Добірка наукової літератури з теми "Automatic musical orchestration"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Automatic musical orchestration".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Automatic musical orchestration"
Luo, Luo. "Practical Exploration on the Construction of Theoretical Courses of Composition Technology in the Age of Artificial Intelligence." Mobile Information Systems 2022 (August 31, 2022): 1–14. http://dx.doi.org/10.1155/2022/3099312.
Повний текст джерелаCarpentier, Grégoire, Eric Daubresse, Marc Garcia Vitoria, Kenji Sakai, and Fernando Villanueva. "Automatic Orchestration in Practice." Computer Music Journal 36, no. 3 (September 2012): 24–42. http://dx.doi.org/10.1162/comj_a_00136.
Повний текст джерелаCarpentier, Grégoire, Damien Tardieu, Jonathan Harvey, Gérard Assayag, and Emmanuel Saint-James. "Predicting Timbre Features of Instrument Sound Combinations: Application to Automatic Orchestration." Journal of New Music Research 39, no. 1 (March 2010): 47–61. http://dx.doi.org/10.1080/09298210903581566.
Повний текст джерелаДисертації з теми "Automatic musical orchestration"
Crestel, Léopold. "Neural networks for automatic musical projective orchestration." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS625.
Повний текст джерелаOrchestration is the art of composing a musical discourse over a combinatorial set of instrumental possibilities. For centuries, musical orchestration has only been addressed in an empirical way, as a scientific theory of orchestration appears elusive. In this work, we attempt to build the first system for automatic projective orchestration, and to rely on machine learning. Hence, we start by formalizing this novel task. We focus our effort on projecting a piano piece onto a full symphonic orchestra, in the style of notable classic composers such as Mozart or Beethoven. Hence, the first objective is to design a system of live orchestration, which takes as input the sequence of chords played by a pianist and generate in real-time its orchestration. Afterwards, we relax the real-time constraints in order to use slower but more powerful models and to generate scores in a non-causal way, which is closer to the writing process of a human composer. By observing a large dataset of orchestral music written by composers and their reduction for piano, we hope to be able to capture through statistical learning methods the mechanisms involved in the orchestration of a piano piece. Deep neural networks seem to be a promising lead for their ability to model complex behaviour from a large dataset and in an unsupervised way. More specifically, in the challenging context of symbolic music which is characterized by a high-dimensional target space and few examples, we investigate autoregressive models. At the price of a slower generation process, auto-regressive models allow to account for more complex dependencies between the different elements of the score, which we believe to be of the foremost importance in the case of orchestration
Частини книг з теми "Automatic musical orchestration"
Berndt, Axel, and Holger Theisel. "Adaptive Musical Expression from Automatic Realtime Orchestration and Performance." In Interactive Storytelling, 132–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89454-4_20.
Повний текст джерела