Добірка наукової літератури з теми "Artificial magnetic resonance"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Artificial magnetic resonance".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Artificial magnetic resonance"

1

Belyaev, Boris A., Andrey V. Izotov, Alexander A. Leksikov, Alexey M. Serzhantov, Konstantin V. Lemberg, and Platon N. Solovev. "Thin Magnetic Films with Artificial Texture on Substrate: Microwave Properties." Solid State Phenomena 215 (April 2014): 233–36. http://dx.doi.org/10.4028/www.scientific.net/ssp.215.233.

Повний текст джерела
Анотація:
Using the scanning spectrometer of ferromagnetic resonance (FMR) the experimental dependences of the resonance field and FMR line width of thin permalloy magnetic films, which were deposited in vacuum on the substrate with an artificial texture, were obtained. The texture was produced by putting parallel grooves using a diamond cutter on glass substrates with period from 5 to 100 μm. It was found that the presence of the texture led to a considerable increase of the resonance field and FMR line width, when the external field was directed orthogonal to the grooves. On the base of a numerical micromagnetic simulation the explanation of the nature of observable in thin magnetic films effects was given.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hill, Charles E., Luca Biasiolli, Matthew D. Robson, Vicente Grau, and Michael Pavlides. "Emerging artificial intelligence applications in liver magnetic resonance imaging." World Journal of Gastroenterology 27, no. 40 (October 28, 2021): 6825–43. http://dx.doi.org/10.3748/wjg.v27.i40.6825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Solomou, Aikaterini, Anastasios Apostolos, and Nikolaos Ntoulias. "Artificial Intelligence in Magnetic Resonance Imaging: A Feasible Practice?" Journal of Medical Imaging and Radiation Sciences 51, no. 3 (September 2020): 501–2. http://dx.doi.org/10.1016/j.jmir.2020.04.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Seetharam, Karthik, and Stamatios Lerakis. "Cardiac magnetic resonance imaging: the future is bright." F1000Research 8 (September 13, 2019): 1636. http://dx.doi.org/10.12688/f1000research.19721.1.

Повний текст джерела
Анотація:
Over the last 15 years, cardiovascular magnetic resonance (CMR) imaging has progressively evolved to become an indispensable tool in cardiology. It is a non-invasive technique that enables objective and functional assessment of myocardial tissue. Recent innovations in magnetic resonance imaging scanner technology and parallel imaging techniques have facilitated the generation of T1 and T2 parametric mapping to explore tissue characteristics. The emergence of strain imaging has enabled cardiologists to evaluate cardiac function beyond conventional metrics. Significant progress in computer processing capabilities and cloud infrastructure has supported the growth of artificial intelligence in CMR imaging. In this review article, we describe recent advances in T1/T2 mapping, myocardial strain, and artificial intelligence in CMR imaging.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Szarf, Gilberto, and Cesar H. Nomura. "APLICAÇÃO DA INTELIGÊNCIA ARTIFICIAL EM IMAGEM CARDIOVASCULAR: EM TOMOGRAFIA COMPUTADORIZADA E RMN." Revista da Sociedade de Cardiologia do Estado de São Paulo 32, no. 1 (January 15, 2022): 27–30. http://dx.doi.org/10.29381/0103-8559/2022320127-30.

Повний текст джерела
Анотація:
Ao longo dos últimos anos, foram desenvolvidos conhecimentos relacionados à aplicação de IA em imagens médicas. O resultado disso é que hoje temos algoritmos sendo desenvolvidos para pesquisa e outros disponíveis para serem incorporados em nossa prática. Este artigo oferece uma visão relacionada às possíveis aplicações de IA que podem auxiliar ao longo da jornada dos pacientes para os quais foi solicitada uma tomografia computadorizada ou uma ressonância magnética do coração. Perspectivas futuras também são alvo de comentários.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ionescu, Daniela, and Gabriela Apreotesei. "Wave absorption control in the new designed photonic metamaterials with artificial opal." MATEC Web of Conferences 178 (2018): 04004. http://dx.doi.org/10.1051/matecconf/201817804004.

Повний текст джерела
Анотація:
Photonic metamaterials consisting of artificial opal with magnetic inclusions were considered, used in controllable microwave electronic devices. The analyzed structures consist of matrices of SiO2 nanospheres (diameter 200 - 400 nm) with included clusters of ferrite spinels (MnxCo0.6-xZn0.4Fe2O4, NixCo0.6-xZn0.4Fe2O4, LaxCo0.6-xZn0.4Fe2O4, NdxCo0.6-xZn0.4Fe2O4) in interspherical nanospacing (4 ÷ 7% concentration). The ellipsoidal clusters are polycrystalline, with spatial dimensions of 20 – 30 nm and grains of 5 – 12 nm. A controlled wave absorption was obtained in these high inductivity structures. Evolution of the wave attenuation coefficient, α[dB/m], in function of the applied magnetic field and particle inclusion size, for different content of the magnetic ions in the ferrite inclusion, have been determined at frequencies around the samples ferromagnetic resonance, by structural simulation. The test configuration was: sample inside the rectangular waveguide, mode TE10, in the frequency range 24 ÷ 40 GHz. The polarizing magnetic field for the ferrites was tested in the range of 0 ÷ 20 kOe and minimized by modifying the structure. The metamaterial design optimization was realized, controllable by different parameters at structure level. The ferromagnetic resonance influence on the control process was pointed out and also the particular results and effects which can be induced by the resonant behavior.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cau, Riccardo, Valeria Cherchi, Giulio Micheletti, Michele Porcu, Lorenzo Mannelli, Pierpaolo Bassareo, Jasjit S. Suri, and Luca Saba. "Potential Role of Artificial Intelligence in Cardiac Magnetic Resonance Imaging." Journal of Thoracic Imaging 36, no. 3 (March 24, 2021): 142–48. http://dx.doi.org/10.1097/rti.0000000000000584.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Calivà, Francesco, Nikan K. Namiri, Maureen Dubreuil, Valentina Pedoia, Eugene Ozhinsky, and Sharmila Majumdar. "Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging." Nature Reviews Rheumatology 18, no. 2 (November 30, 2021): 112–21. http://dx.doi.org/10.1038/s41584-021-00719-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Murphy, Matthew C., Armando Manduca, Joshua D. Trzasko, Kevin J. Glaser, John Huston, and Richard L. Ehman. "Artificial neural networks for stiffness estimation in magnetic resonance elastography." Magnetic Resonance in Medicine 80, no. 1 (November 28, 2017): 351–60. http://dx.doi.org/10.1002/mrm.27019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rajini N, Hema. "Automatic classification of MR brain tumor images using KNN, ANN, SVM and CNN." International research journal of engineering, IT & scientific research 3, no. 1 (January 31, 2017): 36–44. http://dx.doi.org/10.21744/irjeis.v3n1.895.

Повний текст джерела
Анотація:
A brain tumor classification system has been designed and developed. This work presents a new approach to the automated classification of astrocytoma, medulloblastoma, glioma, glioblastoma multiforme and craniopharyngioma type of brain tumors based on first order statistics and gray level co-occurrence matrix, in magnetic resonance images. The magnetic resonance feature image used for the tumor detection consists of T2-weighted magnetic resonance images for each axial slice through the head. To remove the unwanted noises in the magnetic resonance image, median filtering is used. First order statistics and gray level co-occurrence matrix-based features are extracted. Finally, k-nearest neighbor, artificial neural network, support vector machine and convolutional neural networks are used to classify the brain tumor images. The application of the proposed method for tracking tumor is demon­strated to help pathologists distinguish its type of tumor. A classification with an accuracy of 89%, 90%, 91% and 95% has been obtained by, k-nearest neighbor, artificial neural network, support vector machine and convolutional neural networks.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Artificial magnetic resonance"

1

Middleton, Ian. "Segmentation of magnetic resonance images using artificial neural networks." Thesis, University of Southampton, 1998. https://eprints.soton.ac.uk/256267/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Clark, Matthew C. "Knowledge-Guided Processing of Magnetic Resonance Images of the Brain." Scholar Commons, 1998. http://purl.fcla.edu/fcla/etd/SFE0000001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Koivula, A. (Antero). "Magnetic resonance image distortions due to artificial macroscopic objects:an example: correction of image distortion caused by an artificial hip prosthesis." Doctoral thesis, University of Oulu, 2002. http://urn.fi/urn:isbn:951426827X.

Повний текст джерела
Анотація:
Abstract Eddy currents and susceptibility differences are the most important sources that interfere with the quality of MR images in the presence of an artificial macroscopic object in the volume to be imaged. In this study, both of these factors have been examined. The findings show that the RF field is the most important cause of induced eddy currents when gradients with relatively slow slew rates are used. The induced eddy currents amplify or dampen the RF field with the result that the flip angle changes. At the proximal end in the vicinity of the hip prosthesis surface, there have been areas where the flip angle is nearly threefold compared to the reference flip angle. Areas with decreased flip angles have also been found near the surface of the prosthesis top. The incompleteness of the image due to eddy currents manifests as signal loss areas. Two different methods based on MRI were developed to estimate the susceptibility of a cylindrical object. One of them is based on geometrical distortions in SE magnitude images, while the other takes advantage of phase differences in GRE phase images. The estimate value of the Profile™ test hip prosthesis is χ = (170 ± 13) 10-6. A remapping method was selected to correct susceptibility image distortions. Correction was accomplished with pixel shifts in the frequency domain. The magnetic field distortions were measured using GRE phase images. The method was tested by simulations and by imaging a hip prosthesis in a water tank and in a human pelvis. The main limitations of the method described here are the loss of a single-valued correction map with higher susceptibility differences and the problems with phase unwrapping in phase images. Modulation transfer functions (MTF) were exploited to assess the effect of correction procedure. The corrected image of a prosthesis in a human hip after total hip arthroplasty appears to be equally sharp or slightly sharper than the corresponding original images. The computer programs written for this study are presented in an appendix.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Karaman, Turker. "Prediction Of Multiphase Flow Properties From Nuclear Magnetic Resonance Imaging." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610382/index.pdf.

Повний текст джерела
Анотація:
In this study a hybrid Pore Network (PN) model that simulates two-phase (water-oil) drainage and imbibition mechanisms is developed. The developed model produces Nuclear Magnetic Resonance (NMR) T2 relaxation times using correlations available in the literature. The developed PN was calibrated using experimental relative permeability data obtained for Berea Sandstone, Kuzey Marmara Limestone, Yenikö
y Dolostone and Dolomitic Limestone core plugs. Pore network body and throat parameters were obtained from serial computerized tomography scans and thin section images. It was observed that pore body and throat sizes were not statistically correlated. It was also observed that the developed PN model can be used to model different displacement mechanisms. By using the synthetic data obtained from PN model, an Artificial Neural Network (ANN) model was developed and tested. It has been observed that the developed ANN tool can be used to estimate oil &ndash
water relative permeability data very well (with less than 0.05 mean square error) given a T2 signal. It was finally concluded that the developed tools can be used to obtain multiphase flow functions directly from an NMR well log such as Combinable Magnetic Resonance (CMR).
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kandasamy, Sivakumar P. "In vivo monitoring of collagen-sponge remodeling using MRI." Worcester, Mass. : Worcester Polytechnic Institute, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-032607-091929/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Chao. "Characterising heterogeneity of glioblastoma using multi-parametric magnetic resonance imaging." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/287475.

Повний текст джерела
Анотація:
A better understanding of tumour heterogeneity is central for accurate diagnosis, targeted therapy and personalised treatment of glioblastoma patients. This thesis aims to investigate whether pre-operative multi-parametric magnetic resonance imaging (MRI) can provide a useful tool for evaluating inter-tumoural and intra-tumoural heterogeneity of glioblastoma. For this purpose, we explored: 1) the utilities of habitat imaging in combining multi-parametric MRI for identifying invasive sub-regions (I & II); 2) the significance of integrating multi-parametric MRI, and extracting modality inter-dependence for patient stratification (III & IV); 3) the value of advanced physiological MRI and radiomics approach in predicting epigenetic phenotypes (V). The following observations were made: I. Using a joint histogram analysis method, habitats with different diffusivity patterns were identified. A non-enhancing sub-region with decreased isotropic diffusion and increased anisotropic diffusion was associated with progression-free survival (PFS, hazard ratio [HR] = 1.08, P < 0.001) and overall survival (OS, HR = 1.36, P < 0.001) in multivariate models. II. Using a thresholding method, two low perfusion compartments were identified, which displayed hypoxic and pro-inflammatory microenvironment. Higher lactate in the low perfusion compartment with restricted diffusion was associated with a worse survival (PFS: HR = 2.995, P = 0.047; OS: HR = 4.974, P = 0.005). III. Using an unsupervised multi-view feature selection and late integration method, two patient subgroups were identified, which demonstrated distinct OS (P = 0.007) and PFS (P < 0.001). Features selected by this approach showed significantly incremental prognostic value for 12-month OS (P = 0.049) and PFS (P = 0.022) than clinical factors. IV. Using a method of unsupervised clustering via copula transform and discrete feature extraction, three patient subgroups were identified. The subtype demonstrating high inter-dependency of diffusion and perfusion displayed higher lactate than the other two subtypes (P = 0.016 and P = 0.044, respectively). Both subtypes of low and high inter-dependency showed worse PFS compared to the intermediate subtype (P = 0.046 and P = 0.009, respectively). V. Using a radiomics approach, advanced physiological images showed better performance than structural images for predicting O6-methylguanine-DNA methyltransferase (MGMT) methylation status. For predicting 12-month PFS, the model of radiomic features and clinical factors outperformed the model of MGMT methylation and clinical factors (P = 0.010). In summary, pre-operative multi-parametric MRI shows potential for the non-invasive evaluation of glioblastoma heterogeneity, which could provide crucial information for patient care.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hahn, Artur [Verfasser], and Jürgen P. [Akademischer Betreuer] Debus. "Artificial magnetic resonance contrasts based on microvascular geometry: A numerical basis / Artur Hahn ; Betreuer: Jürgen P. Debus." Heidelberg : Universitätsbibliothek Heidelberg, 2021. http://d-nb.info/1237324033/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Clark, Matthew C. "Knowledge guided processing of magnetic resonance images of the brain [electronic resource] / by Matthew C. Clark." University of South Florida, 2001. http://purl.fcla.edu/fcla/etd/SFE0000001.

