Добірка наукової літератури з теми "Autocatalytic Photochemical Reactions"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Autocatalytic Photochemical Reactions".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Autocatalytic Photochemical Reactions"

1

Toyota, K., Y. Kanaya, M. Takahashi, and H. Akimoto. "A box model study on photochemical interactions between VOCs and reactive halogen species in the marine boundary layer." Atmospheric Chemistry and Physics Discussions 3, no. 5 (September 1, 2003): 4549–632. http://dx.doi.org/10.5194/acpd-3-4549-2003.

Повний текст джерела
Анотація:
Abstract. A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry) to investigate photochemical interactions between volatile organic compounds (VOCs) and reactive halogen species in the marine boundary layer (MBL). Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit treatment of oxidative degradation of up to C3-hydrocarbons CH4, C2H6, C3H8, C2H4, C3H6, and C2H2) initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in the formation of halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO) and alkenes (especially C3H6) are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. On the other hand, the reaction between Br atoms and C2H2 is unimportant for determining the degree of bromine activation in the remote MBL. It is suggested that peroxyacetic acid formed via CH3CHO oxidation is one of the important chemical agents for triggering autocatalytic halogen release from sea-salt aerosols. These results imply that reactive halogen chemistry can mediate a link between the oceanic emissions of VOCs and the behaviors of compounds that are sensitive to halogen chemistry such as dimethyl sulfide, NOx, and O3 in the MBL.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bougoudis, Ilias, Anne-Marlene Blechschmidt, Andreas Richter, Sora Seo, John Philip Burrows, Nicolas Theys, and Annette Rinke. "Long-term time series of Arctic tropospheric BrO derived from UV–VIS satellite remote sensing and its relation to first-year sea ice." Atmospheric Chemistry and Physics 20, no. 20 (October 22, 2020): 11869–92. http://dx.doi.org/10.5194/acp-20-11869-2020.

Повний текст джерела
Анотація:
Abstract. Every polar spring, phenomena called bromine explosions occur over sea ice. These bromine explosions comprise photochemical heterogeneous chain reactions that release bromine molecules, Br2, to the troposphere and lead to tropospheric plumes of bromine monoxide, BrO. This autocatalytic mechanism depletes ozone, O3, in the boundary layer and troposphere and thereby changes the oxidizing capacity of the atmosphere. The phenomenon also leads to accelerated deposition of metals (e.g., Hg). In this study, we present a 22-year (1996 to 2017) consolidated and consistent tropospheric BrO dataset north of 70∘ N, derived from four different ultraviolet–visible (UV–VIS) satellite instruments (GOME, SCIAMACHY, GOME-2A and GOME-2B). The retrieval data products from the different sensors are compared during periods of overlap and show good agreement (correlations of 0.82–0.98 between the sensors). From our merged time series of tropospheric BrO vertical column densities (VCDs), we infer changes in the bromine explosions and thus an increase in the extent and magnitude of tropospheric BrO plumes during the period of Arctic warming. We determined an increasing trend of about 1.5 % of the tropospheric BrO VCDs per year during polar springs, while the size of the areas where enhanced tropospheric BrO VCDs can be found has increased about 896 km2 yr−1. We infer from comparisons and correlations with sea ice age data that the reported changes in the extent and magnitude of tropospheric BrO VCDs are moderately related to the increase in first-year ice extent in the Arctic north of 70∘ N, both temporally and spatially, with a correlation coefficient of 0.32. However, the BrO plumes and thus bromine explosions show significant variability, which also depends, apart from sea ice, on meteorological conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gliß, J., N. Bobrowski, L. Vogel, and U. Platt. "OClO and BrO observations in the volcanic plume of Mt. Etna – implications on the chemistry of chlorine and bromine species in volcanic plumes." Atmospheric Chemistry and Physics Discussions 14, no. 18 (October 1, 2014): 25213–80. http://dx.doi.org/10.5194/acpd-14-25213-2014.

Повний текст джерела
Анотація:
Abstract. Spatial and temporal profiles of chlorine dioxide (OClO), bromine monoxide (BrO) and sulphur dioxide (SO2) were measured in the plume of Mt. Etna, Italy, in September 2012 using Multi-Axis-Differential-Optical-Absorption-Spectroscopy (MAX-DOAS). OClO (BrO) was detected in 119 (452) individual measurements covering plume ages up to 6 (23) minutes. The retrieved slant column densities (SCDs) reached values up to 2.0 × 1014 molecules cm−2 (OClO) and 1.1 × 1015 molecules cm−2 (BrO). In addition, the spectra were analysed for signatures of IO, OIO and OBrO, none of these species could be detected. The corresponding detection limits for IO / SO2, OIO / SO2 and OBrO / SO2 were 1.8 × 10−6, 2.0 × 10−5 and 1.1 × 10−5 respectively. The measurements were performed at plume ages (τ) from zero to 23 min downwind the emission source. The chemical variability of BrO and OClO in the plume was studied analysing the OClO / SO2 and BrO / SO2-ratio. A marked increase of both ratios was observed in the young plume (τ < 3 min) and a levelling off at larger plume ages (τ > 3 min) with mean abundances of 3.17 × 10−5 (OClO / SO2), 1.55 × 10−4 (BrO / SO2) and 0.16 (OClO / BrO). Furthermore, enhanced BrO/SO2-ratios were found at the plume edges (by ~30–37%) and a strong indication of enhanced OClO / SO2-ratios as well (~10–250%). A measurement performed in the early morning (05:20–06:20 UTC, sunrise: 04:40 UTC) showed an BrO / SO2-ratio increasing with time until 05:35 UTC and a constant ratio afterwards. Observing this increase was only possible due to a correction for stratospheric BrO signals in the plume spectra. The corresponding OClO / SO2-ratio showed a similar trend stabilising around 06:13 UTC, approximately 40 min later than BrO. This is another strong indication for the photochemical nature of the reactions involved in the formation of oxidised halogens in volcanic plumes. In particular, these findings support the current understanding of the underlying chemistry, namely, that BrO is formed in an autocatalytic reaction mechanism in literature often referred to as "bromine explosion" and that OClO is formed in the "BrO + ClO"-reaction. BrO and OClO concentrations were estimated from the measured SCDs assuming a circular plume shape. In addition, mixing ratios of ClO were determined from the retrieved OClO and BrO-SCDs assuming chemical equilibrium between formation of OClO (BrO + ClO) and its destruction (photolysis). Mean abundances in the young plume (τ<4 min) were BrO = 1.35 ppb, OClO = 300 ppt and ClO = 139 ppt with peak values of 600 ppt (OClO), 2.7 ppb (BrO) and 235 ppt (ClO) respectively. The prevailing Cl-atom concentrations in the plume could be estimated from the rate of increase of OClO and BrO in the young plume and the determined ClO and OClO concentrations. Values between 5.1 × 106 cm−3 (at 40 ppb O3) and 2.1 × 108 cm−3 (at 1 ppb O3) were found. Based on that, a potential – chlorine induced – depletion of tropospheric methane (CH4) in the plume was investigated. CH4-lifetimes between 13 h (at 1 ppb O3) and 23 days (at 40 ppb O3) were found. These are considerably small compared to the atmospheric lifetime of CH4. However, the impact of gaseous chlorine on the CH4-budget in the plume environment was assessed to be relatively small, mainly due to plume dispersion (decrease of Cl number densities) and permanent mixing of the plume with the surrounding atmosphere (net supply of O3 and CH4).
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schreiber, Ulrich, Heinz Reising, and Christian Neubauer. "Contrasting pH-Optima of Light-Driven O2-and H2O2-Reduction in Spinach Chloroplasts as Measured via Chlorophyll Fluorescence Quenching." Zeitschrift für Naturforschung C 46, no. 7-8 (August 1, 1991): 635–43. http://dx.doi.org/10.1515/znc-1991-7-821.

Повний текст джерела
Анотація:
Abstract Quenching analysis of chlorophyll fluorescence by the saturation pulse method is used to investigate the pH-dependency of O2-dependent electron flow in intact spinach chloroplasts with high ascorbate peroxidase activity. When carboxylase/oxygenase activity is blocked, pho­tochemical and non-photochemical quenching are initially low and increase with illumination time. Quenching shows a pH-optimum around pH 6.5, but only when ΔpH-formation is al­ lowed. It is suggested that overall O2-dependent electron flow involves two major components, namely O2-reduction (Mehlerreaction) and reduction of the H2O2 formed in the Mehlerreaction, involving enzymic activity of ascorbate peroxidase and monodehydroascorbate reductase. The separated pH-dependencies of light driven O2-reduction (presence of KCN) and of H2O2-reduction (anaerobic conditions) reveal contrasting pH-optima around pH 5 and 8.5, respectively. Energy-dependent, dark relaxable non-photochemical quenching is not observed with O2-reduction but with H2O2-reduction, and only at pH-values above 6.5. The relevance of these findings with respect to regulation of photosynthetic electron flow is discussed. It is suggested that upon limitation of assimilatory electron flow O2-dependent non-assimilatory flow is responsible for ΔpH-formation, by which it is autocatalytically stimulated. It is proposed that this autocatalytical reaction sequence is the basis of the so-called “Kautsky effect” of chlorophyll fluorescence induction.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fränzle, Stefan, and Felix Blind. "Reversible Metal Ion/Complex Binding to Chitin Controlled by Ligand, Redox, and Photochemical Reactions and Active Movement of Chitin on Aquatic Arthropods." Polysaccharides 3, no. 3 (July 28, 2022): 515–43. http://dx.doi.org/10.3390/polysaccharides3030031.

Повний текст джерела
Анотація:
There is strong adsorption of metal ions and their complexes to chitin, which depends on both the oxidation and complexation states of many of the said elements (whereas others display chemical reactions detectable via electrochemical methods while being retained by chitin); thus, ad- and desorption at ambient water concentrations (often in the nMol/L range) are controlled by the presence and photochemical properties (concerning Eu and probably U and Ag) of mainly biogenic organic matter (both DOC and POC, and DON). With chitin forming the outer hull of mobile organisms (animals), this biopolymer is expected to take part in metal distribution in aquatic (limnetic and riverine) ecosystems. Having studied the attachment of many different elements to both crayfish and grafted (marine shrimp) chitin, with the highest accumulations observed in Bi, V, Ni, and LREEs, one should consider secondary biochemical transformations which take place at different water and sediment levels. After chitin had been embedded into sediment, methanogenesis (which requires Ni), Bi, and Sb biomethylations and photodesorption in the illuminated water column will occur if there are appropriate organics, causing the vertical separation of Eu from other REEs, at least during the daytime. Eutrophication will enhance both the production and especially the photooxidation rates of organics in water because phosphorylated sugars and lipids are formed quantitatively within min P, which enter water and undergo Eu-mediated photooxidation much more readily. Another biopolymer, gelatin, acts as an inert matrix-enhancing organic photooxidation product via Eu, producing chemical waves, indicating autocatalysis upon light impact. From the redox-related photodesorption of metal analytes from chitin, both sensors and devices for (light-assisted) electrochemical energy conversion are being developed by our workgroup. The electrochemical determination of adsorption thermodynamics on chitin is thus directly linked to its applications in environmental monitoring and technology.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії