Дисертації з теми "Automorphisme des graphes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-43 дисертацій для дослідження на тему "Automorphisme des graphes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Carboni, Lucrezia. "Graphes pour l’exploration des réseaux de neurones artificiels et de la connectivité cérébrale humaine." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALM060.
Повний текст джерелаThe main objective of this thesis is to explore brain and artificial neural network connectivity from agraph-based perspective. While structural and functional connectivity analysis has been extensivelystudied in the context of the human brain, there is a lack of a similar analysis framework in artificialsystems.To address this gap, this research focuses on two main axes.In the first axis, the main objective is to determine a healthy signature characterization of the humanbrain resting state functional connectivity. To achieve this objective, a novel framework is proposed,integrating traditional graph statistics and network reduction tools, to determine healthy connectivitypatterns. Hence, we build a graph pair-wise comparison and a classifier to identify pathological statesand rank associated perturbed brain regions. Additionally, the generalization and robustness of theproposed framework were investigated across multiple datasets and variations in data quality.The second research axis explores the benefits of brain-inspired connectivity exploration of artificialneural networks (ANNs) in the future perspective of more robust artificial systems development. Amajor robustness issue in ANN models is represented by catastrophic forgetting when the networkdramatically forgets previously learned tasks when adapting to new ones. Our work demonstrates thatgraph modeling offers a simple and elegant framework for investigating ANNs, comparing differentlearning strategies, and detecting deleterious behaviors such as catastrophic forgetting.Moreover, we explore the potential of leveraging graph-based insights to effectively mitigatecatastrophic forgetting, laying a foundation for future research and explorations in this area
Aurand, Eric William. "Infinite Planar Graphs." Thesis, University of North Texas, 2000. https://digital.library.unt.edu/ark:/67531/metadc2545/.
Повний текст джерелаDerakhshan, Parisa. "Automorphisms generating disjoint Hamilton cycles in star graphs." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/16779.
Повний текст джерелаSchmidt, Simon [Verfasser]. "Quantum automorphism groups of finite graphs / Simon Schmidt." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1216104816/34.
Повний текст джерелаCrinion, Tim. "Chamber graphs of some geometries related to the Petersen graph." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/chamber-graphs-of-some-geometries-related-to-the-petersen-graph(f481f0af-7c39-4728-8928-571495d1217a).html.
Повний текст джерелаMöller, Rögnvaldur G. "Groups acting on graphs." Thesis, University of Oxford, 1991. http://ora.ox.ac.uk/objects/uuid:2dacfc67-56c4-4541-b52e-10199a13dcc2.
Повний текст джерелаHahn, Gena. "Sur des graphes finis et infinis." Paris 11, 1986. http://www.theses.fr/1986PA112166.
Повний текст джерелаThis work describes the dependence of microstructural features on rapid solidification processing for the melt spun Al-8% Fe alloy. The inspected parameters are: - ejection pressure and substrate velocity, - nature and rugosity of susbtrate, - ejection temperature. The resultant microstructures of the chill block melt spun ribbons is classified into three families: micro-cellular and dendritic structures, and equiaxed grains containing precipitates. It is possible to avoid the occurrence of the coarse dendritic structure corresponding to the slowest cooling conditions however, uniformity of the ribbon morphologic characteristics and good thermal contact between the ribbon and the weel have to be insured. So, improvement of wetting is the major point. The influence of process parameters on wetting is discussed and particular attention is paid to the sticking distance between the ribbon and the substrate. The planar flow casting method has been developed and microstructural results are compared to those given by the C. B. M. S. Technique
Bougard, Nicolas. "Regular graphs and convex polyhedra with prescribed numbers of orbits." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210688.
Повний текст джерела(s,a)=(1,0) si k=0,
(s,a)=(1,1) si k=1,
s=a>0 si k=2,
0< s <= 2a <= 2ks si k>2.
(resp.
(s,a)=(1,0) si k=0,
(s,a)=(1,1) si k=1 ou 2,
s-1<=a<=(k-1)s+1 et s,a>0 si k>2.)
Nous étudions les polyèdres convexes de R³ dans le second chapitre. Pour tout polyèdre convexe P, nous notons Isom(P) l'ensemble des isométries de R³ laissant P invariant. Si G est un sous-groupe de Isom(P), le f_G-vecteur de P est le triple d'entiers (s,a,f) tel que G ait exactement s orbites sur l'ensemble sommets de P, a orbites sur l'ensemble des arêtes de P et f orbites sur l'ensemble des faces de P. Remarquons que (s,a,f) est le f_{id}-vecteur (appelé f-vecteur dans la littérature) d'un polyèdre si ce dernier possède exactement s sommets, a arêtes et f faces. Nous généralisons un théorème de Steinitz décrivant tous les f-vecteurs possibles. Pour tout groupe fini G d'isométries de R³, nous déterminons l'ensemble des triples (s,a,f) pour lesquels il existe un polyèdre convexe ayant (s,a,f) comme f_G-vecteur. Ces résultats nous permettent de caractériser les triples (s,a,f) pour lesquels il existe un polyèdre convexe tel que Isom(P) a s orbites sur l'ensemble des sommets, a orbites sur l'ensemble des arêtes et f orbites sur l'ensemble des faces.
La structure d'incidence I(P) associée à un polyèdre P consiste en la donnée de l'ensemble des sommets de P, l'ensemble des arêtes de P, l'ensemble des faces de P et de l'inclusion entre ces différents éléments (la notion de distance ne se trouve pas dans I(P)). Nous déterminons également l'ensemble des triples d'entiers (s,a,f) pour lesquels il existe une structure d'incidence I(P) associée à un polyèdre P dont le groupe d'automorphismes a exactement s orbites de sommets, a orbites d'arêtes et f orbites de sommets.
Doctorat en sciences, Spécialisation mathématiques
info:eu-repo/semantics/nonPublished
Adatorwovor, Dayana. "H - Removable Sequences of Graphs." OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/791.
Повний текст джерелаAllie, Imran. "Meta-Cayley Graphs on Dihedral Groups." University of the Western Cape, 2017. http://hdl.handle.net/11394/5440.
Повний текст джерелаThe pursuit of graphs which are vertex-transitive and non-Cayley on groups has been ongoing for some time. There has long been evidence to suggest that such graphs are a very rarety in occurrence. Much success has been had in this regard with various approaches being used. The aim of this thesis is to find such a class of graphs. We will take an algebraic approach. We will define Cayley graphs on loops, these loops necessarily not being groups. Specifically, we will define meta-Cayley graphs, which are vertex-transitive by construction. The loops in question are defined as the semi-direct product of groups, one of the groups being Z₂ consistently, the other being in the class of dihedral groups. In order to prove non-Cayleyness on groups, we will need to fully determine the automorphism groups of these graphs. Determining the automorphism groups is at the crux of the matter. Once these groups are determined, we may then apply Sabidussi's theorem. The theorem states that a graph is Cayley on groups if and only if its automorphism group contains a subgroup which acts regularly on its vertex set.
Chemicals Industries Education and Training Authority (CHIETA)
Piggott, Adam. "The topology of finite graphs, recognition and the growth of free-group automorphisms." Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409180.
Повний текст джерелаVodah, Sunday. "On the primarity of some block intersection graphs." University of the Western Cape, 2018. http://hdl.handle.net/11394/6735.
Повний текст джерелаA tactical con guration consists of a nite set V of points, a nite set B of blocks and an incidence relation between them, so that all blocks are incident with the same number k points, and all points are incident with the same number r of blocks (See [14] for example ). If v := jV j and b := jBj; then v; k; b; r are known as the parameters of the con guration. Counting incident point-block pairs, one sees that vr = bk: In this thesis, we generalize tactical con gurations on Steiner triple systems obtained from projective geometry. Our objects are subgeometries as blocks. These subgeometries are collected into systems and we study them as designs and graphs. Considered recursively is a further tactical con guration on some of the designs obtained and in what follows, we obtain similar structures as the Steiner triple systems from projective geometry. We also study these subgeometries as factorizations and examine the automorphism group of the new structures. These tactical con gurations at rst sight do not form interesting structures. However, as will be shown, they o er some level of intriguing symmetries. It will be shown that they inherit the automorphism group of the parent geometry.
McPhee, Jillian Dawn. "Endomorphisms of Fraïssé limits and automorphism groups of algebraically closed relational structures." Thesis, University of St Andrews, 2012. http://hdl.handle.net/10023/3358.
Повний текст джерелаKumwenda, Khumbo. "Codes, graphs and designs related to iterated line graphs of complete graphs." Thesis, University of the Western Cape, 2011. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_1742_1320645699.
Повний текст джерелаWagner, Andrew. "On the Existence of a Second Hamilton Cycle in Hamiltonian Graphs With Symmetry." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/30290.
Повний текст джерелаGibbins, Aliska L. "Automorphism Groups of Buildings Constructed Via Covering Spaces." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1373976456.
Повний текст джерелаYe, Kaidi. "Automorphismes géométriques des groupes libres : croissance polynomiale et algorithmes." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4713/document.
Повний текст джерелаAn automorphism $phi$ of a free group $F_n$ of finite rank $n geq 2$ is said to be geometric it is induced by a homeomorphism on a surface.In this thesis we concern ourselves with answering the question:Which precisely are the outer automorphisms of $F_n$ that are geometric?to which we give an algorithmical decision for the case of polynomially growing outer automorphisms, up to raising to certain positive power.In order to realize this algorithm, we establish the technique of quotient and blow-up automorphisms of graph-of-groups, which when apply for the special case of partial Dehn twist enables us to develop a criterion to decide whether the induced outer automorphism is an actual Dehn twist.Applying the criterion repeatedly on the special topological representative deriving from relative train track map, we are now able to either “unfold” this iterated relative Dehn twist representative level by level until eventually obtain an ordinary Dehn twist representative or show that $hat{phi}$ has at least quadratic growth hence is not geometric.As a side result, we also proved that every linearly growing automorphism of free group has a positive power which is a Dehn twist automorphism. This is a fact that has been taken for granted by many experts, although has no formal proof to be found in the literature.In the case of Dehn twist automorphisms, we then use the known algorithm to make the given Dehn twist representative efficient and apply the Whitehead algorithm as well as the classical theorems by Nielsen, Baers, Zieschangs and others to construct its geometric model or to show that it is not geometric
MacKinnon, Benjamin B. "The Automorphism Group of the Halved Cube." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4609.
Повний текст джерелаMumba, Nephtale Bvalamanja. "Codes, graphs and designs from maximal subgroups of alternating groups." University of the Western Cape, 2018. http://hdl.handle.net/11394/6165.
Повний текст джерелаThe main theme of this thesis is the construction of linear codes from adjacency matrices or sub-matrices of adjacency matrices of regular graphs. We first examine the binary codes from the row span of biadjacency matrices and their transposes for some classes of bipartite graphs. In this case we consider a sub-matrix of an adjacency matrix of a graph as the generator of the code. We then shift our attention to uniform subset graphs by exploring the automorphism groups of graph covers and some classes of uniform subset graphs. In the sequel, we explore equal codes from adjacency matrices of non-isomorphic uniform subset graphs and finally consider codes generated by an adjacency matrix formed by adding adjacency matrices of two classes of uniform subset graphs.
Vodah, Sunday. "Automorphism groups of some designs of steiner triple systems and the atomorphism groups of their block intersection graphs." University of the Western Cape, 2014. http://hdl.handle.net/11394/4527.
Повний текст джерелаA Steiner triple system of order v is a collection of subsets of size three from a set of v-elements such that every pair of the elements of the set is contained in exactly one 3-subset. In this study, we discuss some known Steiner triple systems and their automorphism groups. We also construct block intersection graphs of the Steiner triple systems of our consideration and compare their automorphism groups to the automorphism groups of the Steiner triple systems.
Maggiolo, Stefano. "On the automorphism group of certain algebraic varieties." Doctoral thesis, SISSA, 2012. http://hdl.handle.net/20.500.11767/4690.
Повний текст джерелаMuthivhi, Thifhelimbilu Ronald. "Codes Related to and Derived from Hamming Graphs." University of the Western Cape, 2013. http://hdl.handle.net/11394/4091.
Повний текст джерелаCodes Related to and Derived from Hamming Graphs T.R Muthivhi M.Sc thesis, Department of Mathematics, University of Western Cape For integers n; k 1; and k n; the graph k n has vertices the 2n vectors of Fn2 and adjacency de ned by two vectors being adjacent if they di er in k coordinate positions. In particular, 1 n is the classical n-cube, usually denoted by H1(n; 2): This study examines the codes (both binary and p-ary for p an odd prime) of the row span of adjacency and incidence matrices of these graphs. We rst examine codes of the adjacency matrices of the n-cube. These have been considered in [14]. We then consider codes generated by both incidence and adjacency matrices of the Hamming graphs H1(n; 3) [12]. We will also consider codes of the line graphs of the n-cube as in [13]. Further, the automorphism groups of the codes, designs and graphs will be examined, highlighting where there is an interplay. Where possible, suitable permutation decoding sets will be given.
Tener, Greg. "ATTACKS ON DIFFICULT INSTANCES OF GRAPH ISOMORPHISM: SEQUENTIAL AND PARALLEL ALGORITHMS." Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2631.
Повний текст джерелаPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Computer Science PhD
Smith, Heather Christina. "Zero Divisors among Digraphs." VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/2120.
Повний текст джерелаVasey, Daniel. "Alternating groups as completions of the Goldschmidt G3-amalgam." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/alternating-groups-as-completions-of-the-goldschmidt-g3amalgam(e8819961-7d8d-4c51-93f8-ab74afdf8011).html.
Повний текст джерелаManjunath, Madhusudan Verfasser], and Kurt [Akademischer Betreuer] [Mehlhorn. "A Riemann-Roch theory for sublattices of the root lattice An, graph automorphisms and counting cycles in graphs / Madhusudan Manjunath. Betreuer: Kurt Mehlhorn." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2012. http://d-nb.info/1052292607/34.
Повний текст джерелаChassaniol, Arthur. "Contributions à l'étude des groupes quantiques de permutations." Thesis, Clermont-Ferrand 2, 2016. http://www.theses.fr/2016CLF22709/document.
Повний текст джерелаIn this thesis we study the quantum automorphism group of finite graphs, introduces by Banica and Bichon. First we will prove a theorem about the structure of the quantum automorphism group of the lexicographic product of two finite regular graphs. It is a quantum generalization of a classical result of Sabidussi. This theorem gives a necessary and sufficient condition for this quantum group to be discribe as the free wreath product of the quantum automorphism groups of these two graphs. Then, we will give some improvement of Banica, Bichon and Chenevier results, to obtain a quantum non-symmetry criteria on graphs, using tools developped by the above authors. Finally, to continue this research, we will describe another method using Tannaka-Krein duality and inspired by the study of orthogonal compact groups by Banica and Speicher. This will enable us, with a thorough orbital study of vertex-transitive graphs, to state a sufficient condition for a graph to have quantum symmetries ; condition which is intended to be also necessary but this remains conjecture at this point
Sousa, Paulo Regis Menezes. "AplicaÃÃes de criptografia quÃntica de chave pÃblica em assinaturas de mensagens." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13047.
Повний текст джерелаAs assinaturas digitais sÃo de fundamental importÃncia para as comunicaÃÃes eletrÃnicas no mundo todo por garantirem a integridade e autenticidade da informaÃÃo. Com os avanÃos da ciÃncia nas Ãreas da mecÃnica quÃntica e a introduÃÃo destes novos conceitos nas telecomunicaÃÃes, a seguranÃa da informaÃÃo tambÃm precisou evoluir e cada vez mais se tem buscado novos sistemas de seguranÃa que forneÃam maior integridade e autenticidade que os sistemas clÃssicos. Dessa forma o objetivo deste trabalho à utilizar as propriedades do problema QSCDff , para a criaÃÃo de um protocolo de assinatura quÃntica de mensagens. O problema QSCD ff possui propriedades matemÃticas e computacionais para garantir a integridade e autenticidade das assinaturas geradas. O protocolo proposto faz uso de chaves descritas na forma de estados quÃnticos construÃdos a partir de permutaÃÃes de um grupo simÃtrico e de uma funÃÃo de hash para a compressÃo da mensagem original. Como entrada o protocolo recebe a mensagem clÃssica e uma chave privada. Para a geraÃÃo do estado quÃntico da assinatura utiliza-se uma permutaÃÃo como chave privada e o hash da mensagem. Gerar tal assinatura sem ter uma chave privada consiste em resolver um problema de encontrar automorfismos nÃo triviais de grafos. A validaÃÃo deste estado à feita atravÃs da aplicaÃÃo do algoritmo quÃntico de busca de Grover. Por fim à mostrado que a probabilidade de falsificaÃÃo da assinatura à negligenciÃvel dado o nÃmero de cÃpias do estado da assinatura.
Dirino, Kariny de Andrade. "Um estudo sobre álgebras associadas a alguns grafos orientados em níveis." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/7784.
Повний текст джерелаApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-09-22T11:27:47Z (GMT) No. of bitstreams: 2 Dissertação - Kariny de Andrade Dirino - 2017.pdf: 1986993 bytes, checksum: fd843aaf3aee361fd3b4dd512828d8f0 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-09-22T11:27:47Z (GMT). No. of bitstreams: 2 Dissertação - Kariny de Andrade Dirino - 2017.pdf: 1986993 bytes, checksum: fd843aaf3aee361fd3b4dd512828d8f0 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-08-28
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Considering a layered directed graphs we may associate it to an algebra, denoted as , whose generators are the edges of the graph and the relations are defined through: every ways with the same initial vertex and the same final vertex determine different fractorizations for the same polynomial with coefficients in a non-commutative ring. We present a study about these algebras and their main properties, presenting some classes of examples and having as central focus the Hasse graph of the partially ordered set of k -faces of Petersen graph, . We discuss the results on basis for algebras of type we calculate their Hilbert series and the automorphisms group of these algebras, we determine the subgraphs induced by the set of vertices fixed by each and we calculate the graded trace generating functions, in order to introduce problems related to koszulity.
Dado um grafo orientado em níveis podemos associar a ele uma álgebra, denotada por cujos geradores são as arestas do grafo e as relações são definidas mediante: todos os caminhos com o mesmo vértice inicial e mesmo vértice final determinam fatorações distintas para o mesmo polinômio com coeficientes em um anel não comutativo. Exibimos um estudo sobre essas álgebras e suas principais propriedades, apresentando algumas classes de exemplos e tendo como foco central o grafo de Hasse do conjunto parcialmente ordenado das k-faces do grafo de Petersen, . Abordamos resultados sobre bases para álgebras do tipo , calculamos as suas séries de Hilbert e o grupo dos automorfismos dessas álgebras, determinamos os subgrafos induzidos pelo conjunto dos vértices fixados por cada e calculamos as funções geradoras do traço graduado, a fim de introduzirmos problemas relacionados à koszulidade.
Bobga, Benkam Benedict. "Bicyclic Mixed Triple Systems." Digital Commons @ East Tennessee State University, 2005. https://dc.etsu.edu/etd/1043.
Повний текст джерелаTalpo, Humberto Luiz. "Reflexões e numero de cobertura de arvores homogeneas e grupos de automorfismos de arvores semi-homogeneas." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305924.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-05T23:33:46Z (GMT). No. of bitstreams: 1 Talpo_HumbertoLuiz_D.pdf: 1408389 bytes, checksum: b11f884cbf1e05f81138a8e91a5980dc (MD5) Previous issue date: 2006
Resumo: Seja G uma árvore homogênea e Aut(G) seu grupo de automorfismos. Um automorfismo f Î Aut(G) é par se d(f(x),x) º0 mod 2 para todo vértice x Î G, onde d(.,.) é a função distância definida pelo comprimento do menor caminho ligando os vértices. O conjunto Aut+(G) de todos os automorfismos pares é um subgrupo de índice 2 em Aut(G). Definimos uma geodésica g Ì G como um subgrafo isomorfo a Z (onde Z é visto como um grafo que possui arestas unindo inteiros consecutivos). Uma reflexão em uma geodésica g é um automorfismo involutivo f (f² =1) tal que f(x) = x se, e somente se, x Î G. Denotamos por R o conjunto de todas as reflexões em geodésicas. Neste trabalho (Capítulo 2) provamos que, dada uma árvore homogênea de grau par G, o número de cobertura de Aut+(G) pelas reflexões em geodésicas é 11, no seguinte sentido: dado f Î Aut+(G) existem f1, f2,... fk com k £ 11, tais que f(x) = fk °fk-1°...°f1(x) para todo vértice x em G. Além disso, considerando árvores homogêneas, sabemos que o grupo de automorfismos é completo e o subgrupo de automorfismos pares é simples. Flexibilizamos a condição de homogeneidade e conseguimos demonstrar (Capítulo 3) para o caso de árvores semi-homogêneas, que o grupo de automorfismos é simples e completo
Abstract: Let G be a homogeneous tree and Aut(G) its group of automorphism. An automorphism Î Aut(G) is said to be even if d(f(x),x) º0 mod 2 for every vertex x Î G of , where d(.,.) is the canonical distance function defined by the minimum length of paths connecting the vertices. The set Aut+(G) of all even automorphism is a subgroup of index 2 in Aut(G). We define a geodesic g Ì G as a subtree isomorphic to the standard tree of the integers Z, that is, a homogeneous subtree of degree 2. A reflection in a geodesic g is an involutive automorphism f (f² =1) such that f(x) = x if x Î G. We denote by R the set of all reflections in geodesics. In this work (Chapter 2) we prove that, for every even degree tree G, the covering number of Aut+(G) by reflections in geodesics is 11, in the sense that give f Î Aut+(G) there are f1, f2,... fk with k £ 11, such that f(x) = fk °fk-1°...°f1(x) for every vertex x in G.Moreover, if we consider homogeneous trees we know that automorphisms group is complete and the even automorphisms subgroup is simple. We vary the homogeneous condition and we prove that (Chapter 3) for the semi-homogeneous trees, the automorphisms group is simple and complete
Doutorado
Doutor em Matemática
Tran, Quan Duc. "Tricyclic Steiner Triple Systems with 1-Rotational Subsystems." Digital Commons @ East Tennessee State University, 2007. https://dc.etsu.edu/etd/2102.
Повний текст джерелаWade, Richard D. "Symmetries of free and right-angled Artin groups." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:b856e2b5-3689-472b-95c1-71b5748affc9.
Повний текст джерелаBarboza, Marcelo Bezerra. "Sobre uma classe de álgebras associadas a duas famílias de grafos orientados." Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/4541.
Повний текст джерелаApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-19T11:45:05Z (GMT) No. of bitstreams: 2 Dissertação - Marcelo Bezerra Barboza - 2015.pdf: 1031294 bytes, checksum: 1a2c64373fbcf29d38e433509a38f1ab (MD5) license_rdf: 19874 bytes, checksum: 38cb62ef53e6f513db2fb7e337df6485 (MD5)
Made available in DSpace on 2015-05-19T11:45:05Z (GMT). No. of bitstreams: 2 Dissertação - Marcelo Bezerra Barboza - 2015.pdf: 1031294 bytes, checksum: 1a2c64373fbcf29d38e433509a38f1ab (MD5) license_rdf: 19874 bytes, checksum: 38cb62ef53e6f513db2fb7e337df6485 (MD5) Previous issue date: 2015-03-02
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Given a directed layered graph , we present the algebra A() as a quotient of the free associative or tensor algebra (with unit, over an arbitrarily fixed field of scalars), freely generated by the set of edges in . We calculate the Hilbert series associated with the grading on A() coming from degree in the tensor algebra. We also calculate the group of automorphisms of A() that preserve the (ascending) filtration associated with the grading mentioned above. Despite the fact the main results within this notes remain true for a relatively large class of directed graphs, we stay close to the ones Dn and Ln, n 3, that is, those consisting, respectively, on the Hasse diagram of the partially ordered sets of faces in a regular polygon containing n edges and the power set of {1, . . . , n}. The work teaching us all of the above is [1], by Colleen Duffy.
Dado um grafo orientado em níveis, apresentamos a álgebra A() como um quociente da álgebra associativa livre ou tensorial (com unidade, sobre um corpo de escalares arbitrariamente fixado), livremente gerada pelo conjunto de arestas em . Calculamos a série de Hilbert associada à graduação em A() proveniente do grau na álgebra tensorial. Também calculamos o grupo dos automorfismos de A() que preservam a filtração (crescente) associada à graduação acima mencionada. Apesar de os resultados principais permanecerem verdadeiros para uma classe relativamente ampla de grafos orientados, permanecemos próximos a Dn e Ln, n 3, isto é, aqueles que consistem, respectivamente, no diagrama de Hasse dos conjuntos parcialmente ordenados das faces de um polígono regular de n lados e no conjunto das partes de {1, . . . , n}. O trabalho do qual aprendemos todo o acima é [1], por Collen Duffy.
Artemenko, Igor. "On Weak Limits and Unimodular Measures." Thèse, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/30417.
Повний текст джерелаLe, Boudec Adrien. "Géométrie des groupes localement compacts. Arbres. Action !" Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112036.
Повний текст джерелаIn Chapter 1 we investigate the class of locally compact lacunary hyperbolic groups. We characterize locally compact groups having one asymptotic cone that is a real tree and whose natural isometric action is focal. We also study the structure of lacunary hyperbolic groups, and prove that in the unimodular case subgroups cannot satisfy a law. We apply the previous results in Chapter 2 to solve the problem of the existence of cut-points in asymptotic cones for connected Lie groups. In Chapter 3 we prove that Neretin's group is compactly presented and give an upper bound on its Dehn function. We also study metric properties of Neretin's group, and prove that some remarkable subgroups are quasi-isometrically embedded. In Chapter 4 we study a family of groups acting on a tree, and whose local action is prescribed by some permutation group. We prove among other things that these groups have property (PW), and exhibit some simple groups in this family. In Chapter 5 we introduce the relation range of a finitely generated group, which is the set of lengths of relations that are not generated by relations of smaller length. We establish a link between simple connectedness of asymptotic cones and the relation range of the group, and give a large class of groups having a relation range as large as possible
Haubold, Niko. "Compressed Decision Problems in Groups." Doctoral thesis, Universitätsbibliothek Leipzig, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-85413.
Повний текст джерелаGagnon, Jérôme. "Les graphes asymétriques minimaux de longueur induite 3." Thèse, 2006. http://hdl.handle.net/1866/17293.
Повний текст джерелаFournier, J. "Automorphismes et isomorphismes des graphes de Cayley." Thèse, 2004. http://hdl.handle.net/1866/17274.
Повний текст джерелаGray, Jonathan Nathan. "On the homology of automorphism groups of free groups." 2011. http://trace.tennessee.edu/utk_graddiss/974.
Повний текст джерелаShrivastava, Abhishek Kumar. "Listing Unique Fractional Factorial Designs." 2009. http://hdl.handle.net/1969.1/ETD-TAMU-2009-12-7345.
Повний текст джерелаZeman, Peter. "Algebraické, strukturální a výpočetní vlastnosti geometrických reprezentací grafů." Master's thesis, 2016. http://www.nusl.cz/ntk/nusl-352783.
Повний текст джерелаHaubold, Niko. "Compressed Decision Problems in Groups." Doctoral thesis, 2011. https://ul.qucosa.de/id/qucosa%3A11370.
Повний текст джерела