Добірка наукової літератури з теми "Autonomous surgery"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Autonomous surgery".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Autonomous surgery"

1

Gumbs, Andrew A., Isabella Frigerio, Gaya Spolverato, Roland Croner, Alfredo Illanes, Elie Chouillard, and Eyad Elyan. "Artificial Intelligence Surgery: How Do We Get to Autonomous Actions in Surgery?" Sensors 21, no. 16 (August 17, 2021): 5526. http://dx.doi.org/10.3390/s21165526.

Повний текст джерела
Анотація:
Most surgeons are skeptical as to the feasibility of autonomous actions in surgery. Interestingly, many examples of autonomous actions already exist and have been around for years. Since the beginning of this millennium, the field of artificial intelligence (AI) has grown exponentially with the development of machine learning (ML), deep learning (DL), computer vision (CV) and natural language processing (NLP). All of these facets of AI will be fundamental to the development of more autonomous actions in surgery, unfortunately, only a limited number of surgeons have or seek expertise in this rapidly evolving field. As opposed to AI in medicine, AI surgery (AIS) involves autonomous movements. Fortuitously, as the field of robotics in surgery has improved, more surgeons are becoming interested in technology and the potential of autonomous actions in procedures such as interventional radiology, endoscopy and surgery. The lack of haptics, or the sensation of touch, has hindered the wider adoption of robotics by many surgeons; however, now that the true potential of robotics can be comprehended, the embracing of AI by the surgical community is more important than ever before. Although current complete surgical systems are mainly only examples of tele-manipulation, for surgeons to get to more autonomously functioning robots, haptics is perhaps not the most important aspect. If the goal is for robots to ultimately become more and more independent, perhaps research should not focus on the concept of haptics as it is perceived by humans, and the focus should be on haptics as it is perceived by robots/computers. This article will discuss aspects of ML, DL, CV and NLP as they pertain to the modern practice of surgery, with a focus on current AI issues and advances that will enable us to get to more autonomous actions in surgery. Ultimately, there may be a paradigm shift that needs to occur in the surgical community as more surgeons with expertise in AI may be needed to fully unlock the potential of AIS in a safe, efficacious and timely manner.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rivas-Blanco, Irene, Carlos Perez-del-Pulgar, Carmen López-Casado, Enrique Bauzano, and Víctor Muñoz. "Transferring Know-How for an Autonomous Camera Robotic Assistant." Electronics 8, no. 2 (February 18, 2019): 224. http://dx.doi.org/10.3390/electronics8020224.

Повний текст джерела
Анотація:
Robotic platforms are taking their place in the operating room because they provide more stability and accuracy during surgery. Although most of these platforms are teleoperated, a lot of research is currently being carried out to design collaborative platforms. The objective is to reduce the surgeon workload through the automation of secondary or auxiliary tasks, which would benefit both surgeons and patients by facilitating the surgery and reducing the operation time. One of the most important secondary tasks is the endoscopic camera guidance, whose automation would allow the surgeon to be concentrated on handling the surgical instruments. This paper proposes a novel autonomous camera guidance approach for laparoscopic surgery. It is based on learning from demonstration (LfD), which has demonstrated its feasibility to transfer knowledge from humans to robots by means of multiple expert showings. The proposed approach has been validated using an experimental surgical robotic platform to perform peg transferring, a typical task that is used to train human skills in laparoscopic surgery. The results show that camera guidance can be easily trained by a surgeon for a particular task. Later, it can be autonomously reproduced in a similar way to one carried out by a human. Therefore, the results demonstrate that the use of learning from demonstration is a suitable method to perform autonomous camera guidance in collaborative surgical robotic platforms.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Abdelaal, Alaa Eldin, Jordan Liu, Nancy Hong, Gregory D. Hager, and Septimiu E. Salcudean. "Parallelism in Autonomous Robotic Surgery." IEEE Robotics and Automation Letters 6, no. 2 (April 2021): 1824–31. http://dx.doi.org/10.1109/lra.2021.3060402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ray, Katrina. "Autonomous robotic laparoscopic gastrointestinal surgery." Nature Reviews Gastroenterology & Hepatology 19, no. 3 (February 1, 2022): 148. http://dx.doi.org/10.1038/s41575-022-00584-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Loftus, Tyler J., Amanda C. Filiberto, Jeremy Balch, Alexander L. Ayzengart, Patrick J. Tighe, Parisa Rashidi, Azra Bihorac, and Gilbert R. Upchurch. "Intelligent, Autonomous Machines in Surgery." Journal of Surgical Research 253 (September 2020): 92–99. http://dx.doi.org/10.1016/j.jss.2020.03.046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rodriguez y Baena, Ferdinando, and Brian Davies. "Robotic surgery: from autonomous systems to intelligent tools." Robotica 28, no. 2 (August 27, 2009): 163–70. http://dx.doi.org/10.1017/s0263574709990427.

Повний текст джерела
Анотація:
SUMMARYA brief history of robotic surgery is provided, which describes the transition from autonomous robots to hands-on systems that are under the direct control of the surgeon. An example of the latter is the Acrobot (for active-constraint robot) system used in orthopaedics, whilst soft-tissue surgery is illustrated by the daVinci telemanipulator system. Non-technological aspects of robotic surgery have often been a major impediment to their widespread clinical use. These are discussed in detail, together with the role of navigation systems, which are considered a major competitor to surgical robots. A detailed description is then given of a registration method for robots to achieve improved accuracy. Registration is a major source of error in robotic surgery, particularly in orthopaedics. The paper describes the design and clinical implementation of a novel method, coined the bounded registration method, applied to minimally invasive registration of the femur. Results of simulations which compare the performance of bounded registration with a standard implementation of the iterative closest point algorithm are also presented, alongside a description of their application in the Acrobot hands-on robot, used clinically for uni-condylar knee arthroplasty.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Madhu Mohan, R., C. Dr Grisha, M. S. Kunal, V. Lokanatha Reddy, M. Mahendra, and N. Pawan. "VISION ASSIT FOR AUTONOMOUS SURGERY ROBOT." IOP Conference Series: Materials Science and Engineering 1189, no. 1 (October 1, 2021): 012040. http://dx.doi.org/10.1088/1757-899x/1189/1/012040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shademan, Azad, Ryan S. Decker, Justin D. Opfermann, Simon Leonard, Axel Krieger, and Peter C. W. Kim. "Supervised autonomous robotic soft tissue surgery." Science Translational Medicine 8, no. 337 (May 4, 2016): 337ra64. http://dx.doi.org/10.1126/scitranslmed.aad9398.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sandhu, Gurjit, Nicholas R. Teman, and Rebecca M. Minter. "Training Autonomous Surgeons." Annals of Surgery 261, no. 5 (May 2015): 843–45. http://dx.doi.org/10.1097/sla.0000000000001058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nagyné Elek, Renáta, and Tamás Haidegger. "Next in Surgical Data Science: Autonomous Non-Technical Skill Assessment in Minimally Invasive Surgery Training." Journal of Clinical Medicine 11, no. 24 (December 19, 2022): 7533. http://dx.doi.org/10.3390/jcm11247533.

Повний текст джерела
Анотація:
Background: It is well understood that surgical skills largely define patient outcomes both in Minimally Invasive Surgery (MIS) and Robot-Assisted MIS (RAMIS). Non-technical surgical skills, including stress and distraction resilience, decision-making and situation awareness also contribute significantly. Autonomous, technologically supported objective skill assessment can be efficient tools to improve patient outcomes without the need to involve expert surgeon reviewers. However, autonomous non-technical skill assessments are unstandardized and open for more research. Recently, Surgical Data Science (SDS) has become able to improve the quality of interventional healthcare with big data and data processing techniques (capture, organization, analysis and modeling of data). SDS techniques can also help to achieve autonomous non-technical surgical skill assessments. Methods: An MIS training experiment is introduced to autonomously assess non-technical skills and to analyse the workload based on sensory data (video image and force) and a self-rating questionnaire (SURG-TLX). A sensorized surgical skill training phantom and adjacent training workflow were designed to simulate a complicated Laparoscopic Cholecystectomy task; the dissection of the cholecyst’s peritonial layer and the safe clip application on the cystic artery in an uncomfortable environment. A total of 20 training sessions were recorded from 7 subjects (3 non-medicals, 2 residents, 1 expert surgeon and 1 expert MIS surgeon). Workload and learning curves were studied via SURG-TLX. For autonomous non-technical skill assessment, video image data with tracked instruments based on Channel and Spatial Reliability Tracker (CSRT) and force data were utilized. An autonomous time series classification was achieved by a Fully Convolutional Neural Network (FCN), where the class labels were provided by SURG-TLX. Results: With unpaired t-tests, significant differences were found between the two groups (medical professionals and control) in certain workload components (mental demands, physical demands, and situational stress, p<0.0001, 95% confidence interval, p<0.05 for task complexity). With paired t-tests, the learning curves of the trials were also studied; the task complexity resulted in a significant difference between the first and the second trials. Autonomous non-technical skill classification was based on the FCN by applying the tool trajectories and force data as input. This resulted in a high accuracy (85%) on temporal demands classification based on the z component of the used forces and 75% accuracy for classifying mental demands/situational stress with the x component of the used forces validated with Leave One Out Cross-Validation. Conclusions: Non-technical skills and workload components can be classified autonomously based on measured training data. SDS can be effective via automated non-technical skill assessment.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Autonomous surgery"

1

Sneath, Evan B. "Artificial neural network training for semi-autonomous robotic surgery applications." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1416231638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sudhakaran, Nair Sudhesh. "A Virtual Framework for Semi-Autonomous Robotic Surgery using Real-Time Spatial Mapping." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1378196074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Antico, Maria. "4D ultrasound image guidance for autonomous knee arthroscopy." Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/211437/1/Maria_Antico_Thesis.pdf.

