Зміст
Добірка наукової літератури з теми "Auto-encodeur variationnel"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Auto-encodeur variationnel".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Дисертації з теми "Auto-encodeur variationnel"
Jouffroy, Emma. "Développement de modèles non supervisés pour l'obtention de représentations latentes interprétables d'images." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0050.
Повний текст джерелаThe Laser Megajoule (LMJ) is a large research device that simulates pressure and temperature conditions similar to those found in stars. During experiments, diagnostics are guided into an experimental chamber for precise positioning. To minimize the risks associated with human error in such an experimental context, the automation of an anti-collision system is envisaged. This involves the design of machine learning tools offering reliable decision levels based on the interpretation of images from cameras positioned in the chamber. Our research focuses on probabilistic generative neural methods, in particular variational auto-encoders (VAEs). The choice of this class of models is linked to the fact that it potentially enables access to a latent space directly linked to the properties of the objects making up the observed scene. The major challenge is to study the design of deep network models that effectively enable access to such a fully informative and interpretable representation, with a view to system reliability. The probabilistic formalism intrinsic to VAE allows us, if we can trace back to such a representation, to access an analysis of the uncertainties of the encoded information
Brégère, Margaux. "Stochastic bandit algorithms for demand side management Simulating Tariff Impact in Electrical Energy Consumption Profiles with Conditional Variational Autoencoders Online Hierarchical Forecasting for Power Consumption Data Target Tracking for Contextual Bandits : Application to Demand Side Management." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASM022.
Повний текст джерелаAs electricity is hard to store, the balance between production and consumption must be strictly maintained. With the integration of intermittent renewable energies into the production mix, the management of the balance becomes complex. At the same time, the deployment of smart meters suggests demand response. More precisely, sending signals - such as changes in the price of electricity - would encourage users to modulate their consumption according to the production of electricity. The algorithms used to choose these signals have to learn consumer reactions and, in the same time, to optimize them (exploration-exploration trade-off). Our approach is based on bandit theory and formalizes this sequential learning problem. We propose a first algorithm to control the electrical demand of a homogeneous population of consumers and offer T⅔ upper bound on its regret. Experiments on a real data set in which price incentives were offered illustrate these theoretical results. As a “full information” dataset is required to test bandit algorithms, a consumption data generator based on variational autoencoders is built. In order to drop the assumption of the population homogeneity, we propose an approach to cluster households according to their consumption profile. These different works are finally combined to propose and test a bandit algorithm for personalized demand side management
Mahé, Pierre. "Codage ambisonique pour les communications immersives." Thesis, La Rochelle, 2022. http://www.theses.fr/2022LAROS011.
Повний текст джерелаThis thesis takes place in the context of the spread of immersive content. For the last couple of years, immersive audio recording and playback technologies have gained momentum and have become more and more popular. New codecs are needed to handle those spatial audio formats, especially for communication applications. There are several ways to represent spatial audio scenes. In this thesis, we focused on First Order Ambisonic. The first part of our research focused on improving multi-monocoding by decorrelated each ambisonic signal component before the multi-mono coding. To guarantee signal continuity between frames, efficient quantization new mechanisms are proposed. In the second part of this thesis, we proposed a new coding concept using a power map to recreate the original spatial image. With this concept, we proposed two compressing methods. The first one is a post-processing focused on limiting the spatial distortion of the decoded signal. The spatial correction is based on the difference between the original and the decoded spatial image. This post-processing is later extended to a parametric coding method. The last part of this thesis presents a more exploratory method. This method studied audio signal compression by neural networks inspired by image compression models using variational autoencoders
Dahmani, Sara. "Synthèse audiovisuelle de la parole expressive : modélisation des émotions par apprentissage profond." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0137.
Повний текст джерела: The work of this thesis concerns the modeling of emotions for expressive audiovisual textto-speech synthesis. Today, the results of text-to-speech synthesis systems are of good quality, however audiovisual synthesis remains an open issue and expressive synthesis is even less studied. As part of this thesis, we present an emotions modeling method which is malleable and flexible, and allows us to mix emotions as we mix shades on a palette of colors. In the first part, we present and study two expressive corpora that we have built. The recording strategy and the expressive content of these corpora are analyzed to validate their use for the purpose of audiovisual speech synthesis. In the second part, we present two neural architectures for speech synthesis. We used these two architectures to model three aspects of speech : 1) the duration of sounds, 2) the acoustic modality and 3) the visual modality. First, we use a fully connected architecture. This architecture allowed us to study the behavior of neural networks when dealing with different contextual and linguistic descriptors. We were also able to analyze, with objective measures, the network’s ability to model emotions. The second neural architecture proposed is a variational auto-encoder. This architecture is able to learn a latent representation of emotions without using emotion labels. After analyzing the latent space of emotions, we presented a procedure for structuring it in order to move from a discrete representation of emotions to a continuous one. We were able to validate, through perceptual experiments, the ability of our system to generate emotions, nuances of emotions and mixtures of emotions, and this for expressive audiovisual text-to-speech synthesis
Chung, Junyoung. "On Deep Multiscale Recurrent Neural Networks." Thèse, 2018. http://hdl.handle.net/1866/21588.
Повний текст джерела