Добірка наукової літератури з теми "Automorphisme des graphes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Automorphisme des graphes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Automorphisme des graphes"
Kutnar, Klavdija, Dragan Marusic, Stefko Miklavic, and Rok Strasek. "Automorphisms of Tabacjn graphs." Filomat 27, no. 7 (2013): 1157–64. http://dx.doi.org/10.2298/fil1307157k.
Повний текст джерелаDella-Giustina, James. "Finding the Fixing Number of Johnson Graphs J(n, k) for k Є {2; 3}". American Journal of Undergraduate Research 20, № 3 (31 грудня 2023): 81–89. http://dx.doi.org/10.33697/ajur.2023.097.
Повний текст джерелаGhorbani, Modjtaba, Matthias Dehmer, Abbe Mowshowitz, Jin Tao, and Frank Emmert-Streib. "The Hosoya Entropy of Graphs Revisited." Symmetry 11, no. 8 (August 6, 2019): 1013. http://dx.doi.org/10.3390/sym11081013.
Повний текст джерелаMaksimović, Marija. "On Some Regular Two-Graphs up to 50 Vertices." Symmetry 15, no. 2 (February 3, 2023): 408. http://dx.doi.org/10.3390/sym15020408.
Повний текст джерелаŁuczak, Tomasz. "The automorphism group of random graphs with a given number of edges." Mathematical Proceedings of the Cambridge Philosophical Society 104, no. 3 (November 1988): 441–49. http://dx.doi.org/10.1017/s0305004100065646.
Повний текст джерелаHernández-Gómez, Juan C., Gerardo Reyna-Hérnandez, Jesús Romero-Valencia, and Omar Rosario Cayetano. "Transitivity on Minimum Dominating Sets of Paths and Cycles." Symmetry 12, no. 12 (December 11, 2020): 2053. http://dx.doi.org/10.3390/sym12122053.
Повний текст джерелаBall, Fabian, and Andreas Geyer-Schulz. "Invariant Graph Partition Comparison Measures." Symmetry 10, no. 10 (October 15, 2018): 504. http://dx.doi.org/10.3390/sym10100504.
Повний текст джерелаFERN, LORI, GARY GORDON, JASON LEASURE, and SHARON PRONCHIK. "Matroid Automorphisms and Symmetry Groups." Combinatorics, Probability and Computing 9, no. 2 (March 2000): 105–23. http://dx.doi.org/10.1017/s0963548399004125.
Повний текст джерелаMoreira de Oliveira, Montauban, and Jean-Guillaume Eon. "Non-crystallographic nets: characterization and first steps towards a classification." Acta Crystallographica Section A Foundations and Advances 70, no. 3 (March 12, 2014): 217–28. http://dx.doi.org/10.1107/s2053273314000631.
Повний текст джерелаTsiovkina, Ludmila Yu. "ON A CLASS OF EDGE-TRANSITIVE DISTANCE-REGULAR ANTIPODAL COVERS OF COMPLETE GRAPHS." Ural Mathematical Journal 7, no. 2 (December 30, 2021): 136. http://dx.doi.org/10.15826/umj.2021.2.010.
Повний текст джерелаДисертації з теми "Automorphisme des graphes"
Carboni, Lucrezia. "Graphes pour l’exploration des réseaux de neurones artificiels et de la connectivité cérébrale humaine." Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALM060.
Повний текст джерелаThe main objective of this thesis is to explore brain and artificial neural network connectivity from agraph-based perspective. While structural and functional connectivity analysis has been extensivelystudied in the context of the human brain, there is a lack of a similar analysis framework in artificialsystems.To address this gap, this research focuses on two main axes.In the first axis, the main objective is to determine a healthy signature characterization of the humanbrain resting state functional connectivity. To achieve this objective, a novel framework is proposed,integrating traditional graph statistics and network reduction tools, to determine healthy connectivitypatterns. Hence, we build a graph pair-wise comparison and a classifier to identify pathological statesand rank associated perturbed brain regions. Additionally, the generalization and robustness of theproposed framework were investigated across multiple datasets and variations in data quality.The second research axis explores the benefits of brain-inspired connectivity exploration of artificialneural networks (ANNs) in the future perspective of more robust artificial systems development. Amajor robustness issue in ANN models is represented by catastrophic forgetting when the networkdramatically forgets previously learned tasks when adapting to new ones. Our work demonstrates thatgraph modeling offers a simple and elegant framework for investigating ANNs, comparing differentlearning strategies, and detecting deleterious behaviors such as catastrophic forgetting.Moreover, we explore the potential of leveraging graph-based insights to effectively mitigatecatastrophic forgetting, laying a foundation for future research and explorations in this area
Aurand, Eric William. "Infinite Planar Graphs." Thesis, University of North Texas, 2000. https://digital.library.unt.edu/ark:/67531/metadc2545/.
Повний текст джерелаDerakhshan, Parisa. "Automorphisms generating disjoint Hamilton cycles in star graphs." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/16779.
Повний текст джерелаSchmidt, Simon [Verfasser]. "Quantum automorphism groups of finite graphs / Simon Schmidt." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1216104816/34.
Повний текст джерелаCrinion, Tim. "Chamber graphs of some geometries related to the Petersen graph." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/chamber-graphs-of-some-geometries-related-to-the-petersen-graph(f481f0af-7c39-4728-8928-571495d1217a).html.
Повний текст джерелаMöller, Rögnvaldur G. "Groups acting on graphs." Thesis, University of Oxford, 1991. http://ora.ox.ac.uk/objects/uuid:2dacfc67-56c4-4541-b52e-10199a13dcc2.
Повний текст джерелаHahn, Gena. "Sur des graphes finis et infinis." Paris 11, 1986. http://www.theses.fr/1986PA112166.
Повний текст джерелаThis work describes the dependence of microstructural features on rapid solidification processing for the melt spun Al-8% Fe alloy. The inspected parameters are: - ejection pressure and substrate velocity, - nature and rugosity of susbtrate, - ejection temperature. The resultant microstructures of the chill block melt spun ribbons is classified into three families: micro-cellular and dendritic structures, and equiaxed grains containing precipitates. It is possible to avoid the occurrence of the coarse dendritic structure corresponding to the slowest cooling conditions however, uniformity of the ribbon morphologic characteristics and good thermal contact between the ribbon and the weel have to be insured. So, improvement of wetting is the major point. The influence of process parameters on wetting is discussed and particular attention is paid to the sticking distance between the ribbon and the substrate. The planar flow casting method has been developed and microstructural results are compared to those given by the C. B. M. S. Technique
Bougard, Nicolas. "Regular graphs and convex polyhedra with prescribed numbers of orbits." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210688.
Повний текст джерела(s,a)=(1,0) si k=0,
(s,a)=(1,1) si k=1,
s=a>0 si k=2,
0< s <= 2a <= 2ks si k>2.
(resp.
(s,a)=(1,0) si k=0,
(s,a)=(1,1) si k=1 ou 2,
s-1<=a<=(k-1)s+1 et s,a>0 si k>2.)
Nous étudions les polyèdres convexes de R³ dans le second chapitre. Pour tout polyèdre convexe P, nous notons Isom(P) l'ensemble des isométries de R³ laissant P invariant. Si G est un sous-groupe de Isom(P), le f_G-vecteur de P est le triple d'entiers (s,a,f) tel que G ait exactement s orbites sur l'ensemble sommets de P, a orbites sur l'ensemble des arêtes de P et f orbites sur l'ensemble des faces de P. Remarquons que (s,a,f) est le f_{id}-vecteur (appelé f-vecteur dans la littérature) d'un polyèdre si ce dernier possède exactement s sommets, a arêtes et f faces. Nous généralisons un théorème de Steinitz décrivant tous les f-vecteurs possibles. Pour tout groupe fini G d'isométries de R³, nous déterminons l'ensemble des triples (s,a,f) pour lesquels il existe un polyèdre convexe ayant (s,a,f) comme f_G-vecteur. Ces résultats nous permettent de caractériser les triples (s,a,f) pour lesquels il existe un polyèdre convexe tel que Isom(P) a s orbites sur l'ensemble des sommets, a orbites sur l'ensemble des arêtes et f orbites sur l'ensemble des faces.
La structure d'incidence I(P) associée à un polyèdre P consiste en la donnée de l'ensemble des sommets de P, l'ensemble des arêtes de P, l'ensemble des faces de P et de l'inclusion entre ces différents éléments (la notion de distance ne se trouve pas dans I(P)). Nous déterminons également l'ensemble des triples d'entiers (s,a,f) pour lesquels il existe une structure d'incidence I(P) associée à un polyèdre P dont le groupe d'automorphismes a exactement s orbites de sommets, a orbites d'arêtes et f orbites de sommets.
Doctorat en sciences, Spécialisation mathématiques
info:eu-repo/semantics/nonPublished
Adatorwovor, Dayana. "H - Removable Sequences of Graphs." OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/791.
Повний текст джерелаAllie, Imran. "Meta-Cayley Graphs on Dihedral Groups." University of the Western Cape, 2017. http://hdl.handle.net/11394/5440.
Повний текст джерелаThe pursuit of graphs which are vertex-transitive and non-Cayley on groups has been ongoing for some time. There has long been evidence to suggest that such graphs are a very rarety in occurrence. Much success has been had in this regard with various approaches being used. The aim of this thesis is to find such a class of graphs. We will take an algebraic approach. We will define Cayley graphs on loops, these loops necessarily not being groups. Specifically, we will define meta-Cayley graphs, which are vertex-transitive by construction. The loops in question are defined as the semi-direct product of groups, one of the groups being Z₂ consistently, the other being in the class of dihedral groups. In order to prove non-Cayleyness on groups, we will need to fully determine the automorphism groups of these graphs. Determining the automorphism groups is at the crux of the matter. Once these groups are determined, we may then apply Sabidussi's theorem. The theorem states that a graph is Cayley on groups if and only if its automorphism group contains a subgroup which acts regularly on its vertex set.
Chemicals Industries Education and Training Authority (CHIETA)
Книги з теми "Automorphisme des graphes"
The classification of minimal graphs with given abelian automorphism group. Providence, R.I., USA: American Mathematical Society, 1985.
Знайти повний текст джерелаRubin, Matatyahu. The reconstruction of trees from their automorphism groups. Providence, R.I: American Mathematical Society, 1993.
Знайти повний текст джерелаGoodman, Albert J. Automorphism groups of graphs: Asymptotic problems. 1992.
Знайти повний текст джерелаLauri, Josef, and Raffaele Scapellato. Topics in Graph Automorphisms and Reconstruction. Cambridge University Press, 2016.
Знайти повний текст джерелаLauri, Josef, and Raffaele Scapellato. Topics in Graph Automorphisms and Reconstruction (London Mathematical Society Student Texts). Cambridge University Press, 2003.
Знайти повний текст джерелаLauri, Josef, and Raffaele Scapellato. Topics in Graph Automorphisms and Reconstruction. Cambridge University Press, 2016.
Знайти повний текст джерелаLauri, Josef, and Raffaele Scapellato. Topics in Graph Automorphisms and Reconstruction. Cambridge University Press, 2016.
Знайти повний текст джерелаLauri, Josef, and Raffaele Scapellato. Topics in Graph Automorphisms and Reconstruction (London Mathematical Society Student Texts). Cambridge University Press, 2003.
Знайти повний текст джерелаЧастини книг з теми "Automorphisme des graphes"
Bretto, Alain, Alain Faisant, and François Hennecart. "Automorphismes — Théorie spectrale." In Éléments de théorie des graphes, 277–325. Paris: Springer Paris, 2012. http://dx.doi.org/10.1007/978-2-8178-0281-7_9.
Повний текст джерелаWatkins, Mark E. "Ends and automorphisms of infinite graphs." In Graph Symmetry, 379–414. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8937-6_9.
Повний текст джерелаBaumann, U., M. Lesch, and I. Schmeichel. "Automorphism Groups of Directed Cayley Graphs." In Topics in Combinatorics and Graph Theory, 117–28. Heidelberg: Physica-Verlag HD, 1990. http://dx.doi.org/10.1007/978-3-642-46908-4_14.
Повний текст джерелаHong, Seok-Hee, Peter Eades, and Sang-Ho Lee. "Finding Planar Geometric Automorphisms in Planar Graphs." In Algorithms and Computation, 277–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-49381-6_30.
Повний текст джерелаFaradžev, I. A., M. H. Klin, and M. E. Muzichuk. "Cellular Rings and Groups of Automorphisms of Graphs." In Investigations in Algebraic Theory of Combinatorial Objects, 1–152. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-017-1972-8_1.
Повний текст джерелаMuzychuk, M. E. "Automorphism Groups of Paley Graphs and Cyclotomic Schemes." In Springer Proceedings in Mathematics & Statistics, 185–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-32808-5_6.
Повний текст джерелаHarvey, W. J. "Discrete Groups and Surface Automorphisms: A Theorem of A.M. Macbeath." In Symmetries in Graphs, Maps, and Polytopes, 193–99. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30451-9_9.
Повний текст джерелаPolak, Monika, and Vasyl Ustimenko. "On LDPC Codes Based on Families of Expanding Graphs of Increasing Girth without Edge-Transitive Automorphism Groups." In Communications in Computer and Information Science, 74–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44893-9_7.
Повний текст джерелаClay, Matt. "Automorphisms of Free Groups." In Office Hours with a Geometric Group Theorist. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691158662.003.0006.
Повний текст джерелаCameron, Peter J. "Groups." In Graph Connections, 128–40. Oxford University PressOxford, 1997. http://dx.doi.org/10.1093/oso/9780198514978.003.0009.
Повний текст джерелаТези доповідей конференцій з теми "Automorphisme des graphes"
Molchanov, Vladimir Alexandrovich, and Renat Abuhanovich Farakhutdinov. "Structure of isomrphisms and automorphism groups of universal graph automata." In Academician O.B. Lupanov 14th International Scientific Seminar "Discrete Mathematics and Its Applications". Keldysh Institute of Applied Mathematics, 2022. http://dx.doi.org/10.20948/dms-2022-63.
Повний текст джерелаBabai, László. "On the automorphism groups of strongly regular graphs I." In ITCS'14: Innovations in Theoretical Computer Science. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2554797.2554830.
Повний текст джерелаSalat, Arti, and Amit Sharma. "Automorphism groups and distinguishing numbers of some graphs related to cycle graph." In 2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCES 2022 (ICAMCS-2022). AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0199429.
Повний текст джерелаAbrahão, Felipe, Klaus Wehmuth, and Artur Ziviani. "Transtemporal edges and crosslayer edges in incompressible high-order networks." In IV Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/etc.2019.6389.
Повний текст джерела