Повний текст джерела
Анотація:
Includes vita.
Title from PDF of title page.
Document formatted into pages; contains 222 pages.
Includes bibliographical references.
Text (Electronic thesis) in PDF format.
ABSTRACT: This dissertation presents a knowledge-guided expert system that is capable of applying routinesfor multispectral analysis, (un)supervised clustering, and basic image processing to automatically detect and segment brain tissue abnormalities, and then label glioblastoma-multiforme brain tumors in magnetic resonance volumes of the human brain. The magnetic resonance images used here consist of three feature images (T1-weighted, proton density, T2-weighted) and the system is designed to be independent of a particular scanning protocol. Separate, but contiguous 2D slices in the transaxial plane form a brain volume. This allows complete tumor volumes to be measured and if repeat scans are taken over time, the system may be used to monitor tumor response to past treatments and aid in the planning of future treatment. Furthermore, once processing begins, the system is completely unsupervised, thus avoiding the problems of human variability found in supervised segmentation efforts.Each slice is initially segmented by an unsupervised fuzzy c-means algorithm. The segmented image, along with its respective cluster centers, is then analyzed by a rule-based expert system which iteratively locates tissues of interest based on the hierarchy of cluster centers in feature space. Model-based recognition techniques analyze tissues of interest by searching for expected characteristics and comparing those found with previously defined qualitative models. Normal/abnormal classification is performed through a default reasoning method: if a significant model deviation is found, the slice is considered abnormal. Otherwise, the slice is considered normal. Tumor segmentation in abnormal slices begins with multispectral histogram analysis and thresholding to separate suspected tumor from the rest of the intra-cranial region. The tumor is then refined with a variant of seed growing, followed by spatial component analysis and a final thresholding step to remove non-tumor pixels.The knowledge used in this system was extracted from general principles of magnetic resonance imaging, the distributions of individual voxels and cluster centers in feature space, and anatomical information. Knowledge is used both for single slice processing and information propagation between slices. A standard rule-based expert system shell (CLIPS) was modified to include the multispectral analysis, clustering, and image processing tools.A total of sixty-three volume data sets from eight patients and seventeen volunteers (four with and thirteen without gadolinium enhancement) were acquired from a single magnetic resonance imaging system with slightly varying scanning protocols were available for processing. All volumes were processed for normal/abnormal classification. Tumor segmentation was performed on the abnormal slices and the results were compared with a radiologist-labeled ground truth' tumor volume and tumor segmentations created by applying supervised k-nearest neighbors, a partially supervised variant of the fuzzy c-means clustering algorithm, and a commercially available seed growing package. The results of the developed automatic system generally correspond well to ground truth, both on a per slice basis and more importantly in tracking total tumor volume during treatment over time.
System requirements: World Wide Web browser and PDF reader.
Mode of access: World Wide Web.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Juan, Albarracín Javier. "Unsupervised learning for vascular heterogeneity assessment of glioblastoma based on magnetic resonance imaging: The Hemodynamic Tissue Signature." Doctoral thesis, Universitat Politècnica de València, 2020. http://hdl.handle.net/10251/149560.

