Добірка наукової літератури з теми "Autonomous surgery"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Autonomous surgery".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Autonomous surgery"
Gumbs, Andrew A., Isabella Frigerio, Gaya Spolverato, Roland Croner, Alfredo Illanes, Elie Chouillard, and Eyad Elyan. "Artificial Intelligence Surgery: How Do We Get to Autonomous Actions in Surgery?" Sensors 21, no. 16 (August 17, 2021): 5526. http://dx.doi.org/10.3390/s21165526.
Повний текст джерелаRivas-Blanco, Irene, Carlos Perez-del-Pulgar, Carmen López-Casado, Enrique Bauzano, and Víctor Muñoz. "Transferring Know-How for an Autonomous Camera Robotic Assistant." Electronics 8, no. 2 (February 18, 2019): 224. http://dx.doi.org/10.3390/electronics8020224.
Повний текст джерелаAbdelaal, Alaa Eldin, Jordan Liu, Nancy Hong, Gregory D. Hager, and Septimiu E. Salcudean. "Parallelism in Autonomous Robotic Surgery." IEEE Robotics and Automation Letters 6, no. 2 (April 2021): 1824–31. http://dx.doi.org/10.1109/lra.2021.3060402.
Повний текст джерелаRay, Katrina. "Autonomous robotic laparoscopic gastrointestinal surgery." Nature Reviews Gastroenterology & Hepatology 19, no. 3 (February 1, 2022): 148. http://dx.doi.org/10.1038/s41575-022-00584-z.
Повний текст джерелаLoftus, Tyler J., Amanda C. Filiberto, Jeremy Balch, Alexander L. Ayzengart, Patrick J. Tighe, Parisa Rashidi, Azra Bihorac, and Gilbert R. Upchurch. "Intelligent, Autonomous Machines in Surgery." Journal of Surgical Research 253 (September 2020): 92–99. http://dx.doi.org/10.1016/j.jss.2020.03.046.
Повний текст джерелаRodriguez y Baena, Ferdinando, and Brian Davies. "Robotic surgery: from autonomous systems to intelligent tools." Robotica 28, no. 2 (August 27, 2009): 163–70. http://dx.doi.org/10.1017/s0263574709990427.
Повний текст джерелаMadhu Mohan, R., C. Dr Grisha, M. S. Kunal, V. Lokanatha Reddy, M. Mahendra, and N. Pawan. "VISION ASSIT FOR AUTONOMOUS SURGERY ROBOT." IOP Conference Series: Materials Science and Engineering 1189, no. 1 (October 1, 2021): 012040. http://dx.doi.org/10.1088/1757-899x/1189/1/012040.
Повний текст джерелаShademan, Azad, Ryan S. Decker, Justin D. Opfermann, Simon Leonard, Axel Krieger, and Peter C. W. Kim. "Supervised autonomous robotic soft tissue surgery." Science Translational Medicine 8, no. 337 (May 4, 2016): 337ra64. http://dx.doi.org/10.1126/scitranslmed.aad9398.
Повний текст джерелаSandhu, Gurjit, Nicholas R. Teman, and Rebecca M. Minter. "Training Autonomous Surgeons." Annals of Surgery 261, no. 5 (May 2015): 843–45. http://dx.doi.org/10.1097/sla.0000000000001058.
Повний текст джерелаNagyné Elek, Renáta, and Tamás Haidegger. "Next in Surgical Data Science: Autonomous Non-Technical Skill Assessment in Minimally Invasive Surgery Training." Journal of Clinical Medicine 11, no. 24 (December 19, 2022): 7533. http://dx.doi.org/10.3390/jcm11247533.
Повний текст джерелаДисертації з теми "Autonomous surgery"
Sneath, Evan B. "Artificial neural network training for semi-autonomous robotic surgery applications." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1416231638.
Повний текст джерелаSudhakaran, Nair Sudhesh. "A Virtual Framework for Semi-Autonomous Robotic Surgery using Real-Time Spatial Mapping." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1378196074.
Повний текст джерелаAntico, Maria. "4D ultrasound image guidance for autonomous knee arthroscopy." Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/211437/1/Maria_Antico_Thesis.pdf.
Повний текст джерелаKorte, Christopher M. "A Preliminary Investigation into using Artificial Neural Networks to Generate Surgical Trajectories to Enable Semi-Autonomous Surgery in Space." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1595499765813353.
Повний текст джерелаBertrand, Martin. "Innervation intra-pelvienne : étude anatomique, immuno-histochimique et radiologique avec reconstruction tridimensionnelle." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM5019.
Повний текст джерелаIntroduction :Pelvis nervous anatomy is imprecise in literature. Objectives:1-To describe and represent in 3D pelvic autonomic innervation. 2-To demonstrate the capacity of MRI to visualize pelvic autonomous innervation.Materiel/patients and methods:Serial histological sections were made from foetuses and adults. Sections were treated with conventional and immunostainings. Sections were digitalized and reconstructed in 3D. An anatomo-radiological comparison was made between MRI images and dissection. Results:Our study enabled to localize the pelvic autonomous innervation and to realize a complete neuro-mediators cartography.MRI acquisition allowed an good visualization of the autonomous innervation, with a good correlation with dissection.Conclusion and perspectives:This study enabled a better understanding of pelvic nervous anatomy and physiology. It also demonstrated that this anatomy is visible on MRI
Zaitouna, Mazen. "Les voies nerveuses périphériques autonomes et somatiques lien avec les dysfonctions génito-urinaires." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS406.
Повний текст джерелаIntroduction: The autonomous and somatic innervations of the retro-peritoneum, the pelvis and the perineum have a determining control role among the anatomical structures involved in the genital and urinary functions. The innervations remain incompletely systematized and appear vulnerable during surgical procedures or during neurological diseases. Normally, two nerve pathways are located on both side of levator ani muscle (LAM): the autonomic pathway is supra-levatorian and the somatic pathway is infra-Levatorian. The autonomic nerves come from the superior hypogastric plexus (SHP) (sympathetic fibers) which divides into two hypogastric nerves (HNs) engaging in the pelvis. The HNs receive pelvic splanchnic nerves (parasympathetic fibers) which form the inferior hypogastric plexus (IHP). The somatic pathways come from the pudendal nerves. These notions which are established by conventional dissection can now be supplemented by the analysis of nerve markers in computer-assisted anatomic dissection (CAAD). This is likely to clarify anatomical knowledge and illuminate the understanding of genitourinary dysfunction.Objectives: The objective of this study was to describe the retro peritoneal and pelvic -perineal autonomic nervous system, its morphological (origin, topography, path and relationships) and functional (nature of fibers, visceral endings) aspects and to put into perspective the potential implications on genitourinary dysfunction.Materials and methods: Serial histological sections of 5 μm of thickness were performed in the lumbar and pelvic regions of eleven human fetuses aged 14 to 31 weeks of gestation and at the penile level in five male adult anatomical subjects. For each level, slides were stained and then treated in immunohistochemistry to detect: general nerve fibers (anti-protein S100), somatic nerve fibers (anti-peripheral myelin protein 22), autonomic adrenergic fibers (anti-tyrosine hydroxylase), autonomic cholinergic fibers (anti-VAChT), autonomic nitrergic fibers (anti-nNOS), and smooth muscle fibers (anti-actin). The slides were then digitized by a high-resolution optical scanner and the images were reconstructed in 3D using the Winsurf® software.Results: At the retroperitoneal level, the SHP is composed of adrenergic, cholinergic and nitrergic fibers. Its fibers come from inferior mesenteric plexus, the adjacent ganglions and the lumbar splanchnic nerves. At the pelvic level, the IHP is systematized into: a superior portion receiving its fibers of the SHP and innervating detrusor, ureters and seminal vesicles, a inferior portion receiving its fibers from the pelvic splanchnic nerves and innervating trigone of bladder, prostate and erectile bodies. The ureterovesical junction is an area richly innervated by adrenergic, cholinergic and nitrergic fibers from the IHP and the HNs. In addition, the IHP provides an autonomic nervous to the LAM via the supra-levatorian route, while the pudendal nerve provides a infra-levatorian somatic nervous. At the penile level, the autonomic component predominately innervates in the proximal two thirds where, in distal third, the innervation is almost exclusively somatic. Three levels of communications between the autonomic and somatic pathways were observed: pre- trans- and post-levatorian.Conclusions: The interaction of the autonomic and somatic retroperitoneo-pelvic-perineal pathways, the diversity of their origins, their communications and distribution from the plexus to the viscera are established by CAAD. These pathways deserve to be best preserved during surgical or instrumental procedures. They represent potential pathways of modulation, plasticity or regeneration to be explored in future studies
Guichard, Jean-Baptiste. "Déterminants du remodelage atrial et de son effet pro-arythmique dans la fibrillation atriale." Thesis, Lyon, 2019. http://hdl.handle.net/1866/24623.
Повний текст джерелаRational and objective - Atrial fibrillation (AF) is the most common arrhythmia in clinical practice. Atrial remodeling, whether electrical or structural, leads to the development of atrial cardiomyopathy. The atrial cardiomyopathy results in various complications: on one hand, mechanical with an increased thromboembolic risk and heart failure, and on the other hand electrical prdeisposing to atrial arrhythmias including AF. The aim of the thesis was to characterize the determinants of atrial remodeling, and their proarrhythmic effect in AF. Main results - The first part of the thesis focused on the characterization of the atrial remodeling induced by sustained atrial flutter (AFL) in a chronic canine model in order to characterize the interrelationship between AF and AFL. AFL caused electrical remodeling, including increased AF vulnerability and decreased effective refractory periods (ERPs). However, failed to influence AF duration, atrial conduction velocities and fibrosis. Chronic AF in the presence of an anatomical substrate for AFL led to specific AF characteristics, in terms of cycle length and its variability. In addition, AFL ablation significantly reduced arrhythmia duration but not AF vulnerability. The second part of the thesis characterized the differential role of atrial arrhythmia and ventricular response in AF-induced atrial remodeling. We characterized the atrial remodeling induced by lone atrial arrhythmia in AF, with AV-block to prevent high ventricular rate: on the one hand electrical via decreased ERP, reduced expression of sodium channels and gap junctions, which increased AF vulnerability; on the other hand, structural fibrosis which contributed to conduction slowing. Lone high-rate ventricular response also induced atrial remodeling involving increased AF vulnerability, decreased atrial conduction velocities, moderate abnormalities of fibrosis and sodium channel downregulation. In addition, there was a synergistic effect on atrial remodeling of combined atrial arrhythmia and high ventricular rate, especially regarding fibrosis. Thus, atrial tachyarrhythmia and rapid ventricular response during AF produce distinct atrial remodeling; both can contribute to the arrhythmogenic substrate. These results provide new insights into the determinants of AF-related remodeling and provide novel considerations for ventricular rate-control. The third part of the thesis studies the ability of cilnidipine, an N- and L-type calcium channel blocker, to alter autonomic, electrical and structural remodeling associated with chronic AF, in a subacute and chronic dog model. We found that the cilnidipine inhibits the electrophysiological, autonomic and structural consequences of AF-related remodeling and the AF-associated increase in AF-vulnerability and AF-duration; in contrast, the highly selective L-type calcium channel blocker nifedipine had no protective effects. The protective effects of cilnidipine on the remodeling consequences of short-term AF were principally manifested by reductions in AF-induced ERP-abbreviation. With longer-term AF, cilnidipine also attenuated conduction-velocity reductions, protecting against AF-induced fibrosis and downregulation of sodium-channel and connexin subunits. Cilnidipine’s anti-remodeling properties were associated with suppression of the changes in autonomic tone caused by AF. Conclusion - Thus, we have shown 1) the distinct remodeling phenotypes produced by the closely related atrial re-entrant arrhythmias AFL and AF, as well as the interaction when they co-exist; 2) the specific contributions of the atrial rhythm and ventricular rate consequences of AF and how they interact; and 3) the ability of autonomic outflow inhibition by blocking N-type Ca2+-channels to prevent both electrical and structural components of AF-induced profibrillatory remodeling. This work provides new insights into the mechanisms involved in AF-related atrial remodeling and introduces novel preventive approaches.
Tagliabue, Eleonora. "Patient-specific simulation for autonomous surgery." Doctoral thesis, 2022. http://hdl.handle.net/11562/1061936.
Повний текст джерелаDumpert, Jason James. "Towards supervised autonomous task completion using an in vivo surgical robot." 2009. http://proquest.umi.com/pqdweb?did=1902406691&sid=4&Fmt=2&clientId=14215&RQT=309&VName=PQD.
Повний текст джерелаTitle from title screen (site viewed July 8, 2010). PDF text: xi, 200 p. : ill. (chiefly col.) ; 12 Mb. UMI publication number: AAT 3378560. Includes bibliographical references. Also available in microfilm and microfiche formats.
Книги з теми "Autonomous surgery"
David Joseph, Attard, Fitzmaurice Malgosia, and Ntovas Alexandros XM, eds. The IMLI Treatise On Global Ocean Governance. Oxford University Press, 2018. http://dx.doi.org/10.1093/law/9780198823964.001.0001.
Повний текст джерелаЧастини книг з теми "Autonomous surgery"
Casals, Alícia. "Robots in surgery." In Autonomous Robotic Systems, 222–34. London: Springer London, 1998. http://dx.doi.org/10.1007/bfb0030808.
Повний текст джерелаTzemanaki, Antonia, Sanja Dogramadzi, Tony Pipe, and Chris Melhuish. "Towards an Anthropomorphic Design of Minimally Invasive Instrumentation for Soft Tissue Robotic Surgery." In Advances in Autonomous Robotics, 455–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32527-4_56.
Повний текст джерелаJörg, Stefan, Rainer Konietschke, and Julian Klodmann. "Classification of Modeling for Versatile Simulation Goals in Robotic Surgery." In Frontiers of Intelligent Autonomous Systems, 357–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35485-4_31.
Повний текст джерелаDolph, Erica, Crystal Krause, and Dmitry Oleynikov. "Future Robotic Systems: Microrobotics and Autonomous Robots." In Robotic-Assisted Minimally Invasive Surgery, 329–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96866-7_40.
Повний текст джерелаRaczkowsky, Jörg, Philip Nicolai, Björn Hein, and Heinz Wörn. "System Concept for Collision-Free Robot Assisted Surgery Using Real-Time Sensing." In Frontiers of Intelligent Autonomous Systems, 391–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35485-4_34.
Повний текст джерелаLópez, Alfonso Montellano, Mojtaba Khazravi, Robert Richardson, Abbas Dehghani, Rupesh Roshan, Tomasz Liskiewicz, Ardian Morina, David G. Jayne, and Anne Neville. "Locomotion Selection and Mechanical Design for a Mobile Intra-abdominal Adhesion-Reliant Robot for Minimally Invasive Surgery." In Towards Autonomous Robotic Systems, 173–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23232-9_16.
Повний текст джерелаSengül, Ali, Attila Barsi, David Ribeiro, and Hannes Bleuler. "Role of Holographic Displays and Stereovision Displays in Patient Safety and Robotic Surgery." In Frontiers of Intelligent Autonomous Systems, 369–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35485-4_32.
Повний текст джерелаSandoval, Juan, Med Amine Laribi, and Saïd Zeghloul. "Autonomous Robot-Assistant Camera Holder for Minimally Invasive Surgery." In Robotics and Mechatronics, 465–72. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30036-4_42.
Повний текст джерелаMorandi, Angelica, Monica Verga, Elettra Oleari, Lorenza Gasperotti, and Paolo Fiorini. "A Methodological Framework for the Definition of Patient Safety Measures in Robotic Surgery: The Experience of SAFROS Project." In Frontiers of Intelligent Autonomous Systems, 381–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35485-4_33.
Повний текст джерелаKrupa, Alexandre, Michel de Mathelin, Christophe Doignon, Jacques Gangloff, Guillaume Morel, Luc Soler, and Jacques Marescaux. "Development of Semi-autonomous Control Modes in Laparoscopic Surgery Using Automatic Visual Servoing." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001, 1306–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45468-3_206.
Повний текст джерелаТези доповідей конференцій з теми "Autonomous surgery"
Fiorini, P., D. Dall Alba, M. Ginesi, B. Maris, D. Meli, H. Nakawala, and A. Roberti. "Challenges of Autonomous Robotic Surgery." In The Hamlyn Symposium on Medical Robotics. The Hamlyn Centre, Faculty of Engineering, Imperial College London, 2019. http://dx.doi.org/10.31256/hsmr2019.53.
Повний текст джерелаFrancom, Matthew, Clinton Burns, Philip Repisky, Benjamin Medina, Alex Kinney, Erick Tello, and Pinhas Ben-Tzvi. "Development of Autonomous Robotic Cataract Surgery Device." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59643.
Повний текст джерелаLehman, A. C., N. A. Wood, J. Dumpert, D. Oleynikov, and S. M. Farritor. "Towards Autonomous Robot-Assisted Natural Orifice Translumenal Endoscopic Surgery." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66614.
Повний текст джерелаSneath, Evan, Christopher Korte, and Grant Schaffner. "Semi-Autonomous Robotic Surgery for Space Exploration Missions." In AIAA Scitech 2020 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-1379.
Повний текст джерелаMinelli, Marco, Alessio Sozzi, Giacomo De Rossi, Federica Ferraguti, Saverio Farsoni, Francesco Setti, Riccardo Muradore, Marcello Bonfe, and Cristian Secchi. "Linear MPC-based Motion Planning for Autonomous Surgery." In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022. http://dx.doi.org/10.1109/iros47612.2022.9982166.
Повний текст джерелаChow, Der-Lin, and Wyatt Newman. "Improved knot-tying methods for autonomous robot surgery." In 2013 IEEE International Conference on Automation Science and Engineering (CASE 2013). IEEE, 2013. http://dx.doi.org/10.1109/coase.2013.6653955.
Повний текст джерелаNagy, Tamas D., and Tamas Haidegger. "Autonomous Peg Transfer—a Gateway to Surgery 4.0." In 2022 IEEE 10th Jubilee International Conference on Computational Cybernetics and Cyber-Medical Systems (ICCC 2022). IEEE, 2022. http://dx.doi.org/10.1109/iccc202255925.2022.9922841.
Повний текст джерелаConnolly, Laura, Anton Deguet, Kyle Sunderland, Andras Lasso, Tamas Ungi, John F. Rudan, Russell H. Taylor, Parvin Mousavi, and Gabor Fichtinger. "An Open-Source Platform for Cooperative, Semi-Autonomous Robotic Surgery." In 2021 IEEE International Conference on Autonomous Systems (ICAS). IEEE, 2021. http://dx.doi.org/10.1109/icas49788.2021.9551149.
Повний текст джерелаMayer, H., I. Nagy, D. Burschka, A. Knoll, E. U. Braun, R. Lange, and R. Bauernschmitt. "Automation of Manual Tasks for Minimally Invasive Surgery." In 2008 Fourth International Conference on Autonomic and Autonomous Systems (ICAS). IEEE, 2008. http://dx.doi.org/10.1109/icas.2008.16.
Повний текст джерелаGonzalez, Glebys, Mridul Agarwal, Mythra V. Balakuntala, Md Masudur Rahman, Upinder Kaur, Richard M. Voyles, Vaneet Aggarwal, Yexiang Xue, and Juan Wachs. "DESERTS: DElay-tolerant SEmi-autonomous Robot Teleoperation for Surgery." In 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021. http://dx.doi.org/10.1109/icra48506.2021.9561399.
Повний текст джерела