-9.ch006.
Повний текст джерелаMacher, Georg, Eric Armengaud, Christian Kreiner, Eugen Brenner, Christoph Schmittner, Zhendong Ma, Helmut Martin, and Martin Krammer. "Integration of Security in the Development Lifecycle of Dependable Automotive CPS." In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 383–423. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-2845-6.ch015.
Повний текст джерелаSchubert, Lucas, Katharina Trapp, and Anthony B. Wandt. "Business Model Change through Autonomous Shared Fleets for Transportation and Logistic Businesses." In Electric Vehicles in Shared Fleets, 145–67. WORLD SCIENTIFIC (EUROPE), 2022. http://dx.doi.org/10.1142/9781800611429_0007.
Повний текст джерелаGöcke, Lutz, and Philip Meier. "Business Model Development for Autonomous Electric Vehicles in Shared Fleets in Multinational Original Equipment Manufacturers (OEMs)." In Electric Vehicles in Shared Fleets, 125–44. WORLD SCIENTIFIC (EUROPE), 2022. http://dx.doi.org/10.1142/9781800611429_0006.
Повний текст джерелаТези доповідей конференцій з теми "Autonomous vehicle fleet"
Kang, Namwoo, Fred M. Feinberg, and Panos Y. Papalambros. "Autonomous Electric Vehicle Sharing System Design." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46491.
Повний текст джерелаShen, Xu, Xiaojing Zhang, and Francesco Borrelli. "Autonomous Parking of Vehicle Fleet in Tight Environments." In 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9147671.
Повний текст джерелаSteven G Hall, Daniel Davis Smith, and Brian Thompson. "Autonomous Aquatic Vehicle Fleet Development: Sensors, Communications and Software." In 2011 Louisville, Kentucky, August 7 - August 10, 2011. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2011. http://dx.doi.org/10.13031/2013.37350.
Повний текст джерелаTye, Clayton, Mark Kinney, James Frenzel, Michael O'Rourke, and Dean Edwards. "A MOOS module for autonomous underwater vehicle fleet control." In OCEANS 2009. IEEE, 2009. http://dx.doi.org/10.23919/oceans.2009.5422187.
Повний текст джерелаRandeni P., Supun A. T., Nicholas R. Rypkema, Erin M. Fischell, Alexander L. Forrest, Michael R. Benjamin, and Henrik Schmidt. "Implementation of a Hydrodynamic Model-Based Navigation System for a Low-Cost AUV Fleet." In 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV). IEEE, 2018. http://dx.doi.org/10.1109/auv.2018.8729758.
Повний текст джерелаde Souza, Felipe, Krishna Gurumurthy, Joshua Auld, and Kara Kockelman. "An Optimization-based Strategy for Shared Autonomous Vehicle Fleet Repositioning." In 6th International Conference on Vehicle Technology and Intelligent Transport Systems. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0009421603700376.
Повний текст джерелаde Souza, Felipe, Krishna Gurumurthy, Joshua Auld, and Kara Kockelman. "An Optimization-based Strategy for Shared Autonomous Vehicle Fleet Repositioning." In 6th International Conference on Vehicle Technology and Intelligent Transport Systems. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0009421600002550.
Повний текст джерелаJiang, Dapeng, Yongjie Pang, and Zaibai Qin. "Cooperation of autonomous underwater vehicle fleet based on MOOS-IvP." In 2010 International Conference on Information and Automation (ICIA). IEEE, 2010. http://dx.doi.org/10.1109/icinfa.2010.5512108.
Повний текст джерелаČudina Ivančev, Ana, Vesna Dragčević, and Tamara Džambas. "Road infrastructure requirements to accommodate autonomous vehicles." In 7th International Conference on Road and Rail Infrastructure. University of Zagreb Faculty of Civil Engineering, 2022. http://dx.doi.org/10.5592/co/cetra.2022.1462.
Повний текст джерелаDaoud, Alaa. "Multi-agent Approach to Resource Allocation in Autonomous Vehicle Fleets." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/671.
Повний текст джерелаЗвіти організацій з теми "Autonomous vehicle fleet"
Singh, Niranjan, Jone Tawaketini,, Roman Kudin, and Gerry Hamilton. Are We Building Agile Graduate Capabilities to Meet Automotive Service Industry Trends? Unitec ePress, February 2020. http://dx.doi.org/10.34074/ocds.085.
Повний текст джерелаDoo, Johnny. Unsettled Issues Regarding the Use of eVTOL Aircraft during Natural Disasters. SAE International, January 2022. http://dx.doi.org/10.4271/epr2022001.
Повний текст джерелаEdwards, Dean B. Communication and Control for Fleets of Autonomous Underwater Vehicles. Fort Belvoir, VA: Defense Technical Information Center, October 2006. http://dx.doi.org/10.21236/ada458488.
Повний текст джерелаDoo, Johnny. Unsettled Issues Concerning eVTOL for Rapid-response, On-demand Firefighting. SAE International, August 2021. http://dx.doi.org/10.4271/epr2021017.
Повний текст джерелаFratantoni, David M. Development of Oceanographic Sampling Networks using Autonomous Gliding Vehicles and Demonstration of WHOI Glider Fleet Operations in the Tropical Western Pacific for the Naval Oceanographic Office. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada431902.
Повний текст джерела