Добірка наукової літератури з теми "Attack Detection Automation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Attack Detection Automation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Attack Detection Automation"
Wressnegger, Christian. "Efficient machine learning for attack detection." it - Information Technology 62, no. 5-6 (December 16, 2020): 279–86. http://dx.doi.org/10.1515/itit-2020-0015.
Повний текст джерелаBeshah, Yonas Kibret, Surafel Lemma Abebe, and Henock Mulugeta Melaku. "Drift Adaptive Online DDoS Attack Detection Framework for IoT System." Electronics 13, no. 6 (March 7, 2024): 1004. http://dx.doi.org/10.3390/electronics13061004.
Повний текст джерелаOkello, Fredrick Ochieng, Dennis Kaburu, and Ndia G. John. "Automation-Based User Input Sql Injection Detection and Prevention Framework." Computer and Information Science 16, no. 2 (May 2, 2023): 51. http://dx.doi.org/10.5539/cis.v16n2p51.
Повний текст джерелаHoush, Mashor, Noy Kadosh, and Jack Haddad. "Detecting and Localizing Cyber-Physical Attacks in Water Distribution Systems without Records of Labeled Attacks." Sensors 22, no. 16 (August 12, 2022): 6035. http://dx.doi.org/10.3390/s22166035.
Повний текст джерелаKarthik Krishnan, T., S. Sridevi, G. Bindu, and R. Anandan. "Comparison and detail study of attacks and detection methods for wireless sensor network." International Journal of Engineering & Technology 7, no. 2.21 (April 20, 2018): 405. http://dx.doi.org/10.14419/ijet.v7i2.21.12453.
Повний текст джерелаYe, Shengke, Kaiye Dai, Guoli Fan, Ling Zhang, and Zhihao Liang. "Exploring the intersection of network security and database communication: a PostgreSQL Socket Connection case study." Transactions on Computer Science and Intelligent Systems Research 3 (April 10, 2024): 1–9. http://dx.doi.org/10.62051/pzqebt34.
Повний текст джерелаSztyber-Betley, Anna, Michał Syfert, Jan Maciej Kościelny, and Zuzanna Górecka. "Controller Cyber-Attack Detection and Isolation." Sensors 23, no. 5 (March 3, 2023): 2778. http://dx.doi.org/10.3390/s23052778.
Повний текст джерелаBinbusayyis, Adel. "Reinforcing Network Security: Network Attack Detection Using Random Grove Blend in Weighted MLP Layers." Mathematics 12, no. 11 (May 31, 2024): 1720. http://dx.doi.org/10.3390/math12111720.
Повний текст джерелаKim, Ye-Eun, Yea-Sul Kim, and Hwankuk Kim. "Effective Feature Selection Methods to Detect IoT DDoS Attack in 5G Core Network." Sensors 22, no. 10 (May 18, 2022): 3819. http://dx.doi.org/10.3390/s22103819.
Повний текст джерелаOruganti, Rakesh, Jeeshitha J, and Rama Koteswara Rao G. "A Extensive Study on DDosBotnet Attacks in Multiple Environments Using Deep Learning and Machine Learning Techniques." ECS Transactions 107, no. 1 (April 24, 2022): 15181–93. http://dx.doi.org/10.1149/10701.15181ecst.
Повний текст джерелаДисертації з теми "Attack Detection Automation"
Toure, Almamy. "Collection, analysis and harnessing of communication flows for cyber-attack detection." Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2024. http://www.theses.fr/2024UPHF0023.
Повний текст джерелаThe increasing complexity of cyberattacks, characterized by a diversification of attack techniques, an expansion of attack surfaces, and growing interconnectivity of applications with the Internet, makes network traffic management in a professional environment imperative. Companies of all types collect and analyze network flows and logs to ensure the security of exchanged data and prevent the compromise of information systems. However, techniques for collecting and processing network traffic data vary from one dataset to another, and static attack detection approaches have limitations in terms of efficiency and precision, execution time, and scalability. This thesis proposes dynamic approaches for detecting cyberattacks related to network traffic, using feature engineering based on the different communication phases of a network flow, coupled with convolutional neural networks (1D-CNN) and their feature detector. This double extraction allows for better classification of network flows, a reduction in the number of attributes and model execution times, and thus effective attack detection. Companies also face constantly evolving cyber threats, and "zero-day" attacks that exploit previously unknown vulnerabilities are becoming increasingly frequent. Detecting these zero-day attacks requires constant technological monitoring and thorough but time-consuming analysis of the exploitation of these vulnerabilities. The proposed solutions guarantee the detection of certain attack techniques. Therefore, we propose a detection framework for these attacks that covers the entire attack chain, from the data collection phase to the identification of any type of zero-day, even in a constantly evolving environment. Finally, given the obsolescence of existing datasets and data generation techniques for intrusion detection, and the fixed, non-evolving, and non-exhaustive nature of recent attack scenarios, the study of an adapted synthetic data generator while ensuring data confidentiality is addressed. The solutions proposed in this thesis optimize the detection of known and zero-day attack techniques on network flows, improve the accuracy of models, while ensuring the confidentiality and high availability of data and models, with particular attention to the applicability of the solutions in a company network
Štangler, Jan. "Architektura a správa zabezpečených sítí." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413065.
Повний текст джерелаNama, Sumanth. "Detecting attacks in building automation system." Thesis, California State University, Long Beach, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1597784.
Повний текст джерелаBuilding Automation System (BAS) was proposed to have the automatic centralized control of various appliances in the building such as heating, ventilating, air conditioning and other systems. Providing high security for the network layer in BAS was the major concern in recent times of studies. Researchers have been proposing different authentication protocols to stop the intruders from attacking the network, of which Time Efficient Stream Loss Authentication (TESLA) was the most secured protocol. Apart from its low computational and communicational overhead, there are few possible ways from which an intruder can attack a BAS network. Hence, to overcome this drawback we used a proposed algorithm in this paper, which uses the concept of Zero ? Knowledge Protocol (ZKP) in addition to TESLA for security. This combination of ZKP with time synchronization provides high authentication of packets in the network, thus making the network more secure and reliable. To test the security of the algorithm, we implement different wireless sensor network attacks such as sinkhole attack, and gray hole attack. Our proposed security algorithm is implemented by various WSN?s. We use Network Simulator 2 for simulation of the proposed algorithm. During the simulation, we observe detection of malicious nodes (intruders), thus proving the security of the proposed algorithm that in turn secures BAS.
Yadav, Tarun Kumar. "Automatic Detection and Prevention of Fake Key Attacks in Signal." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/9072.
Повний текст джерелаGiunta, Alberto. "Implementazione e analisi comparativa di tecniche di Face Morphing Detection." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17029/.
Повний текст джерелаGill, Rupinder S. "Intrusion detection techniques in wireless local area networks." Thesis, Queensland University of Technology, 2009. https://eprints.qut.edu.au/29351/1/Rupinder_Gill_Thesis.pdf.
Повний текст джерелаGill, Rupinder S. "Intrusion detection techniques in wireless local area networks." Queensland University of Technology, 2009. http://eprints.qut.edu.au/29351/.
Повний текст джерелаBláha, Lukáš. "Analýza automatizovaného generování signatur s využitím Honeypotu." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-236430.
Повний текст джерелаLin, Yu-Ren, and 林育任. "Automatic Construction of Primitive Attack Templates for Primitive Attack-based Heterogeneous Intrusion Detection." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/50928028528463091853.
Повний текст джерела國立臺灣科技大學
資訊工程系
93
The security of networked computers strongly affects network applications. Although we already have firewalls and encryption systems, intrusion still happens often. IDSs (Intrusion Detection Systems) with different techniques and characteristics have thus been developed to serve as the second layer protection. Problems associated with IDS include: (1) IDSs often produce lots of low level alerts which aren’t integrated. (2) IDSs produce lots of false alerts. (3) Heterogeneous IDSs have their specific capabilities of detecting attacks; however, their detection scopes are limited. To cope with the problems, we proposed a two-layered heterogeneous intrusion detection architecture, which advocates primitive attacks to work as a mediator for correlating alerts. The first layer is the construction and detection of primitive attacks, responsible for integrating heterogeneous alerts into primitive attacks. This equivalently transforms low-level, different formats of alerts into a unified, higher-level representation. The second layer is the correlation of attack scenarios, responsible for correlating primitive attacks into attack scenarios and reporting their priorities. This thesis focuses on improving the first layer, the construction and detection of primitive attacks, mainly by introducing a module to automatically construct primitive attack templates. The module involves the following techniques. First, we apply the constrained data mining technique to learn interactive relationships among the alerts. Second based on the interaction relationships and the support of alert ontology, we automatically create primitive attack templates. Finally, we anchor the auto-generated primitive attack templates into attack ontology. Our experiments showed the auto-generated primitive attack templates successfully subsumed all manually constructed real primitive attack templates. The contributions of the work are as follows. First, the automatic construction technique of primitive attack templates can reduce the difficulties with manual construction of primitive attack templates by experts. Second, the constrained data mining technique can effectively discover interactive relationships among (heterogeneous) alerts and allows us to use their common contents to describe the relevant attributes of a primitive attack. Finally, the completed alert ontology (including network-based and host-based alerts) comprehensively classifies the alerts attached with annotated information, not only supporting the automatic construction of primitive attack templates in this thesis but also serving as a valuable resource for design and analysis of intrusion detection systems.
Liang, Ti-Hung, and 梁滌宏. "A Study on Network ARP Attack Detection, Prevention and Automatic Connection Restoration." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/21127536084053917591.
Повний текст джерела國立臺灣海洋大學
電機工程學系
103
This research focuses on the analysis of network attacking via the NetCut software. This kind of software will send out huge ARP( Address Resolution Protocol ) packets to the network switch, whether the attacking is occurred or not. Using this characteristic, debugging mode through the layer3 of network switch will be used to collect the ARP information. The programming language Perl will be used to analyze the amount of ARP packets periodically. When the amount of ARP packets exceed the specific guarding value, the MAC of the host running NetCut will be blocked. After the amount of ARP packets is lower than the guarding value, the MAC of that host will be unblocked. The analysis processing will be executed automatically without human intervening.
Частини книг з теми "Attack Detection Automation"
Alsabbagh, Wael, and Peter Langendoerfer. "A Remote Attack Tool Against Siemens S7-300 Controllers: A Practical Report." In Technologien für die intelligente Automation, 3–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64283-2_1.
Повний текст джерелаZhang, Yanjing, Jianming Cui, and Ming Liu. "Research on Adversarial Patch Attack Defense Method for Traffic Sign Detection." In Communications in Computer and Information Science, 199–210. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-8285-9_15.
Повний текст джерелаDoniyorbek, Usmanbayev, and Bozorov Suhrobjon. "Analysis of Algorithm of Binary Classifiers to Improve Attack Detection Systems." In 12th World Conference “Intelligent System for Industrial Automation” (WCIS-2022), 81–87. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-51521-7_12.
Повний текст джерелаFritsch, Lothar, Aws Jaber, and Anis Yazidi. "An Overview of Artificial Intelligence Used in Malware." In Communications in Computer and Information Science, 41–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17030-0_4.
Повний текст джерелаWurzenberger, Markus, Max Landauer, Agron Bajraktari, and Florian Skopik. "Automatic Attack Pattern Mining for Generating Actionable CTI Applying Alert Aggregation." In Cybersecurity of Digital Service Chains, 136–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04036-8_7.
Повний текст джерелаHoyos, Isaias, Bruno Esposito, and Miguel Nunez-del-Prado. "DETECTOR: Automatic Detection System for Terrorist Attack Trajectories." In Information Management and Big Data, 160–73. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11680-4_17.
Повний текст джерелаLebrun, Stéphanie, Stéphane Kaloustian, Raphaël Rollier, and Colin Barschel. "GNSS Positioning Security: Automatic Anomaly Detection on Reference Stations." In Critical Information Infrastructures Security, 60–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93200-8_4.
Повний текст джерелаYang, Xu, Qian Li, Cong Li, and Yong Qi. "Robust Malware Detection System Against Adversarial Attacks." In Advances in Intelligent Automation and Soft Computing, 1059–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81007-8_122.
Повний текст джерелаPerkins, Jeff, Jordan Eikenberry, Alessandro Coglio, Daniel Willenson, Stelios Sidiroglou-Douskos, and Martin Rinard. "AutoRand: Automatic Keyword Randomization to Prevent Injection Attacks." In Detection of Intrusions and Malware, and Vulnerability Assessment, 37–57. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40667-1_3.
Повний текст джерелаJin, Shuyuan, Zhi Yang, and Xiang Cui. "Automatic Covert Channel Detection in Asbestos System (Poster Abstract)." In Research in Attacks, Intrusions, and Defenses, 380–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33338-5_22.
Повний текст джерелаТези доповідей конференцій з теми "Attack Detection Automation"
Zhang, Ruo, Guiqin Yang, and Wei Zhang. "DDoS Attack Detection System Based on GBDT Under SDN." In 2024 IEEE 7th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 1415–19. IEEE, 2024. http://dx.doi.org/10.1109/itnec60942.2024.10733143.
Повний текст джерелаZhang, Wei, Guiqin Yang, and Ruo Zhang. "DDoS Attack Detection Based on Rényi-RF in SDN Environment." In 2024 IEEE 7th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 1365–69. IEEE, 2024. http://dx.doi.org/10.1109/itnec60942.2024.10733276.
Повний текст джерелаZhu, Mengjiang, Tianfu Xu, Qun He, Rixuan Qiu, Jiang Zhu, Wei Wang, and Jianye Li. "Research on APT Attack Detection Methods for Power Information Systems." In 2024 IEEE 7th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 1866–71. IEEE, 2024. http://dx.doi.org/10.1109/itnec60942.2024.10733125.
Повний текст джерелаDesnitsky, Vasily, and Alexey Meleshko. "Modeling and Analysis of Secure Blockchain-Driven Self-Organized Decentralized Wireless Sensor Networks for Attack Detection." In 2024 International Russian Automation Conference (RusAutoCon), 199–204. IEEE, 2024. http://dx.doi.org/10.1109/rusautocon61949.2024.10694225.
Повний текст джерелаKha Nguyen, Dinh Duy, Cédric Escudero, Emil Dumitrescu, and Eric Zamaï. "Actuator and Sensor Attacks Detection Method based on Attack Reconstruction." In 2024 32nd Mediterranean Conference on Control and Automation (MED). IEEE, 2024. http://dx.doi.org/10.1109/med61351.2024.10566177.
Повний текст джерелаSheng, Chen, and Chen Gang. "APT Attack and Detection Technology." In 2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, 2024. http://dx.doi.org/10.1109/imcec59810.2024.10575432.
Повний текст джерелаQiu, Bohua, Muheng Wei, Wen Xi, Yongjie Li, and Qizhong Li. "CPS Attack Detection of Ships using Particle Filter." In 2021 China Automation Congress (CAC). IEEE, 2021. http://dx.doi.org/10.1109/cac53003.2021.9728218.
Повний текст джерелаSatam, Shruti Sanjay, Akansha Anadrao Patil, Devyani Bhagwan Narkhede, Sumit Singh, and Namita Pulgam. "Zero-Day Attack Detection and Prevention." In 2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA). IEEE, 2023. http://dx.doi.org/10.1109/iccubea58933.2023.10392272.
Повний текст джерелаGu, Tianbo, Allaukik Abhishek, Hao Fu, Huanle Zhang, Debraj Basu, and Prasant Mohapatra. "Towards Learning-automation IoT Attack Detection through Reinforcement Learning." In 2020 IEEE 21st International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM). IEEE, 2020. http://dx.doi.org/10.1109/wowmom49955.2020.00029.
Повний текст джерелаRuotsalainen, Henri, Albert Treytl, and Thilo Sauter. "Watermarking Based Sensor Attack Detection in Home Automation Systems." In 2021 IEEE 26th International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2021. http://dx.doi.org/10.1109/etfa45728.2021.9613634.
Повний текст джерелаЗвіти організацій з теми "Attack Detection Automation"
Berney, Ernest, Naveen Ganesh, Andrew Ward, J. Newman, and John Rushing. Methodology for remote assessment of pavement distresses from point cloud analysis. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40401.
Повний текст джерела