Повний текст джерела
Анотація:
[ES] El futuro de la imagen médica está ligado a la inteligencia artificial. El análisis manual de imágenes médicas es hoy en día una tarea ardua, propensa a errores y a menudo inasequible para los humanos, que ha llamado la atención de la comunidad de Aprendizaje Automático (AA). La Imagen por Resonancia Magnética (IRM) nos proporciona una rica variedad de representaciones de la morfología y el comportamiento de lesiones inaccesibles sin una intervención invasiva arriesgada. Sin embargo, explotar la potente pero a menudo latente información contenida en la IRM es una tarea muy complicada, que requiere técnicas de análisis computacional inteligente. Los tumores del sistema nervioso central son una de las enfermedades más críticas estudiadas a través de IRM. Específicamente, el glioblastoma representa un gran desafío, ya que, hasta la fecha, continua siendo un cáncer letal que carece de una terapia satisfactoria. Del conjunto de características que hacen del glioblastoma un tumor tan agresivo, un aspecto particular que ha sido ampliamente estudiado es su heterogeneidad vascular. La fuerte proliferación vascular del glioblastoma, así como su robusta angiogénesis han sido consideradas responsables de la alta letalidad de esta neoplasia. Esta tesis se centra en la investigación y desarrollo del método Hemodynamic Tissue Signature (HTS): un método de AA no supervisado para describir la heterogeneidad vascular de los glioblastomas mediante el análisis de perfusión por IRM. El método HTS se basa en el concepto de hábitat, que se define como una subregión de la lesión con un perfil de IRM que describe un comportamiento fisiológico concreto. El método HTS delinea cuatro hábitats en el glioblastoma: el hábitat HAT, como la región más perfundida del tumor con captación de contraste; el hábitat LAT, como la región del tumor con un perfil angiogénico más bajo; el hábitat IPE, como la región adyacente al tumor con índices de perfusión elevados; y el hábitat VPE, como el edema restante de la lesión con el perfil de perfusión más bajo. La investigación y desarrollo de este método ha originado una serie de contribuciones enmarcadas en esta tesis. Primero, para verificar la fiabilidad de los métodos de AA no supervisados en la extracción de patrones de IRM, se realizó una comparativa para la tarea de segmentación de gliomas de grado alto. Segundo, se propuso un algoritmo de AA no supervisado dentro de la familia de los Spatially Varying Finite Mixture Models. El algoritmo propone una densidad a priori basada en un Markov Random Field combinado con la función probabilística Non-Local Means, para codificar la idea de que píxeles vecinos tienden a pertenecer al mismo objeto. Tercero, se presenta el método HTS para describir la heterogeneidad vascular del glioblastoma. El método se ha aplicado a casos reales en una cohorte local de un solo centro y en una cohorte internacional de más de 180 pacientes de 7 centros europeos. Se llevó a cabo una evaluación exhaustiva del método para medir el potencial pronóstico de los hábitats HTS. Finalmente, la tecnología desarrollada en la tesis se ha integrado en la plataforma online ONCOhabitats (https://www.oncohabitats.upv.es). La plataforma ofrece dos servicios: 1) segmentación de tejidos de glioblastoma, y 2) evaluación de la heterogeneidad vascular del tumor mediante el método HTS. Los resultados de esta tesis han sido publicados en diez contribuciones científicas, incluyendo revistas y conferencias de alto impacto en las áreas de Informática Médica, Estadística y Probabilidad, Radiología y Medicina Nuclear y Aprendizaje Automático. También se emitió una patente industrial registrada en España, Europa y EEUU. Finalmente, las ideas originales concebidas en esta tesis dieron lugar a la creación de ONCOANALYTICS CDX, una empresa enmarcada en el modelo de negocio de los companion diagnostics de compuestos farmacéuticos.
[EN] The future of medical imaging is linked to Artificial Intelligence (AI). The manual analysis of medical images is nowadays an arduous, error-prone and often unaffordable task for humans, which has caught the attention of the Machine Learning (ML) community. Magnetic Resonance Imaging (MRI) provides us with a wide variety of rich representations of the morphology and behavior of lesions completely inaccessible without a risky invasive intervention. Nevertheless, harnessing the powerful but often latent information contained in MRI acquisitions is a very complicated task, which requires computational intelligent analysis techniques. Central nervous system tumors are one of the most critical diseases studied through MRI. Specifically, glioblastoma represents a major challenge, as it remains a lethal cancer that, to date, lacks a satisfactory therapy. Of the entire set of characteristics that make glioblastoma so aggressive, a particular aspect that has been widely studied is its vascular heterogeneity. The strong vascular proliferation of glioblastomas, as well as their robust angiogenesis and extensive microvasculature heterogeneity have been claimed responsible for the high lethality of the neoplasm. This thesis focuses on the research and development of the Hemodynamic Tissue Signature (HTS) method: an unsupervised ML approach to describe the vascular heterogeneity of glioblastomas by means of perfusion MRI analysis. The HTS builds on the concept of habitats. A habitat is defined as a sub-region of the lesion with a particular MRI profile describing a specific physiological behavior. The HTS method delineates four habitats within the glioblastoma: the HAT habitat, as the most perfused region of the enhancing tumor; the LAT habitat, as the region of the enhancing tumor with a lower angiogenic profile; the potentially IPE habitat, as the non-enhancing region adjacent to the tumor with elevated perfusion indexes; and the VPE habitat, as the remaining edema of the lesion with the lowest perfusion profile. The research and development of the HTS method has generated a number of contributions to this thesis. First, in order to verify that unsupervised learning methods are reliable to extract MRI patterns to describe the heterogeneity of a lesion, a comparison among several unsupervised learning methods was conducted for the task of high grade glioma segmentation. Second, a Bayesian unsupervised learning algorithm from the family of Spatially Varying Finite Mixture Models is proposed. The algorithm integrates a Markov Random Field prior density weighted by the probabilistic Non-Local Means function, to codify the idea that neighboring pixels tend to belong to the same semantic object. Third, the HTS method to describe the vascular heterogeneity of glioblastomas is presented. The HTS method has been applied to real cases, both in a local single-center cohort of patients, and in an international retrospective cohort of more than 180 patients from 7 European centers. A comprehensive evaluation of the method was conducted to measure the prognostic potential of the HTS habitats. Finally, the technology developed in this thesis has been integrated into an online open-access platform for its academic use. The ONCOhabitats platform is hosted at https://www.oncohabitats.upv.es, and provides two main services: 1) glioblastoma tissue segmentation, and 2) vascular heterogeneity assessment of glioblastomas by means of the HTS method. The results of this thesis have been published in ten scientific contributions, including top-ranked journals and conferences in the areas of Medical Informatics, Statistics and Probability, Radiology & Nuclear Medicine and Machine Learning. An industrial patent registered in Spain, Europe and EEUU was also issued. Finally, the original ideas conceived in this thesis led to the foundation of ONCOANALYTICS CDX, a company framed into the business model of companion diagnostics for pharmaceutical compounds.
[CA] El futur de la imatge mèdica està lligat a la intel·ligència artificial. L'anàlisi manual d'imatges mèdiques és hui dia una tasca àrdua, propensa a errors i sovint inassequible per als humans, que ha cridat l'atenció de la comunitat d'Aprenentatge Automàtic (AA). La Imatge per Ressonància Magnètica (IRM) ens proporciona una àmplia varietat de representacions de la morfologia i el comportament de lesions inaccessibles sense una intervenció invasiva arriscada. Tanmateix, explotar la potent però sovint latent informació continguda a les adquisicions de IRM esdevé una tasca molt complicada, que requereix tècniques d'anàlisi computacional intel·ligent. Els tumors del sistema nerviós central són una de les malalties més crítiques estudiades a través de IRM. Específicament, el glioblastoma representa un gran repte, ja que, fins hui, continua siguent un càncer letal que manca d'una teràpia satisfactòria. Del conjunt de característiques que fan del glioblastoma un tumor tan agressiu, un aspecte particular que ha sigut àmpliament estudiat és la seua heterogeneïtat vascular. La forta proliferació vascular dels glioblastomes, així com la seua robusta angiogènesi han sigut considerades responsables de l'alta letalitat d'aquesta neoplàsia. Aquesta tesi es centra en la recerca i desenvolupament del mètode Hemodynamic Tissue Signature (HTS): un mètode d'AA no supervisat per descriure l'heterogeneïtat vascular dels glioblastomas mitjançant l'anàlisi de perfusió per IRM. El mètode HTS es basa en el concepte d'hàbitat, que es defineix com una subregió de la lesió amb un perfil particular d'IRM, que descriu un comportament fisiològic concret. El mètode HTS delinea quatre hàbitats dins del glioblastoma: l'hàbitat HAT, com la regió més perfosa del tumor amb captació de contrast; l'hàbitat LAT, com la regió del tumor amb un perfil angiogènic més baix; l'hàbitat IPE, com la regió adjacent al tumor amb índexs de perfusió elevats, i l'hàbitat VPE, com l'edema restant de la lesió amb el perfil de perfusió més baix. La recerca i desenvolupament del mètode HTS ha originat una sèrie de contribucions emmarcades a aquesta tesi. Primer, per verificar la fiabilitat dels mètodes d'AA no supervisats en l'extracció de patrons d'IRM, es va realitzar una comparativa en la tasca de segmentació de gliomes de grau alt. Segon, s'ha proposat un algorisme d'AA no supervisat dintre de la família dels Spatially Varying Finite Mixture Models. L'algorisme proposa un densitat a priori basada en un Markov Random Field combinat amb la funció probabilística Non-Local Means, per a codificar la idea que els píxels veïns tendeixen a pertànyer al mateix objecte semàntic. Tercer, es presenta el mètode HTS per descriure l'heterogeneïtat vascular dels glioblastomas. El mètode HTS s'ha aplicat a casos reals en una cohort local d'un sol centre i en una cohort internacional de més de 180 pacients de 7 centres europeus. Es va dur a terme una avaluació exhaustiva del mètode per mesurar el potencial pronòstic dels hàbitats HTS. Finalment, la tecnologia desenvolupada en aquesta tesi s'ha integrat en una plataforma online ONCOhabitats (https://www.oncohabitats.upv.es). La plataforma ofereix dos serveis: 1) segmentació dels teixits del glioblastoma, i 2) avaluació de l'heterogeneïtat vascular dels glioblastomes mitjançant el mètode HTS. Els resultats d'aquesta tesi han sigut publicats en deu contribucions científiques, incloent revistes i conferències de primer nivell a les àrees d'Informàtica Mèdica, Estadística i Probabilitat, Radiologia i Medicina Nuclear i Aprenentatge Automàtic. També es va emetre una patent industrial registrada a Espanya, Europa i els EEUU. Finalment, les idees originals concebudes en aquesta tesi van donar lloc a la creació d'ONCOANALYTICS CDX, una empresa emmarcada en el model de negoci dels companion diagnostics de compostos farmacèutics.
En este sentido quiero agradecer a las diferentes instituciones y estructuras de financiación de investigación que han contribuido al desarrollo de esta tesis. En especial quiero agradecer a la Universitat Politècnica de València, donde he desarrollado toda mi carrera acadèmica y científica, así como al Ministerio de Ciencia e Innovación, al Ministerio de Economía y Competitividad, a la Comisión Europea, al EIT Health Programme y a la fundación Caixa Impulse
Juan Albarracín, J. (2020). Unsupervised learning for vascular heterogeneity assessment of glioblastoma based on magnetic resonance imaging: The Hemodynamic Tissue Signature [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149560
TESIS
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Silva, Cíntia Beatriz de Souza. "Processamento de sinais de ressonância magnética nuclear usando classificador neural para reconhecimento de carne bovina." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/18/18153/tde-30102007-141411/.

Повний текст джерела
Анотація:
Garantir a qualidade da carne bovina produzida no Brasil tem sido uma preocupação dos produtores, pois contribui para aumentar a exportação e o consumo interno do produto. Por isso, tem-se pesquisado novos métodos que analisam e garantam a qualidade da carne, de forma rápida, eficiente e não destrutiva. A ressonância magnética nuclear (RMN) tem se destacado como uma das técnicas de controle de qualidade de carne. Neste trabalho as redes neurais artificiais estão sendo utilizadas para o reconhecimento de padrões dos dados de ressonância magnética nuclear oriundos de carne bovina. Mais especificamente, os respectivos dados têm sido utilizados por uma rede perceptron multicamadas para a extração de características da carne bovina, possibilitando a classificação do grupo genético e do sexo dos animais a partir de uma amostra da referida carne. Os resultados dos experimentos são também apresentados para ilustrar o desempenho da abordagem proposta.
Guaranteeing the quality of the bovine meat produced in Brazil has been a concern of the producers because it contributes to increase the export and the domestic consumption of the product. Therefore, new methods have been researched that analyze and guarantee the quality of the meat in a fast, efficient and non destructive way. Nuclear magnetic resonance (NMR) has been highlighted as one of the techniques of meat quality control. In this work study artificial neural networks are being used for pattern recognition from data obtained by the resonance equipment, originating from bovine meat. More specifically, the respective data have been used by a multilayer perceptron network for extraction of bovine meat characteristics, making possible the classification of both genetic group and animal sex starting from a single meat sample. Several results of experimental tests are also presented to illustrate the performance of the proposed approach.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Artificial magnetic resonance"

1

Reference manual for magnetic resonance safety, implants, and devices: 2011 edition. 2nd ed. Los Angeles, Calif: Biomedical Research Publishing Group, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shellock, Frank G. Reference manual for magnetic resonance safety, implants, and devices: 2014 edition. 2nd ed. Los Angeles, Calif: Biomedical Research Publishing Group, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

(14th, European Society of Neuroradiology Congress. Computer aided neuroradiology: XIVth Congress of the European Society of Neuroradiology, Udine, Italy September 8-12, 1987. Roma: CIC Edizioni internazionali, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

RAZMJOOY, Rajinikanth. Frontiers Artificial Intelligence Magnhb: Frontiers of Artificial Intelligence in Magnetic Resonance Imaging. Institute of Physics Publishing, 2024.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Reference Manual for Magnetic Resonance Safety, Implants, and Devices. Biomedical Research Publishing Group, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Solymar, L., D. Walsh, and R. R. A. Syms. Artificial materials or metamaterials. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198829942.003.0015.

Повний текст джерела
Анотація:
The difference between natural and artificial materials is explained. The equivalent plasma frequency of wire media is derived. A list of metamaterial resonators is presented. The possibility of achieving negative refraction and its significance are discussed. It is shown that under certain circumstances it is possible to produce a perfect lens that could transfer evanescent waves aswell. Themulti-layer lens is shown to have advantages over the single-layer lens. The operation of a SiC lens based on the negative dielectric constant due to optical phonons is discussed. Detectors for magnetic resonance imaging, relying on the resonance of magnetoinductive waves are shown to be a potential application.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pocket Guide to MR Procedures and Metallic Objects: Update 1999. Lippincott Williams & Wilkins, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pocket Guide to MR Procedures and Metallic Objects: Update 1998. Lippincott Williams & Wilkins, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pocket Guide to MR Procedures and Metallic Objects : Update 1994. Raven Pr, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Artificial magnetic resonance"

1

Fyrdahl, Alexander, Nicole Seiberlich, and Jesse I. Hamilton. "Magnetic Resonance Fingerprinting: The Role of Artificial Intelligence." In Artificial Intelligence in Cardiothoracic Imaging, 201–15. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92087-6_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Muscogiuri, Giuseppe, Pablo Garcia-Polo, Marco Guglielmo, Andrea Baggiano, Martin A. Janich, and Gianluca Pontone. "Artificial Intelligence Integration into the Magnetic Resonance System." In Artificial Intelligence in Cardiothoracic Imaging, 195–200. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92087-6_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Qin, Chen, and Daniel Rueckert. "Artificial Intelligence-Based Image Reconstruction in Cardiac Magnetic Resonance." In Artificial Intelligence in Cardiothoracic Imaging, 139–47. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92087-6_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tao, Qian, and Rob J. van der Geest. "Artificial Intelligence-Based Evaluation of Functional Cardiac Magnetic Resonance Imaging." In Artificial Intelligence in Cardiothoracic Imaging, 321–31. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92087-6_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Domínguez, Enrique, Domingo López-Rodríguez, Ezequiel López-Rubio, Rosa Maza-Quiroga, Miguel A. Molina-Cabello, and Karl Thurnhofer-Hemsi. "Super-Resolution of 3D Magnetic Resonance Images of the Brain." In Artificial Intelligence in Healthcare and Medicine, 157–76. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003120902-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Peper, Eva S., Sebastian Kozerke, and Pim van Ooij. "Magnetic Resonance Imaging-Based 4D Flow: The Role of Artificial Intelligence." In Artificial Intelligence in Cardiothoracic Imaging, 333–48. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92087-6_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Passerini, Tiziano, Yitong Yang, Teodora Chitiboi, and John N. Oshinski. "Magnetic Resonance Imaging-Based Coronary Flow: The Role of Artificial Intelligence." In Artificial Intelligence in Cardiothoracic Imaging, 349–63. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92087-6_35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hammernik, Kerstin, and Mehmet Akçakaya. "Artificial Intelligence for Image Enhancement and Reconstruction in Magnetic Resonance Imaging." In Artificial Intelligence in Cardiothoracic Imaging, 125–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92087-6_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Taenaka, Yoshiyuki, Hisateru Takano, Hiroyoshi Sekii, Masayuki Kinoshita, Hiroyuki Noda, Takeshi Nakatani, Akihiko Yagura, et al. "Development of a better fit total artificial heart based on magnetic resonance imaging anatomical study." In Artificial Heart 3, 215–20. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68126-7_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

García, Cristina, and José Alí Moreno. "Kernel Based Method for Segmentation and Modeling of Magnetic Resonance Images." In Advances in Artificial Intelligence – IBERAMIA 2004, 636–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30498-2_64.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Artificial magnetic resonance"

1

Rizza, C., E. Palange, A. Galante, and M. Alecci. "Magnetic Localized Surface Plasmons For Magnetic Resonance Imaging Applications." In 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). IEEE, 2020. http://dx.doi.org/10.1109/metamaterials49557.2020.9285034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fricke, Florian, Safdar Mahmood, Javier Hoffmann, Marcelo Brandalero, Sascha Liehr, Simon Kern, Klas Meyer, et al. "Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy." In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2021. http://dx.doi.org/10.23919/date51398.2021.9473958.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Yuwei, Minye Wu, Yuyao Zhang, Lan Xu, and Jingyi Yu. "PIANO: A Parametric Hand Bone Model from Magnetic Resonance Imaging." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/113.

Повний текст джерела
Анотація:
Hand modeling is critical for immersive VR/AR, action understanding, or human healthcare. Existing parametric models account only for hand shape, pose, or texture, without modeling the anatomical attributes like bone, which is essential for realistic hand biomechanics analysis. In this paper, we present PIANO, the first parametric bone model of human hands from MRI data. Our PIANO model is biologically correct, simple to animate, and differentiable, achieving more anatomically precise modeling of the inner hand kinematic structure in a data-driven manner than the traditional hand models based on the outer surface only. Furthermore, our PIANO model can be applied in neural network layers to enable training with a fine-grained semantic loss, which opens up the new task of data-driven fine-grained hand bone anatomic and semantic understanding from MRI or even RGB images. We make our model publicly available.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shchelokova, A. V., E. A. Brui, S. B. Glybovski, A. P. Slobozhanyuk, I. V. Melchakova, and P. A. Belov. "Tunability methods for magnetic resonance imaging applications of metasurfaces." In 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). IEEE, 2018. http://dx.doi.org/10.1109/metamaterials.2018.8534104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rizza, C., M. Fantasia, E. Palange, A. Galante, and M. Alecci. "Meta-optics inspired configurations for magnetic resonance imaging applications." In 2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). IEEE, 2019. http://dx.doi.org/10.1109/metamaterials.2019.8900828.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Simozo, Fabricio, Marcos Oliveira, and Luiz Murta-Junior. "Brain Tissue Classification to Detect Focal Cortical Dysplasia in Magnetic Resonance Imaging." In Encontro Nacional de Inteligência Artificial e Computacional. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/eniac.2020.12164.

Повний текст джерела
Анотація:
Focal cortical dysplasia (FCD) is a local malformation of the cortex, the main cause of refractory epilepsy in childhood and one of the most common causes in adults. The surgery decision and planning depend on the FCD localization. Although recent studies have successfully detected FCD through artificial intelligence, no study investigates the relevance and prevalence of cortical features on FCD identification and the performance of different machine learning techniques. In this study, the proposed method constructed a voxel-based set of features, e.g., texture measure, border definition, cortical thickness.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

"Application of Self-organizing Maps in Functional Magnetic Resonance Imaging." In 6th International Workshop on Artificial Neural Networks and Intelligent Information Processing. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0002951300720080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chen, Xingyu, and Yusen Zhang. "Magnetic resonance imaging of adolescent depression based on machine vision." In ISAIMS 2021: 2nd International Symposium on Artificial Intelligence for Medicine Sciences. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3500931.3500996.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ucuzal, Hasan, Ahmet K. Arslan, and Cemil Colak. "Deep learning based-classification of dementia in magnetic resonance imaging scans." In 2019 International Artificial Intelligence and Data Processing Symposium (IDAP). IEEE, 2019. http://dx.doi.org/10.1109/idap.2019.8875961.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yang, Tingzhao, Kenneth Lee Ford, Madhwesha Rao, and James Wild. "A Single Unit Cell Metasurface for Magnetic Resonance Imaging Applications." In 2018 12th International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials). IEEE, 2018. http://dx.doi.org/10.1109/metamaterials.2018.8534181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії