Добірка наукової літератури з теми "Autonomous and highly oscillatory differential equations"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Autonomous and highly oscillatory differential equations".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Autonomous and highly oscillatory differential equations"
DAVIDSON, B. D., and D. E. STEWART. "A NUMERICAL HOMOTOPY METHOD AND INVESTIGATIONS OF A SPRING-MASS SYSTEM." Mathematical Models and Methods in Applied Sciences 03, no. 03 (June 1993): 395–416. http://dx.doi.org/10.1142/s0218202593000217.
Повний текст джерелаPhilos, Ch G., I. K. Purnaras, and Y. G. Sficas. "ON THE BEHAVIOUR OF THE OSCILLATORY SOLUTIONS OF SECOND-ORDER LINEAR UNSTABLE TYPE DELAY DIFFERENTIAL EQUATIONS." Proceedings of the Edinburgh Mathematical Society 48, no. 2 (May 23, 2005): 485–98. http://dx.doi.org/10.1017/s0013091503000993.
Повний текст джерелаOgorodnikova, S., and F. Sadyrbaev. "MULTIPLE SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS WITH OSCILLATORY SOLUTIONS." Mathematical Modelling and Analysis 11, no. 4 (December 31, 2006): 413–26. http://dx.doi.org/10.3846/13926292.2006.9637328.
Повний текст джерелаCondon, Marissa, Alfredo Deaño, and Arieh Iserles. "On second-order differential equations with highly oscillatory forcing terms." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, no. 2118 (January 13, 2010): 1809–28. http://dx.doi.org/10.1098/rspa.2009.0481.
Повний текст джерелаSanz-Serna, J. M. "Mollified Impulse Methods for Highly Oscillatory Differential Equations." SIAM Journal on Numerical Analysis 46, no. 2 (January 2008): 1040–59. http://dx.doi.org/10.1137/070681636.
Повний текст джерелаPetzold, Linda R., Laurent O. Jay, and Jeng Yen. "Numerical solution of highly oscillatory ordinary differential equations." Acta Numerica 6 (January 1997): 437–83. http://dx.doi.org/10.1017/s0962492900002750.
Повний текст джерелаCohen, David, Ernst Hairer, and Christian Lubich. "Modulated Fourier Expansions of Highly Oscillatory Differential Equations." Foundations of Computational Mathematics 3, no. 4 (October 1, 2003): 327–45. http://dx.doi.org/10.1007/s10208-002-0062-x.
Повний текст джерелаCondon, M., A. Iserles, and S. P. Nørsett. "Differential equations with general highly oscillatory forcing terms." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2161 (January 8, 2014): 20130490. http://dx.doi.org/10.1098/rspa.2013.0490.
Повний текст джерелаHerrmann, L. "Oscillatory Solutions of Some Autonomous Partial Differential Equations with a Parameter." Journal of Mathematical Sciences 236, no. 3 (December 1, 2018): 367–75. http://dx.doi.org/10.1007/s10958-018-4117-1.
Повний текст джерелаChartier, Philippe, Joseba Makazaga, Ander Murua, and Gilles Vilmart. "Multi-revolution composition methods for highly oscillatory differential equations." Numerische Mathematik 128, no. 1 (January 17, 2014): 167–92. http://dx.doi.org/10.1007/s00211-013-0602-0.
Повний текст джерелаДисертації з теми "Autonomous and highly oscillatory differential equations"
Bouchereau, Maxime. "Modélisation de phénomènes hautement oscillants par réseaux de neurones." Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS034.
Повний текст джерелаThis thesis focuses on the application of Machine Learning to the study of highly oscillatory differential equations. More precisely, we are interested in an approach to accurately approximate the solution of a differential equation with the least amount of computations, using neural networks. First, the autonomous case is studied, where the proper- ties of backward analysis and neural networks are used to enhance existing numerical methods. Then, a generalization to the strongly oscillating case is proposed to improve a specific first-order numerical scheme tailored to this scenario. Subsequently, neural networks are employed to replace the necessary pre- computations for implementing uniformly ac- curate numerical methods to approximate so- lutions of strongly oscillating equations. This can be done either by building upon the work done for the autonomous case or by using a neural network structure that directly incorporates the equation’s structure
Khanamiryan, Marianna. "Numerical methods for systems of highly oscillatory ordinary differential equations." Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/226323.
Повний текст джерелаKanat, Bengi Tanoğlu Gamze. "Numerical Solution of Highly Oscillatory Differential Equations By Magnus Series Method/." [s.l.]: [s.n.], 2006. http://library.iyte.edu.tr/tezler/master/matematik/T000572.pdf.
Повний текст джерелаBréhier, Charles-Edouard. "Numerical analysis of highly oscillatory Stochastic PDEs." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00824693.
Повний текст джерелаКниги з теми "Autonomous and highly oscillatory differential equations"
Wu, Xinyuan, and Bin Wang. Geometric Integrators for Differential Equations with Highly Oscillatory Solutions. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7.
Повний текст джерелаSchütte, Christof. A quasiresonant smoothing algorithm for solving large highly oscillatory differential equations from quantum chemistry. Aachen: Verlag Shaker, 1994.
Знайти повний текст джерелаBin, Wang, and Xinyuan Wu. Geometric Integrators for Differential Equations with Highly Oscillatory Solutions. Springer Singapore Pte. Limited, 2021.
Знайти повний текст джерелаBin, Wang, and Xinyuan Wu. Geometric Integrators for Differential Equations with Highly Oscillatory Solutions. Springer, 2022.
Знайти повний текст джерелаЧастини книг з теми "Autonomous and highly oscillatory differential equations"
Hairer, Ernst, Gerhard Wanner, and Christian Lubich. "Highly Oscillatory Differential Equations." In Springer Series in Computational Mathematics, 407–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05018-7_13.
Повний текст джерелаWu, Xinyuan, Xiong You, and Bin Wang. "Effective Methods for Highly Oscillatory Second-Order Nonlinear Differential Equations." In Structure-Preserving Algorithms for Oscillatory Differential Equations, 185–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35338-3_8.
Повний текст джерелаLe Bris, Claude, Frédéric Legoll, and Alexei Lozinski. "MsFEM à la Crouzeix-Raviart for Highly Oscillatory Elliptic Problems." In Partial Differential Equations: Theory, Control and Approximation, 265–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41401-5_11.
Повний текст джерелаWu, Xinyuan, Kai Liu, and Wei Shi. "Improved Filon-Type Asymptotic Methods for Highly Oscillatory Differential Equations." In Structure-Preserving Algorithms for Oscillatory Differential Equations II, 53–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48156-1_3.
Повний текст джерелаWu, Xinyuan, Kai Liu, and Wei Shi. "Error Analysis of Explicit TSERKN Methods for Highly Oscillatory Systems." In Structure-Preserving Algorithms for Oscillatory Differential Equations II, 175–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48156-1_8.
Повний текст джерелаWu, Xinyuan, and Bin Wang. "Symplectic Approximations for Efficiently Solving Semilinear KG Equations." In Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 351–91. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_11.
Повний текст джерелаWu, Xinyuan, Kai Liu, and Wei Shi. "Highly Accurate Explicit Symplectic ERKN Methods for Multi-frequency Oscillatory Hamiltonian Systems." In Structure-Preserving Algorithms for Oscillatory Differential Equations II, 193–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48156-1_9.
Повний текст джерелаWu, Xinyuan, and Bin Wang. "Energy-Preserving Schemes for High-Dimensional Nonlinear KG Equations." In Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 263–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_9.
Повний текст джерелаWu, Xinyuan, and Bin Wang. "Linearly-Fitted Conservative (Dissipative) Schemes for Nonlinear Wave Equations." In Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 235–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_8.
Повний текст джерелаBensoussan, Alain. "Homogenization for Non Linear Elliptic Equations with Random Highly Oscillatory Coefficients." In Partial Differential Equations and the Calculus of Variations, 93–133. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4684-9196-8_5.
Повний текст джерелаТези доповідей конференцій з теми "Autonomous and highly oscillatory differential equations"
Kuo, Chi-Wei, and C. Steve Suh. "On Controlling Non-Autonomous Time-Delay Feedback Systems." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51128.
Повний текст джерелаFeng, Dehua, Frederick Ferguson, Yang Gao, and Xinru Niu. "Investigating the Start-Up Structures and Their Evolution Within an Under-Expanded Jet Flows." In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-113767.
Повний текст джерела