Повний текст джерела
Анотація:
This thesis proposes a novel guidance concept for autonomous surgical robots using ultrasound imaging and advanced artificial intelligence techniques. Automatic real-time interpretation of the images acquired during the operations allows the robots to navigate the surgical space safely and identify the target anatomy correctly. In particular, automatic image quality assessment, outlining and tracking structures and tools, and uncertainty management were implemented in a surgical platform. The first application on the knee through cadaver and volunteer studies showed the feasibility and produced results comparable to clinical standards.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Korte, Christopher M. "A Preliminary Investigation into using Artificial Neural Networks to Generate Surgical Trajectories to Enable Semi-Autonomous Surgery in Space." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595499765813353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bertrand, Martin. "Innervation intra-pelvienne : étude anatomique, immuno-histochimique et radiologique avec reconstruction tridimensionnelle." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM5019.

Повний текст джерела
Анотація:
IntroductionL’anatomie nerveuse pelvienne est imprécise dans la littérature. ObjectifsReprésenter en 3D l’innervation autonome du pelvis. Démontrer la capacité de l’IRM voir cette innervation.Matériels et méthodesDes coupes ont été faites sur le bassin de fœtus et d’adultes, puis traitées par des colorations et immunomarquages. Les lames ont été numérisées et reconstruites en 3D.Nous avons effectué une confrontation anatomo-radiologique entre des images d’IRM et de dissection.RésultatsNous avons pu décrire l’innervation autonome du pelvis et faire une cartographie des neuromédiateurs. Nous avons également pu suggérer des plans d’épargne nerveuse lors de la chirurgie. Les acquisitions IRM ont permis une visualisation de l’innervation de façon précise avec une bonne concordance.ConclusionCe travail permet une meilleure description de l’innervation pelvienne et des plans chirurgicaux à emprunter en chirurgie pelvienne. L’IRM permet bien de visualiser l’innervation pelvienne
Introduction :Pelvis nervous anatomy is imprecise in literature. Objectives:1-To describe and represent in 3D pelvic autonomic innervation. 2-To demonstrate the capacity of MRI to visualize pelvic autonomous innervation.Materiel/patients and methods:Serial histological sections were made from foetuses and adults. Sections were treated with conventional and immunostainings. Sections were digitalized and reconstructed in 3D. An anatomo-radiological comparison was made between MRI images and dissection. Results:Our study enabled to localize the pelvic autonomous innervation and to realize a complete neuro-mediators cartography.MRI acquisition allowed an good visualization of the autonomous innervation, with a good correlation with dissection.Conclusion and perspectives:This study enabled a better understanding of pelvic nervous anatomy and physiology. It also demonstrated that this anatomy is visible on MRI
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zaitouna, Mazen. "Les voies nerveuses périphériques autonomes et somatiques lien avec les dysfonctions génito-urinaires." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS406.

Повний текст джерела
Анотація:
Introduction: Parmi les structures anatomiques impliquées dans les fonctions génitales et urinaires, l’innervation autonome et somatique du rétro-péritoine, du pelvis et du périnée a un rôle contrôle déterminant. Cette innervation reste incomplètement systématisée et elle apparaît vulnérable lors d’interventions chirurgicales ou au cours de maladies neurologiques. Classiquement, deux voies nerveuses se situent de part et d’autre du muscle élévateur de l’anus (MEA) : la voie autonome est supra-lévatorienne ; la voie somatique est infra-lévatorienne. Les nerfs autonomes viennent du plexus hypogastrique supérieur (PHS) (fibres sympathiques) qui se divise en deux nerfs hypogastriques (NHs) s’engageant dans le pelvis. Les NHs reçoivent des nerfs splanchniques pelviens (fibres parasympathiques) qui forment le plexus hypogastrique inférieur (PHI). Les voies somatiques proviennent des nerfs pudendaux. Ces notions établies par la dissection conventionnelle peuvent aujourd’hui être complétées par l’analyse de marqueurs nerveux en Dissection Anatomique Assisté par Ordinateur (DAAO). Celle-ci est susceptible de préciser les connaissances anatomiques et d’éclairer la compréhension des dysfonctions génito-urinaires.Objectifs: L’objectif était de décrire le système nerveux autonome rétro-péritonéal et pelvi-périnéal dans ses aspects morphologiques (origine, topographie, trajet, rapports) et fonctionnels (nature des fibres, terminaisons viscérales) pour mettre en perspective les implications potentielles dans les dysfonctions génito-urinaires.Matériel et méthodes: Des coupes histologiques sériées de 5 µm d’épaisseur ont été effectuées dans les régions lombaire et pelvienne de onze fœtus humains âgés de 14 à 31 semaines de gestation, et au niveau pénien chez cinq sujets anatomiques adultes masculins. Pour chaque niveau de coupe, des lames ont été colorées puis traitées en immunohistochimie pour détecter : l’ensemble des fibres nerveuses (anticorps anti-protéine S100), les fibres nerveuses somatiques (anti-PMP 22), les fibres autonomes adrénergiques (anti-TH), les fibres autonomes cholinergiques (anti-VAChT), les fibres autonomes nitrergiques (anti-nNOS), et les fibres musculaires lisses (anti-actine lisse). Les coupes ont ensuite été numérisées par un scanner de haute résolution optique et les images ont été reconstruites en 3D avec le logiciel Winsurf®.Résultats: Au niveau rétro-péritonéal, le PHS est formé de fibres adrénergiques, cholinergiques et nitrergiques. Ses fibres proviennent à la fois du plexus mésentérique inférieur, des ganglions sympathiques voisins et des nerfs splanchniques lombaires. Au niveau pelvien, le PHI se systématise en : une portion supérieure recevant ses fibres du PHS et innervant détrusor, uretères et vésicales séminales ; une portion inférieure recevant ses fibres des nerfs splanchniques pelviens et innervant trigone, prostate et corps érectiles. La jonction uretéro-vésicale est une zone richement innervée par des fibres adrénergiques, cholinergiques et nitrergiques provenant du PHI et des NHs. En outre, le PHI fournit un contingent nerveux autonome au MEA par voie supra-lévatorienne, tandis que le nerf pudendal (NP) lui fournit un contingent somatique par voie infra-lévatorienne. Au niveau pénien, la composante autonome prédomine dans les 2 tiers proximaux quand, en distalité, l’innervation est presque exclusivement somatique. Trois niveaux de communication entre les voies autonome et somatique ont été observés : pré- trans- et post-lévatorien.Conclusion: L’intrication des voies autonomes et somatiques rétropéritonéo-pelvi-périnéales, la diversité de leurs origines, leurs communications et répartition depuis les plexus jusqu’aux viscères s’établissent par DAAO. Ces voies méritent d’être au mieux préservées au cours d’interventions chirurgicales ou instrumentales. Elles représentent de potentielles voies de modulation, de plasticité ou de régénération à explorer
Introduction: The autonomous and somatic innervations of the retro-peritoneum, the pelvis and the perineum have a determining control role among the anatomical structures involved in the genital and urinary functions. The innervations remain incompletely systematized and appear vulnerable during surgical procedures or during neurological diseases. Normally, two nerve pathways are located on both side of levator ani muscle (LAM): the autonomic pathway is supra-levatorian and the somatic pathway is infra-Levatorian. The autonomic nerves come from the superior hypogastric plexus (SHP) (sympathetic fibers) which divides into two hypogastric nerves (HNs) engaging in the pelvis. The HNs receive pelvic splanchnic nerves (parasympathetic fibers) which form the inferior hypogastric plexus (IHP). The somatic pathways come from the pudendal nerves. These notions which are established by conventional dissection can now be supplemented by the analysis of nerve markers in computer-assisted anatomic dissection (CAAD). This is likely to clarify anatomical knowledge and illuminate the understanding of genitourinary dysfunction.Objectives: The objective of this study was to describe the retro peritoneal and pelvic -perineal autonomic nervous system, its morphological (origin, topography, path and relationships) and functional (nature of fibers, visceral endings) aspects and to put into perspective the potential implications on genitourinary dysfunction.Materials and methods: Serial histological sections of 5 μm of thickness were performed in the lumbar and pelvic regions of eleven human fetuses aged 14 to 31 weeks of gestation and at the penile level in five male adult anatomical subjects. For each level, slides were stained and then treated in immunohistochemistry to detect: general nerve fibers (anti-protein S100), somatic nerve fibers (anti-peripheral myelin protein 22), autonomic adrenergic fibers (anti-tyrosine hydroxylase), autonomic cholinergic fibers (anti-VAChT), autonomic nitrergic fibers (anti-nNOS), and smooth muscle fibers (anti-actin). The slides were then digitized by a high-resolution optical scanner and the images were reconstructed in 3D using the Winsurf® software.Results: At the retroperitoneal level, the SHP is composed of adrenergic, cholinergic and nitrergic fibers. Its fibers come from inferior mesenteric plexus, the adjacent ganglions and the lumbar splanchnic nerves. At the pelvic level, the IHP is systematized into: a superior portion receiving its fibers of the SHP and innervating detrusor, ureters and seminal vesicles, a inferior portion receiving its fibers from the pelvic splanchnic nerves and innervating trigone of bladder, prostate and erectile bodies. The ureterovesical junction is an area richly innervated by adrenergic, cholinergic and nitrergic fibers from the IHP and the HNs. In addition, the IHP provides an autonomic nervous to the LAM via the supra-levatorian route, while the pudendal nerve provides a infra-levatorian somatic nervous. At the penile level, the autonomic component predominately innervates in the proximal two thirds where, in distal third, the innervation is almost exclusively somatic. Three levels of communications between the autonomic and somatic pathways were observed: pre- trans- and post-levatorian.Conclusions: The interaction of the autonomic and somatic retroperitoneo-pelvic-perineal pathways, the diversity of their origins, their communications and distribution from the plexus to the viscera are established by CAAD. These pathways deserve to be best preserved during surgical or instrumental procedures. They represent potential pathways of modulation, plasticity or regeneration to be explored in future studies
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Guichard, Jean-Baptiste. "Déterminants du remodelage atrial et de son effet pro-arythmique dans la fibrillation atriale." Thesis, Lyon, 2019. http://hdl.handle.net/1866/24623.

Повний текст джерела
Анотація:
Rationnel et objectif - La fibrillation atriale (FA) est la pathologie rythmique supra-ventriculaire la plus fréquemment diagnostiquée. Le remodelage atrial, qu’il soit électrique ou structurel, conduit à la mise en place et au développement de la cardiomyopathie atriale. La cardiomyopathie atriale est responsable de différentes complications : d’une part mécaniques conduisant à l’augmentation du risque thrombo-embolique et de l’insuffisance cardiaque, d’autre part électriques conduisant à différentes arythmies atriales dont la FA. L’objectif du présent travail est de caractériser les déterminants du remodelage atrial et de leur effet pro-arythmique à l’étage supra-ventriculaire dans la FA. Principaux résultats – Le premier axe de recherche a permis d’objectiver le remodelage induit par le flutter atrial (FLA) chronique à l’aide d’un modèle chronique canin. Le FLA est à l’origine d’un remodelage atrial électrique avec une augmentation de la vulnérabilité à développer de la FA et une diminution des périodes réfractaires effectives (PRE). Cependant, le FLA n’induit pas de remodelage structurel avec notamment l’absence d’augmentation de la durée de FA, de diminution des vitesses de conduction et d’augmentation du processus fibrotique atrial. À noter que la FA chronique, en présence d’un substrat anatomique de FLA, présente des caractéristiques électrophysiologiques originales, en terme de durée de cycle et de d’arythmie et de sa stabilité. De plus, l’ablation du FLA permet de diminuer significativement la durée mais pas la vulnérabilité à présenter des arythmies supra-ventriculaires. Le second axe de recherche a permis de caractériser le rôle différentiel de l’arythmie atriale de la réponse ventriculaire rapide en cas de FA dans le développement du remodelage atrial. Nos travaux ont caractérisé le remodelage atrial induit par l’arythmie atriale isolée en cas de FA : d’une part électrique via la diminution des PRE et l’augmentation de la vulnérabilité ; d’autre part structurel via la diminution des vitesses de conduction et les anomalies des canaux sodiques, des jonctions communicantes et du processus fibrotique. La réponse ventriculaire rapide isolée induit également un remodelage atrial à type d’augmentation de la vulnérabilité, de diminution des vitesses de conduction, d’anomalies modérées du processus fibrotique et des canaux sodiques. À noter une dégradation modérée de la fonction systolique ventriculaire gauche. Cependant, ce remodelage atrial est significativement différent du remodelage induit par l’insuffisance cardiaque. De plus, il existe un effet synergique au niveau du remodelage atrial de l’arythmie atriale et de la fréquence ventriculaire élevée en cas de FA, au niveau du processus fibrotique notamment. Le troisième axe de recherche a permis d’objectiver le rôle de la cilnidipine, un inhibiteur calcique de type N et L, dans la limitation du remodelage atrial en cas de FA chronique, à l’aide d’un modèle aigü et chronique canin. Nos travaux ont caractérisé l’action anti-remodelante de la cilnidipine au niveau électrique, via la limitation de la diminution des PRE, de l’augmentation de la vulnérabilité atriale et de la durée de FA. D’autre part, la cilnidipine semble limiter le remodelage atrial, ce qui est objectivé par la normalisation des vitesses de conduction, de l’expression des canaux sodiques, des jonctions communicantes et de la fibrose tissulaire. La cilnidipine, contrairement aux inhibiteurs calciques de type L tels que la nifédipine, possède une activité anti-remodelante via la modulation de l’activité du système nerveux autonome. Conclusion – Différents facteurs, tels que le flutter atrial, les fréquences atriales et ventriculaires en cas de FA, ont été caractérisés comme déterminants du développement du remodelage atrial. A contrario, la modulation d’un des déterminants du remodelage atrial, le système nerveux autonome via la cilnidipine, permet de de limiter le remodelage atrial secondaire à la FA. Ce travail fournit de nouvelles données sur les mécanismes impliqués dans le remodelage atrial lié à la FA et introduit de nouvelles approches préventives au développement de la FA.
Rational and objective - Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. Atrial remodeling, whether electrical or structural, leads to the development of atrial cardiomyopathy. The atrial cardiomyopathy results in various complications: on one hand, mechanical with an increased thromboembolic risk and heart failure, and on the other hand electrical prdeisposing to atrial arrhythmias including AF. The aim of the thesis was to characterize the determinants of atrial remodeling, and their proarrhythmic effect in AF. Main results - The first part of the thesis focused on the characterization of the atrial remodeling induced by sustained atrial flutter (AFL) in a chronic canine model in order to characterize the interrelationship between AF and AFL. AFL caused electrical remodeling, including increased AF vulnerability and decreased effective refractory periods (ERPs). However, failed to influence AF duration, atrial conduction velocities and fibrosis. Chronic AF in the presence of an anatomical substrate for AFL led to specific AF characteristics, in terms of cycle length and its variability. In addition, AFL ablation significantly reduced arrhythmia duration but not AF vulnerability. The second part of the thesis characterized the differential role of atrial arrhythmia and ventricular response in AF-induced atrial remodeling. We characterized the atrial remodeling induced by lone atrial arrhythmia in AF, with AV-block to prevent high ventricular rate: on the one hand electrical via decreased ERP, reduced expression of sodium channels and gap junctions, which increased AF vulnerability; on the other hand, structural fibrosis which contributed to conduction slowing. Lone high-rate ventricular response also induced atrial remodeling involving increased AF vulnerability, decreased atrial conduction velocities, moderate abnormalities of fibrosis and sodium channel downregulation. In addition, there was a synergistic effect on atrial remodeling of combined atrial arrhythmia and high ventricular rate, especially regarding fibrosis. Thus, atrial tachyarrhythmia and rapid ventricular response during AF produce distinct atrial remodeling; both can contribute to the arrhythmogenic substrate. These results provide new insights into the determinants of AF-related remodeling and provide novel considerations for ventricular rate-control. The third part of the thesis studies the ability of cilnidipine, an N- and L-type calcium channel blocker, to alter autonomic, electrical and structural remodeling associated with chronic AF, in a subacute and chronic dog model. We found that the cilnidipine inhibits the electrophysiological, autonomic and structural consequences of AF-related remodeling and the AF-associated increase in AF-vulnerability and AF-duration; in contrast, the highly selective L-type calcium channel blocker nifedipine had no protective effects. The protective effects of cilnidipine on the remodeling consequences of short-term AF were principally manifested by reductions in AF-induced ERP-abbreviation. With longer-term AF, cilnidipine also attenuated conduction-velocity reductions, protecting against AF-induced fibrosis and downregulation of sodium-channel and connexin subunits. Cilnidipine’s anti-remodeling properties were associated with suppression of the changes in autonomic tone caused by AF. Conclusion - Thus, we have shown 1) the distinct remodeling phenotypes produced by the closely related atrial re-entrant arrhythmias AFL and AF, as well as the interaction when they co-exist; 2) the specific contributions of the atrial rhythm and ventricular rate consequences of AF and how they interact; and 3) the ability of autonomic outflow inhibition by blocking N-type Ca2+-channels to prevent both electrical and structural components of AF-induced profibrillatory remodeling. This work provides new insights into the mechanisms involved in AF-related atrial remodeling and introduces novel preventive approaches.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tagliabue, Eleonora. "Patient-specific simulation for autonomous surgery." Doctoral thesis, 2022. http://hdl.handle.net/11562/1061936.

Повний текст джерела
Анотація:
An Autonomous Robotic Surgical System (ARSS) has to interact with the complex anatomical environment, which is deforming and whose properties are often uncertain. Within this context, an ARSS can benefit from the availability of patient-specific simulation of the anatomy. For example, simulation can provide a safe and controlled environment for the design, test and validation of the autonomous capabilities. Moreover, it can be used to generate large amounts of patient-specific data that can be exploited to learn models and/or tasks. The aim of this Thesis is to investigate the different ways in which simulation can support an ARSS and to propose solutions to favor its employability in robotic surgery. We first address all the phases needed to create such a simulation, from model choice in the pre-operative phase based on the available knowledge to its intra-operative update to compensate for inaccurate parametrization. We propose to rely on deep neural networks trained with synthetic data both to generate a patient-specific model and to design a strategy to update model parametrization starting directly from intra-operative sensor data. Afterwards, we test how simulation can assist the ARSS, both for task learning and during task execution. We show that simulation can be used to efficiently train approaches that require multiple interactions with the environment, compensating for the riskiness to acquire data from real surgical robotic systems. Finally, we propose a modular framework for autonomous surgery that includes deliberative functions to handle real anatomical environments with uncertain parameters. The integration of a personalized simulation proves fundamental both for optimal task planning and to enhance and monitor real execution. The contributions presented in this Thesis have the potential to introduce significant step changes in the development and actual performance of autonomous robotic surgical systems, making them closer to applicability to real clinical conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dumpert, Jason James. "Towards supervised autonomous task completion using an in vivo surgical robot." 2009. http://proquest.umi.com/pqdweb?did=1902406691&sid=4&Fmt=2&clientId=14215&RQT=309&VName=PQD.

Повний текст джерела
Анотація:
Thesis (Ph.D.)--University of Nebraska-Lincoln, 2009.
Title from title screen (site viewed July 8, 2010). PDF text: xi, 200 p. : ill. (chiefly col.) ; 12 Mb. UMI publication number: AAT 3378560. Includes bibliographical references. Also available in microfilm and microfiche formats.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Autonomous surgery"

1

David Joseph, Attard, Fitzmaurice Malgosia, and Ntovas Alexandros XM, eds. The IMLI Treatise On Global Ocean Governance. Oxford University Press, 2018. http://dx.doi.org/10.1093/law/9780198823964.001.0001.

Повний текст джерела
Анотація:
In 1994, a long-debated compromise on the issue of seabed mining became the starting pistol for the development of modern ocean law and its complex interrelations. Now, over twenty years later, the framework set by such agreements as the 1982 United Nations Convention on the Law of the Sea (UNCLOS) has been expanded to cover contemporary concerns of environmental sustainability, economic development, social justice, human rights, security, marine pollution, and even the challenges of climate change. Yet the journey is not smooth. This book forms part of a three-volume series that looks to examine the more successful ocean law schemes and the less effective, and presses the need for change, as scientific and technological innovation, the surge in human population, and pressing moral concerns open new spaces for ocean law. In the second volume in the series, autonomous organisations working under the auspices of the UN are the target, from the World Intellectual Property Organization to the United Nations Office on Drugs and Crime: are they ensuring sustainable development, are efforts adequately administrated, and how much co-ordination is there between different legal bodies?
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Autonomous surgery"

1

Casals, Alícia. "Robots in surgery." In Autonomous Robotic Systems, 222–34. London: Springer London, 1998. http://dx.doi.org/10.1007/bfb0030808.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tzemanaki, Antonia, Sanja Dogramadzi, Tony Pipe, and Chris Melhuish. "Towards an Anthropomorphic Design of Minimally Invasive Instrumentation for Soft Tissue Robotic Surgery." In Advances in Autonomous Robotics, 455–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32527-4_56.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jörg, Stefan, Rainer Konietschke, and Julian Klodmann. "Classification of Modeling for Versatile Simulation Goals in Robotic Surgery." In Frontiers of Intelligent Autonomous Systems, 357–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35485-4_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dolph, Erica, Crystal Krause, and Dmitry Oleynikov. "Future Robotic Systems: Microrobotics and Autonomous Robots." In Robotic-Assisted Minimally Invasive Surgery, 329–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96866-7_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Raczkowsky, Jörg, Philip Nicolai, Björn Hein, and Heinz Wörn. "System Concept for Collision-Free Robot Assisted Surgery Using Real-Time Sensing." In Frontiers of Intelligent Autonomous Systems, 391–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35485-4_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

López, Alfonso Montellano, Mojtaba Khazravi, Robert Richardson, Abbas Dehghani, Rupesh Roshan, Tomasz Liskiewicz, Ardian Morina, David G. Jayne, and Anne Neville. "Locomotion Selection and Mechanical Design for a Mobile Intra-abdominal Adhesion-Reliant Robot for Minimally Invasive Surgery." In Towards Autonomous Robotic Systems, 173–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23232-9_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sengül, Ali, Attila Barsi, David Ribeiro, and Hannes Bleuler. "Role of Holographic Displays and Stereovision Displays in Patient Safety and Robotic Surgery." In Frontiers of Intelligent Autonomous Systems, 369–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35485-4_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sandoval, Juan, Med Amine Laribi, and Saïd Zeghloul. "Autonomous Robot-Assistant Camera Holder for Minimally Invasive Surgery." In Robotics and Mechatronics, 465–72. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30036-4_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Morandi, Angelica, Monica Verga, Elettra Oleari, Lorenza Gasperotti, and Paolo Fiorini. "A Methodological Framework for the Definition of Patient Safety Measures in Robotic Surgery: The Experience of SAFROS Project." In Frontiers of Intelligent Autonomous Systems, 381–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35485-4_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Krupa, Alexandre, Michel de Mathelin, Christophe Doignon, Jacques Gangloff, Guillaume Morel, Luc Soler, and Jacques Marescaux. "Development of Semi-autonomous Control Modes in Laparoscopic Surgery Using Automatic Visual Servoing." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001, 1306–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45468-3_206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Autonomous surgery"

1

Fiorini, P., D. Dall Alba, M. Ginesi, B. Maris, D. Meli, H. Nakawala, and A. Roberti. "Challenges of Autonomous Robotic Surgery." In The Hamlyn Symposium on Medical Robotics. The Hamlyn Centre, Faculty of Engineering, Imperial College London, 2019. http://dx.doi.org/10.31256/hsmr2019.53.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Francom, Matthew, Clinton Burns, Philip Repisky, Benjamin Medina, Alex Kinney, Erick Tello, and Pinhas Ben-Tzvi. "Development of Autonomous Robotic Cataract Surgery Device." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59643.

Повний текст джерела
Анотація:
The current rate of incidence of cataracts is increasing faster than treatment capacity, and an autonomous robotic system is proposed to mitigate this by carrying out cataract surgeries. The robot is composed of a three actuator RPS parallel mechanism in series with an actuated rail mounted roller that moves around the eye, and is designed to perform a simplified version of the extracapsular cataract surgery procedure autonomously. The majority of the design work has been completed, and it is projected that the system will have a tool accuracy of 0.167 mm, 0.141 mm, and 0.290 mm in the x, y, and z directions, respectively. Such accuracies are within the acceptable errors of 1.77mm in the x and y directions of the horizontal plane, as well as 1.139 mm in the vertical z direction. Tracking of the tool when moving at 2 mm/s should give increments of 0.08 mm per frame, ensuring constant visual feedback. Future work will involve completing construction and testing of the device, as well as adding the capability to perform a more comprehensive surgical procedure if time allows.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lehman, A. C., N. A. Wood, J. Dumpert, D. Oleynikov, and S. M. Farritor. "Towards Autonomous Robot-Assisted Natural Orifice Translumenal Endoscopic Surgery." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66614.

Повний текст джерела
Анотація:
Natural Orifice Translumenal Endoscopic Surgery (NOTES) promises to reduce the invasiveness of surgical procedures by accessing the peritoneal cavity through a natural orifice. Current tools for performing NOTES are based on the flexible endoscopy platform, and are significantly limited in imaging and manipulation by the size and geometry of the natural lumen. For NOTES to revolutionize minimally invasive surgery, new approaches are necessary that enable the surgeon to perform procedures with vision and dexterity equivalent to laparoscopic procedures. An image-guided, two-armed, dexterous miniature NOTES robot has been developed that can be placed into the peritoneal cavity through a transgastric incision. Using this robot, the surgeon has effectively demonstrated tissue dissection in non-survivable animal model procedures. A next step in the development of miniature in vivo robots is the automation of routinely performed, low level surgical tasks. This paper details work towards autonomous tissue dissection using the NOTES robot. As a first step, visual tracking and robot control methods are being developed.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sneath, Evan, Christopher Korte, and Grant Schaffner. "Semi-Autonomous Robotic Surgery for Space Exploration Missions." In AIAA Scitech 2020 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-1379.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Minelli, Marco, Alessio Sozzi, Giacomo De Rossi, Federica Ferraguti, Saverio Farsoni, Francesco Setti, Riccardo Muradore, Marcello Bonfe, and Cristian Secchi. "Linear MPC-based Motion Planning for Autonomous Surgery." In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022. http://dx.doi.org/10.1109/iros47612.2022.9982166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chow, Der-Lin, and Wyatt Newman. "Improved knot-tying methods for autonomous robot surgery." In 2013 IEEE International Conference on Automation Science and Engineering (CASE 2013). IEEE, 2013. http://dx.doi.org/10.1109/coase.2013.6653955.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nagy, Tamas D., and Tamas Haidegger. "Autonomous Peg Transfer—a Gateway to Surgery 4.0." In 2022 IEEE 10th Jubilee International Conference on Computational Cybernetics and Cyber-Medical Systems (ICCC 2022). IEEE, 2022. http://dx.doi.org/10.1109/iccc202255925.2022.9922841.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Connolly, Laura, Anton Deguet, Kyle Sunderland, Andras Lasso, Tamas Ungi, John F. Rudan, Russell H. Taylor, Parvin Mousavi, and Gabor Fichtinger. "An Open-Source Platform for Cooperative, Semi-Autonomous Robotic Surgery." In 2021 IEEE International Conference on Autonomous Systems (ICAS). IEEE, 2021. http://dx.doi.org/10.1109/icas49788.2021.9551149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mayer, H., I. Nagy, D. Burschka, A. Knoll, E. U. Braun, R. Lange, and R. Bauernschmitt. "Automation of Manual Tasks for Minimally Invasive Surgery." In 2008 Fourth International Conference on Autonomic and Autonomous Systems (ICAS). IEEE, 2008. http://dx.doi.org/10.1109/icas.2008.16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gonzalez, Glebys, Mridul Agarwal, Mythra V. Balakuntala, Md Masudur Rahman, Upinder Kaur, Richard M. Voyles, Vaneet Aggarwal, Yexiang Xue, and Juan Wachs. "DESERTS: DElay-tolerant SEmi-autonomous Robot Teleoperation for Surgery." In 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021. http://dx.doi.org/10.1109/icra48506.2021.9561399.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії