Добірка наукової літератури з теми "Arr Knockout Mutant"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Arr Knockout Mutant".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Arr Knockout Mutant"

1

Kaszler, Nikolett, Péter Benkő, Árpád Molnár, Abigél Zámbori, Attila Fehér, and Katalin Gémes. "Absence of Arabidopsis Polyamine Oxidase 5 Influences the Cytokinin-Induced Shoot Meristem Formation from Lateral Root Primordia." Plants 12, no. 3 (January 18, 2023): 454. http://dx.doi.org/10.3390/plants12030454.

Повний текст джерела
Анотація:
Lateral root primordia (LRPs) of Arabidopsis can be directly converted to shoot meristems (SMs) by the application of exogenous cytokinin. Here, we report that Arabidopsis POLYAMINE OXIDASE 5 (AtPAO5) contributes to this process, since the rate of SM formation from LRPs was significantly lower in the pao5-2 knockout mutant. Furthermore, the presented experiments showed that AtPAO5 influences SM formation via controlling the thermospermine (T-Spm) level. Gene expression analyses supported the view that the pao5-2 mutation as well as exogenous T-Spm downregulate the expression of the class 3 haemoglobin coding genes AtGLB1 and AtGLB2. AtGLB1 and 2 have been reported to augment cytokinin sensitivity, indirectly inhibiting the expression of type-A ARABIDOPSIS RESPONSE REGULATORs (ARRs). In agreement, the same ARR-coding genes were found to be upregulated in the pao5-2 mutant. Although GLB proteins might also control cytokinin-induced nitric oxide (NO) accumulation, we could not find experimental evidence for it. Rather, the negative effect of NO-donor treatment on AtPAO5 gene expression and SM formation was seen. Nevertheless, a hypothetical pathway is set up explaining how AtPAO5 may affect direct shoot meristem formation, controlling cytokinin sensitivity through T-Spm and GLBs.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Israel, David, Shanjida Khan, Charles R. Warren, Janusz J. Zwiazek, and T. Matthew Robson. "The contribution of PIP2-type aquaporins to photosynthetic response to increased vapour pressure deficit." Journal of Experimental Botany 72, no. 13 (April 30, 2021): 5066–78. http://dx.doi.org/10.1093/jxb/erab187.

Повний текст джерела
Анотація:
Abstract The roles of different plasma membrane aquaporins (PIPs) in leaf-level gas exchange of Arabidopsis thaliana were examined using knockout mutants. Since multiple Arabidopsis PIPs are implicated in CO2 transport across cell membranes, we focused on identifying the effects of the knockout mutations on photosynthesis, and whether they are mediated through the control of stomatal conductance of water vapour (gs), mesophyll conductance of CO2 (gm), or both. We grew Arabidopsis plants in low and high humidity environments and found that the contribution of PIPs to gs was larger under low air humidity when the evaporative demand was high, whereas any effect of a lack of PIP function was minimal under higher humidity. The pip2;4 knockout mutant had 44% higher gs than wild-type plants under low humidity, which in turn resulted in an increased net photosynthetic rate (Anet). We also observed a 23% increase in whole-plant transpiration (E) for this knockout mutant. The lack of functional plasma membrane aquaporin AtPIP2;5 did not affect gs or E, but resulted in homeostasis of gm despite changes in humidity, indicating a possible role in regulating CO2 membrane permeability. CO2 transport measurements in yeast expressing AtPIP2;5 confirmed that this aquaporin is indeed permeable to CO2.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jellen-Ritter, A. S., and W. V. Kern. "Enhanced Expression of the Multidrug Efflux Pumps AcrAB and AcrEF Associated with Insertion Element Transposition in Escherichia coli Mutants Selected with a Fluoroquinolone." Antimicrobial Agents and Chemotherapy 45, no. 5 (May 1, 2001): 1467–72. http://dx.doi.org/10.1128/aac.45.5.1467-1472.2001.

Повний текст джерела
Анотація:
ABSTRACT The development of fluoroquinolone resistance in Escherichia coli may be associated with mutations in regulatory gene loci such as marRAB that lead to increased multidrug efflux, presumably through activation of expression of the AcrAB multidrug efflux pump. We found that multidrug-resistant (MDR) phenotypes with enhanced efflux can also be selected by fluoroquinolones frommarRAB- or acrAB-inactivated E. coli K-12 strains having a single mutation in the quinolone-resistance-determining region of gyrA. Mutant 3-AG100MKX, obtained from a mar knockout strain after two selection steps, showed enhanced expression of acrB in a reverse transcriptase PCR associated with insertion of IS186 into the AcrAB repressor gene acrR. In vitro selection experiments with acrAB knockout strains yielded MDR mutants after a single step. Enhanced efflux in these mutants was due to increased expression of acrEF and associated with insertion of IS2 into the upstream region ofacrEF, presumably creating a hybrid promoter. These observations confirm the importance of efflux-associated nontarget gene mutations and indicate that transposition of genetic elements may have a role in the development of fluoroquinolone resistance in E. coli.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ohtani, Kaori, Yonghui Yuan, Sufi Hassan, Ruoyu Wang, Yun Wang, and Tohru Shimizu. "Virulence Gene Regulation by the agr System in Clostridium perfringens." Journal of Bacteriology 191, no. 12 (April 10, 2009): 3919–27. http://dx.doi.org/10.1128/jb.01455-08.

Повний текст джерела
Анотація:
ABSTRACT A gram-positive anaerobic pathogen, Clostridium perfringens, causes clostridial myonecrosis or gas gangrene in humans by producing numerous extracellular toxins and enzymes that act in concert to degrade host tissue. The agr system is known to be important for the regulation of virulence genes in a quorum-sensing manner in Staphylococcus aureus. A homologue for S. aureus agrBD (agrBDSa ) was identified in the C. perfringens strain 13 genome, and the role of C. perfringens agrBD (agrBDCp ) was examined. The agrBDCp knockout mutant did not express the theta-toxin gene, and transcription of the alpha- and kappa-toxin genes was also significantly decreased in the mutant strain. The mutant strain showed a recovery of toxin production after the addition of the culture supernatant of the wild-type strain, indicating that the agrBDCp mutant lacks a signal molecule in the culture supernatant. An agr-virR double-knockout mutant was constructed to examine the role of the VirR/VirS two-component regulatory system, a key virulence regulator, in agrBDCp -mediated regulation of toxin production. The double-mutant strain could not be stimulated for toxin production with the wild-type culture supernatant. These results indicate that the agrBDCp system plays an important role in virulence regulation and also suggest that VirR/VirS is required for sensing of the extracellular signal and activation of toxin gene transcription in C. perfringens.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Buckhaults, Phillip J., Sana Khalili, Carolyn Banister, Prashanth R. Gokare, Dave Pocalyko, and Kurtis Bachman. "Abstract 251: Identification of therapeutic vulnerabilities by genome-wide CRISPR knockout library screening of colon cancer organoids." Cancer Research 83, no. 7_Supplement (April 4, 2023): 251. http://dx.doi.org/10.1158/1538-7445.am2023-251.

Повний текст джерела
Анотація:
Abstract The promise of precision medicine is based on the idea that genetic alterations present only in tumor cells create vulnerabilities that can be targeted for therapeutic intent. In some instances, somatically mutated driver genes such as KRAS, BRAF or PIK3CA can be targeted with small molecule inhibitors specific for mutant oncoproteins. In other cases therapeutic vulnerability is an indirect consequence, such as response to immune checkpoint inhibitors caused by somatic inactivation of mismatch repair genes and subsequent creation of neo-antigens in tumors. Synthetic lethal vulnerabilities dependent on common somatic alterations would be highly specific therapeutic targets applicable to a large number of cancer patients. We sought to identify potential therapeutic vulnerabilities for colon cancer by performing a genome wide CRISPR knockout screen in a colon cancer organoid in both TP53-Wild-Type and TP53-Knockout backgrounds. We identified 1784 gene knockouts with TP53-dependent effects on Darwinian fitness. Examples include MDM2 and PPM1D knockouts, both of which selectively harmed the TP53 WT organoids. 250 gene knockouts selectively harmed the TP53 KO organoids and represent novel avenues for development of TP53 synthetic lethal targeted therapeutics. We also identified ~1000 gene knockouts under significant negative Darwinian selection in both TP53 WT and TP53 KO organoids which are not known to be common essential genes. Several of these organoid model specific vulnerabilities are in pathways that are downstream of the somatic mutations present in the tumor and are therefore candidates for highly-specific targeted therapeutic intervention. Examples include Werner’s pathway dependencies (WRN, EME1, MUS81) which are known to result from mismatch repair deficiency, WNT pathway dependencies (CTNNB1, PORCN) which result from RNF43 inactivating somatic mutation, and BRAF dependency resulting from its own activating oncogenic somatic mutation. In summary, genome-wide CRISPR knockout library screening of human colon cancer organoids can provide a comprehensive overview of dependencies interacting with either natural or engineered mutations and are a promising novel platform for discovering personalized or pathway based therapeutic targets. Future work will focus on target validation and additional primary screens using our biobank of tumor-normal organoid pairs. Citation Format: Phillip J. Buckhaults, Sana Khalili, Carolyn Banister, Prashanth R. Gokare, Dave Pocalyko, Kurtis Bachman. Identification of therapeutic vulnerabilities by genome-wide CRISPR knockout library screening of colon cancer organoids [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 251.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mayo-Muñoz, David, Fei He, Jacob Jørgensen, Poul Madsen, Yuvaraj Bhoobalan-Chitty, and Xu Peng. "Anti-CRISPR-Based and CRISPR-Based Genome Editing of Sulfolobus islandicus Rod-Shaped Virus 2." Viruses 10, no. 12 (December 8, 2018): 695. http://dx.doi.org/10.3390/v10120695.

Повний текст джерела
Анотація:
Genetic engineering of viruses has generally been challenging. This is also true for archaeal rod-shaped viruses, which carry linear double-stranded DNA genomes with hairpin ends. In this paper, we describe two different genome editing approaches to mutate the Sulfolobus islandicus rod-shaped virus 2 (SIRV2) using the archaeon Sulfolobus islandicus LAL14/1 and its derivatives as hosts. The anti-CRISPR (Acr) gene acrID1, which inhibits CRISPR-Cas subtype I-D immunity, was first used as a selection marker to knock out genes from SIRV2M, an acrID1-null mutant of SIRV2. Moreover, we harnessed the endogenous CRISPR-Cas systems of the host to knock out the accessory genes consecutively, which resulted in a genome comprised solely of core genes of the 11 SIRV members. Furthermore, infection of this series of knockout mutants in the CRISPR-null host of LAL14/1 (Δarrays) confirmed the non-essentiality of the deleted genes and all except the last deletion mutant propagated as efficiently as the WT SIRV2. This suggested that the last gene deleted, SIRV2 gp37, is important for the efficient viral propagation. The generated viral mutants will be useful for future functional studies including searching for new Acrs and the approaches described in this case are applicable to other viruses.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kaplan, Kara, Ashley E. Echert, Ben Massat, Madeleine M. Puissant, Oleg Palygin, Aron M. Geurts, and Matthew R. Hodges. "Chronic central serotonin depletion attenuates ventilation and body temperature in young but not adult Tph2 knockout rats." Journal of Applied Physiology 120, no. 9 (May 1, 2016): 1070–81. http://dx.doi.org/10.1152/japplphysiol.01015.2015.

Повний текст джерела
Анотація:
Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 ( Tph2) gene in dark agouti (DA Tph2−/−) rats. DA Tph2−/− rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DA Tph2−/− rats. Body temperature was also maintained in adult DA Tph2−/− rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DA Tph2−/− rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation ( P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jones, Alexis M., Aphrothiti J. Hanrahan, Moriah H. Nissan, Sebastien Monette, Ziyu Chen, Wenhuo Hu, Sandra Misale, et al. "Abstract 2: Vertical MAPK pathway targeting in novel genetically engineered mouse and cell line models of NF1-altered melanoma: the mSK-Mel murine cohort." Cancer Research 83, no. 7_Supplement (April 4, 2023): 2. http://dx.doi.org/10.1158/1538-7445.am2023-2.

Повний текст джерела
Анотація:
Abstract Large scale clinical genomic sequencing efforts have revealed inactivating mutations in the RAS-GTPase Neurofibromin 1 (NF1) in a significant subset of melanomas. To date, immunotherapy and MAPK pathway-directed targeted therapies have been largely inactive in this molecularly defined cohort and immunogenic models that reflect the distinct co-mutation patterns found in NF1-mutant melanoma patients are lacking. Leveraging a population-scale tumor genomic profiling initiative, we identified TP53 as a gene significantly co-altered with NF1 in melanoma. We thus generated and molecularly characterized a cohort of genetically engineered mice with targeted deletion of NF1 in melanocytes. Melanocyte-specific, homozygous knockout of NF1 induced hyperpigmentation yet was insufficient for tumorigenesis. Addition of TP53 knockout and/or conditional activating mutation in BRAF (BRAFVE), resulted in melanoma formation with variable and high penetrance, respectively, along with histologic features consistent with human melanomas. Tumor latency and overall survival in NF1/TP53 double knockout mice was similar to NF1/BRAFVE double mutants. NF1 knockout did not shorten the latency to tumor formation in the setting of BRAFVE/TP53 mutation but did intensify melanocytic hyperpigmentation in all genetic backgrounds tested. To facilitate preclinical and functional studies, we derived 22 congenic cell lines from harvested mouse tumors from NF1 knockout mice, with and without BRAFVE mutation, and tested their sensitivity to targeted agents. As expected, loss of NF1 conditioned the response to BRAF inhibition, while NF1-mutant cells retained sensitivity to MEK inhibition. To abrogate the effects of adaptive RAS reactivation after MEK inhibitor therapy, combined MEK/SHP inhibition in NF1/TP53 knockout cells and BRAF/SHP inhibition in NF1/TP53/BRAFVE mutant cells strongly blunted ERK phosphorylation and cell proliferation better than single agent therapy. However, this response to the addition of SHP inhibition was transient and ERK rebound was driven by continued MEK activation and dependance. In syngeneic xenograft models of NF1/TP53/BRAFVE mutation, MEK inhibition alone, or in combination with RAF and/or SHP inhibition, induced tumor regression and delayed the onset of resistance and progression as compared to doublet RAF/SHP inhibitor therapy. Overall, we demonstrated the efficacy and feasibility of vertical MAPK pathway targeting in a novel cohort of genetically relevant mouse and cell line models of NF1-mutant melanoma and provide justification for future studies of vertical MAPK pathway targeting to achieve maximal ERK pathway inhibition in this molecularly defined patient cohort. Citation Format: Alexis M. Jones, Aphrothiti J. Hanrahan, Moriah H. Nissan, Sebastien Monette, Ziyu Chen, Wenhuo Hu, Sandra Misale, Isabell Schulze, Naresh Vasani, Cailian Liu, Xia Yang, Mohsen Abu-Akeel, Elisa de Stanchina, Nikolaus Schultz, Michael F. Berger, Neal Rosen, Taha Merghoub, David B. Solit. Vertical MAPK pathway targeting in novel genetically engineered mouse and cell line models of NF1-altered melanoma: the mSK-Mel murine cohort [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 2.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Grant, Kevron, Nicole M. Carey, Miguel Mendoza, John Schulze, Marinus Pilon, Elizabeth A. H. Pilon-Smits, and Doug van Hoewyk. "Adenosine 5′-phosphosulfate reductase (APR2) mutation in Arabidopsis implicates glutathione deficiency in selenate toxicity." Biochemical Journal 438, no. 2 (August 12, 2011): 325–35. http://dx.doi.org/10.1042/bj20110025.

Повний текст джерела
Анотація:
APR2 is the dominant APR (adenosine 5′-phosphosulfate reductase) in the model plant Arabidopsis thaliana, and converts activated sulfate to sulfite, a key reaction in the sulfate reduction pathway. To determine whether APR2 has a role in selenium tolerance and metabolism, a mutant Arabidopsis line (apr2-1) was studied. apr2-1 plants had decreased selenate tolerance and photosynthetic efficiency. Sulfur metabolism was perturbed in apr2-1 plants grown on selenate, as observed by an increase in total sulfur and sulfate, and a 2-fold decrease in glutathione concentration. The altered sulfur metabolism in apr2-1 grown on selenate did not reflect typical sulfate starvation, as cysteine and methionine levels were increased. Knockout of APR2 also increased the accumulation of total selenium and selenate. However, the accumulation of selenite and selenium incorporation in protein was lower in apr2-1 mutants. Decreased incorporation of selenium in protein is typically associated with increased selenium tolerance in plants. However, because the apr2-1 mutant exhibited decreased tolerance to selenate, we propose that selenium toxicity can also be caused by selenate's disruption of glutathione biosynthesis leading to enhanced levels of damaging ROS (reactive oxygen species).
Стилі APA, Harvard, Vancouver, ISO та ін.
10

So, Jonathan, Nathaniel Mabe, Bernhard Englinger, Jason Kwon, Brian Shim, Mariella Filbin, Kimberly Stegmaier, and William Hahn. "Abstract 2147: Synthetic lethality of VRK1 in VRK2-methylated cancers." Cancer Research 82, no. 12_Supplement (June 15, 2022): 2147. http://dx.doi.org/10.1158/1538-7445.am2022-2147.

Повний текст джерела
Анотація:
Abstract Paralogs are a source of synthetic lethal interactions which lend themselves to novel bio-marker linked targeted therapeutics. From genome-wide essentiality measurements in over 900 cancer cell lines, we find VRK1 dependency in VRK2-methylated adult and pediatric gliomas and neuroblastomas. VRK2 methylation was mainly seen in IDH-mutant gliomas and H3.3-G34R-mutant DIPG. Knockout of VRK2 was able to sensitize cells to VRK1 knockout. Overexpression of kinase-active but not kinase inactive VRK2 rescued VRK1 knockout. Global phosphoproteomics in VRK1 and VRK2 knockout cells demonstrate increased phosphorylation of targets involved with DNA damage and decreased phosphorylation of nuclear membrane targets. VRK1 and VRK2 were found to phosphorylate BANF1, which is involved in nuclear membrane re-formation during mitosis. Taken together, we show that VRK1 is a viable target in VRK2-methylated adult and pediatric gliomas, and neuroblastomas. Citation Format: Jonathan So, Nathaniel Mabe, Bernhard Englinger, Jason Kwon, Brian Shim, Mariella Filbin, Kimberly Stegmaier, William Hahn. Synthetic lethality of VRK1 in VRK2-methylated cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 2147.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Arr Knockout Mutant"

1

Sharmada, S. "Cellular and Molecular Features of the Response of Mycobacterium smegmatis to Rifampicin and Moxifloxacin Upon Prolonged Exposure." Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4168.

Повний текст джерела
Анотація:
Bacterial persisters are a subpopulation of bacteria that can tolerate lethal concentrations of antibiotics. These are phenotypic variants that can give rise to drug‐susceptible population upon withdrawal of the antibiotic. Persistent bacteria play a crucial role in prolonging antibiotic treatment and are responsible for the recalcitrance of many chronic bacterial diseases, including tuberculosis. Several mechanisms have been proposed for the formation of persisters, which include expression of toxin‐antitoxin systems, generation of reactive oxygen species (ROS), and stochastic changes in gene expression and so on. Recent report from our laboratory has demonstrated that continuous prolonged exposure of Mycobacterium tuberculosis cells to lethal concentrations of antibiotics generates antibiotic persistence phase cells from which genetically resistant mutants emerge de novo either to the same antibiotic to which it was exposed to or to another antibiotic used for selection Sebastian et al., Antimicrobial Agents Chemotherapy 61(2), e01343‐16, 2016). The persistence phase cells showed high levels of oxidative stress that inflicted genome‐wide mutations in addition to the mutations for which the resistant mutants were selected against rifampicin and moxifloxacin. Thus, it was we demonstrated that the antibiotic persistence phase M. tuberculosis cells is a reservoir for the de novo emergence of antibiotic resistant mutants. In the present study, the response of Mycobacterium smegmatis upon prolonged exposure to rifampicin was examined since the bacilli has two mechanisms to inactivate or neutralise the action of rifampicin. These mechanisms include: (i). ADP‐ribosylation of rifampicin by the product of the gene ADP‐ribosyltransferase (arr); (ii). Rescue of rifampicin‐ mediated transcription inhibition by MsRbpA. The question asked was whether genetically resistant mutants against rifampicin would emerge from rifampicin persister phase cells, like in the case of M. tuberculosis cells and if they do, what are the mechanisms by which the rifampicin‐resistant mutants emerge from the persistence phase cells. For comparison and contrast purpose, and as a control sample, the response of M. smegmatis cells to moxifloxacin, against which the bacilli do not have any inherent inactivation or neutralisation mechanism, was studied. The Chapter 1, which forms the Introduction to the thesis, gives an extensive literature survey on all the different aspects of the research performed on the response of mycobacterial cells to antibiotics. The Chapter 2 presents in detail all the materials and methods used to perform the experiments. A large number of cell biological and molecular biological methods, such as fluorescence microscopy and fluorescence measurements, flow cytometry, cloning and expression, real time RT‐PCR and whole genome sequencing, and biophysical methods such as electron paramagnetic resonance spectrometry, and others were used to perform the experiments. The data Chapter 3 presents the data on the response of M. smegmatis cells to rifampicin. The data shows that exposure to MBC levels of rifampicin results in the killing of the cells to a 5‐log10 reduction in the cfu of M. smegmatis cells but the remaining cells persist and from these cells emerge rifampicin‐resistant mutants. The persistence phase cells were found to generate elevated levels of hydroxyl radical, which inflicted genome‐wide mutations, and the mutants harbouring nucleotide changes at the rifampicin resistance determining region (RRDR) could regrow back. Interestingly, the killing phase and the regrowth phase showed very low levels of hydroxyl radical unlike the persistence phase cells. The mutations, which are identical to those in the rifampicin‐resistant mutants have been reported in the M. tuberculosis cells isolated from in vitro cultures and from the TB patients. The data Chapter 4 presents the response of the arr knockout mutant to rifampicin. The persistence phase population of the arr knockout mutant showed significantly higher levels of hydroxyl radical generation than the equivalent persistence phase population of the wild type cells. While the wild type cells showed emergence of rifampicin‐resistant mutants from the persistence phase, the arr knockout mutant showed the emergence of rifampicin‐ resistant mutants from the very exposure of the cells to rifampicin. In other words, the natural mutation frequency of the arr knockout mutant was significantly higher than that of the wild type. This indicated that the arr gene might have a natural role in keeping the oxidative stress at lower levels in the cells, which needs further investigation. The data Chapter 5 presents the response of M. smegmatis cells to moxifloxacin. Here also, the bacilli exposed to lethal concentrations of moxifloxacin showed a killing phase, followed by a persistence phase and a regrowth phase. The moxifloxacin‐resistant mutants were found to emerge from the moxifloxacin persistence phase cells. The cells from the regrowth phase of moxifloxacin‐exposed cells showed mutations in the quinolone resistance determining region (QRDR) in the gyrase gene, which is the target of moxifloxacin. The mutations, which are identical to those in the rifampicin‐resistant mutants have been reported in the M. tuberculosis cells isolated from in vitro cultures and from the TB patients. The thesis is concluded with discussion of the findings presented in the three chapters by projecting the comparison and contrast of the response of M. smegmatis and M. tuberculosis cells to rifampicin. The thesis contains an extensive bibliography.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Jui-Hung, and 陳瑞宏. "Drought and Salt Stress Tolerance of Arabidopsis Glutathione S-Transferase U17 Knockout Mutant are Attributed to the Combined Effect of Glutathione and Abscisic Acid." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/73041928515661731013.

Повний текст джерела
Анотація:
博士
國立臺灣大學
植物科學研究所
100
Although glutathione S-transferases (GSTs) are thought to play major roles in oxidative stress metabolism, little is known about the regulatory functions of GSTs. We have reported that GLUTATHIONE S-TRANSFERASE U17 (AtGSTU17, At1g10370) participates in light signaling and might modulate various aspects of development by affecting glutathione (GSH) pools via a coordinated regulation with phyA. Here we provided further evidence to support a negative role of AtGSTU17 in drought and salt stress tolerance. When AtGSTU17 was mutated, plants were more tolerant to drought and salt stresses compared to wild-type (WT, Col-0) plants. In addition, atgstu17 accumulated higher level of GSH and abscisic acid (ABA), and exhibited hyposensitivity to ABA during seed germination, smaller stomatal apertures, a lower transpiration rate, better development of primary and lateral root systems, and longer vegetative growth. To explore how atgstu17 accumulated higher ABA content, we grew WT in the solution containing GSH and found that plants accumulated ABA to a higher extent than plants grown in the absence of GSH, and exhibited the atgstu17 phenotypes. WT plants treated with GSH also demonstrated more tolerant to drought and salt stresses. Furthermore, the effect of GSH on root patterning and drought tolerance was confirmed by growing the atgstu17 in solution containing L-buthionine-(S,R)- sulfoximine (BSO), a specific inhibitor of GSH biosynthesis. In conclusion, the atgstu17 phenotype can be explained by the combined effect of GSH and ABA. Microarray analysis provided evidence that expressions of many genes related to growth and stress inducible transcription factors altered in the atgstu17 mutants. We propose a role of AtGSTU17 in adaptive responses to drought and salt stresses, by functioning as a negative component of stress-mediated signal transduction pathways.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Arr Knockout Mutant"

1

Mcdermott, Leeanne. GamePro Presents: Sega Genesis Games Secrets: Greatest Tips. Rocklin: Prima Publishing, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dyer, Paul S., Carol A. Munro, and Rosie E. Bradshaw. Fungal genetics. Edited by Christopher C. Kibbler, Richard Barton, Neil A. R. Gow, Susan Howell, Donna M. MacCallum, and Rohini J. Manuel. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198755388.003.0005.

Повний текст джерела
Анотація:
Fungi have been long used as model organisms to investigate genetic and cellular processes. An overview is provided of how fungi function at a genetic level, including ploidy, gene structure, and gene flow by sexual and asexual processes. The tools used to study fungal genetics are then described, such techniques having widespread applications in medical mycology research. Classical genetic analysis includes the use of gene mapping by sexual crossing and tetrad analysis, and forward genetic experimentation based on mutagenesis, for which various mutant screening approaches are described. Molecular genetic analysis includes gene manipulation by transformation; different methods for gene knockout and targeting, and their application for forward and reverse genetic approaches, are outlined. Finally, molecular genetic methods used to study gene expression and function are reviewed, including use of inducible or constitutive overexpression, real-time PCR, cellular localization of gene products by fluorescent tagging, and detection of protein–protein interactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sega Genesis Secrets, Volume 4. Rocklin, CA: Prima Publishing, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Eddy, Andrew, and Donn Nauert. Sega Genesis Secrets, Volume 4 (Prima's Secrets of the Games). Prima Games, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Arr Knockout Mutant"

1

Parrington, John. "Supersize My Mouse." In Redesigning Life, 31–57. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198766834.003.0003.

Повний текст джерела
Анотація:
Although human beings have been altering genomes by selection and breeding of particular animal or plant variants for thousands of years, and X-rays and chemicals were first used to create mutants in the early 20th century genetic engineering in the true sense only became possible much more recently. First, the discovery that genes are made of DNA, revealed the material nature of the genome. Second, scientists in the early 1970s discovered enzymes in bacteria that can be used to cut and paste DNA in the test tube. Using such molecular ‘tools‘ bacteria were engineered to produce important medical products such as human insulin for diabetics, and from this was born what would become a billion-dollar biotechnology industry. A further important development was the discovery of embryonic stem cells and manipulation of these to make ‘knockout’ mice that had a deletion of a specific gene, or ‘knockin’ mice that had subtle changes in a gene. However such an approach was still relatively expensive and time-consuming, and cold only be applied to mice. And although gene constructs could be introduced into cells in a less precise manner, the crude nature of this approach limited its application for both agriculture and gene therapy. In both areas of application there have been concerns about the safety and ethics of using such an approach. A major criticism has been the lack of precision in where a gene construct would end up the genome, leading to concerns about possible adverse effects.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Arr Knockout Mutant"

1

Weil, Clifford F., Anne B. Britt, and Avraham Levy. Nonhomologous DNA End-Joining in Plants: Genes and Mechanisms. United States Department of Agriculture, July 2001. http://dx.doi.org/10.32747/2001.7585194.bard.

Повний текст джерела
Анотація:
Repair of DNA breaks is an essential function in plant cells as well as a crucial step in addition of modified DNA to plant cells. In addition, our inability to introduce modified DNA to its appropriate locus in the plant genome remains an important hurdle in genetically engineering crop species.We have taken a combined forward and reverse genetics approach to examining DNA double strand break repair in plants, focusing primarily on nonhomologous DNA end-joining. The forward approach utilizes a gamma-plantlet assay (miniature plants that are metabolically active but do not undergo cell division, due to cell cycle arrest) and has resulted in identification of five Arabidopsis mutants, including a new one defective in the homolog of the yeast RAD10 gene. The reverse genetics approach has identified knockouts of the Arabidopsis homologs for Ku80, DNA ligase 4 and Rad54 (one gene in what proves to be a gene family involved in DNA repair as well as chromatin remodeling and gene silencing)). All these mutants have phenotypic defects in DNA repair but are otherwise healthy and fertile. Additional PCR based screens are in progress to find knockouts of Ku70, Rad50, and Mre11, among others. Two DNA end-joining assays have been developed to further our screens and our ability to test candidate genes. One of these involves recovering linearized plasmids that have been added to and then rejoined in plant cells; plasmids are either recovered directly or transformed into E. coli and recovered. The products recovered from various mutant lines are then compared. The other assay involves using plant transposon excision to create DNA breaks in yeast cells and then uses the yeast cell as a system to examine those genes involved in the repair and to screen plant genes that might be involved as well. This award supported three graduate students, one in Israel and two in the U.S., as well as a technician in the U.S., and is ultimately expected to result directly in five publications and one Masters thesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xu, Jin-Rong, and Amir Sharon. Comparative studies of fungal pathogeneses in two hemibiotrophs: Magnaporthe grisea and Colletotrichum gloeosporioides. United States Department of Agriculture, May 2008. http://dx.doi.org/10.32747/2008.7695585.bard.

Повний текст джерела
Анотація:
Plant pathogenic fungi have various life styles and different plant infection strategies. Hemibiotrophs like Magnaporthe grisea and Colletotrichum species develop specialized structures during plant infection. The goal of this study was to identify, characterize, and compare genes required for plant infection in M. grisea and C. gloeosporioides. Specific objectives are to: 1) further characterize genes identified in the preliminary studies of C. gloeosporioides and M. grisea;2) identify and characterize additional fungal genes tagged by GFP; and 3) identify in planta growth and appressorium-specific genes by subtractive hybridization and transcript profiling by the LongSAGE method. In this study, the PI and Co-PI collaborated closely on studies in M. grisea and C. gloeosporioides. In M. grisea, REMI and ATMT were used to transform the wildtype with promoter-less EGFP constructs. A total of 28 mutants defective in different plant infection processes or expressing EGFP during plant infection were identified. Genes disrupted in five selected mutants have been identified, including MG03295 that encodes a putative Rho GTPase. In transformant L1320, the transforming vector was inserted in the MIRI gene that encodes a nuclear protein. The expression of MIRI was highly induced during infection. Deletion and site-directed mutagenesis analyses were used to identify the promoter regions and elements that were essential for induced in planta expression of MIRI. This was the first detailed characterization of the promoter of an in planta gene in M. grisea and the MIRI promoter can be used to monitor infectious growth. In addition, the Agilent whole-genome array of M. grisea was used for microarray analyses with RNA samples from appressoria formed by the wild-type shain and the pmkl and mstl2 mutants. Over 200 genes were downregulated in the mst I 2 and pmkl mutants. Some of them are putative transcription factors that may regulate appressorium formation and infectious hyphal growth. In C. gloeosporioides, various REMI mutants showing different pathogenic behavior were identified and characterized. Mutants N3736 had a single insertion and was hyper-virulent. The gene disrupted in mutant3736 (named CgFMOI) encodes a FAD-dependent monooxygenase. Expression analyses linked the expression of the CgFMOI gene with the necrotrophic phase of fungal infection, and also suggest that expression of CgFMOl is unnecessary for the first stages of infection and for biotrophy establishment. All CgFMOl-silenced mutants had reduced virulence. In REMI mutant N159, the tagged gene encodes a putative copper transporter that is homologue of S. cerevisiae CTR2. In yeast, Ctr2 is a vacuolar transporter for moving copper from the vacuole to the cytoplasm. The gene was therefore termed CgCTR2. In addition to characterization of CgCTR2, we also conducted comparative analyses in M. grisea. The M. grisea CgCTR-2 homolog was isolated, knockout strains were generated and characterized and the M. grisea was used to complement the Nl 59 C. gloeosporioides mutant. Overall, we have accomplished most of proposed experiments and are in the process of organizing and publishing other data generated in this project. For objective 3, we used the microarray analysis approach. Several genes identified in this study are novel fungal virulence factors. They have the potential to be used as targets for developing more specific or effective fungicides. In the long run, comparative studies of fungal genes, such as our CgCTR2 work, may lead to better disease control strategies.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ficht, Thomas, Gary Splitter, Menachem Banai, and Menachem Davidson. Characterization of B. Melinensis REV 1 Attenuated Mutants. United States Department of Agriculture, December 2000. http://dx.doi.org/10.32747/2000.7580667.bard.

Повний текст джерела
Анотація:
Brucella Mutagenesis (TAMU) The working hypothesis for this study was that survival of Brucella vaccines was directly related to their persistence in the host. This premise is based on previously published work detailing the survival of the currently employed vaccine strains S19 and Rev 1. The approach employed signature-tagged mutagenesis to construct mutants interrupted in individual genes, and the mouse model to identify mutants with attenuated virulence/survival. Intracellular survival in macrophages is the key to both reproductive disease in ruminants and reticuloendothelial disease observed in most other species. Therefore, the mouse model permitted selection of mutants of reduced intracellular survival that would limit their ability to cause reproductive disease in ruminants. Several classes of mutants were expected. Colonization/invasion requires gene products that enhance host-agent interaction or increase resistance to antibacterial activity in macrophages. The establishment of chronic infection requires gene products necessary for intracellular bacterial growth. Maintenance of chronic infection requires gene products that sustain a low-level metabolism during periods characterized little or no growth (1, 2). Of these mutants, the latter group was of greatest interest with regard to our originally stated premise. However, the results obtained do not necessarily support a simplistic model of vaccine efficacy, i.e., long-survival of vaccine strains provides better immunity. Our conclusion can only be that optimal vaccines will only be developed with a thorough understanding of host agent interaction, and will be preferable to the use of fortuitous isolates of unknown genetic background. Each mutant could be distinguished from among a group of mutants by PCR amplification of the signature tag (5). This approach permitted infection of mice with pools of different mutants (including the parental wild-type as a control) and identified 40 mutants with apparently defective survival characteristics that were tentatively assigned to three distinct classes or groups. Group I (n=13) contained organisms that exhibited reduced survival at two weeks post-infection. Organisms in this group were recovered at normal levels by eight weeks and were not studied further, since they may persist in the host. Group II (n=11) contained organisms that were reduced by 2 weeks post infection and remained at reduced levels at eight weeks post-infection. Group III (n=16) contained mutants that were normal at two weeks, but recovered at reduced levels at eight weeks. A subset of these mutants (n= 15) was confirmed to be attenuated in mixed infections (1:1) with the parental wild-type. One of these mutants was eliminated from consideration due to a reduced growth rate in vitro that may account for its apparent growth defect in the mouse model. Although the original plan involved construction of the mutant bank in B. melitensis Rev 1 the low transformability of this strain, prevented accumulation of the necessary number of mutants. In addition, the probability that Rev 1 already carries one genetic defect increases the likelihood that a second defect will severely compromise the survival of this organism. Once key genes have been identified, it is relatively easy to prepare the appropriate genetic constructs (knockouts) lacking these genes in B. melitensis Rev 1 or any other genetic background. The construction of "designer" vaccines is expected to improve immune protection resulting from minor sequence variation corresponding to geographically distinct isolates or to design vaccines for use in specific hosts. A.2 Mouse Model of Brucella Infection (UWISC) Interferon regulatory factor-1-deficient (IRF-1-/- mice have diverse immunodeficient phenotypes that are necessary for conferring proper immune protection to intracellular bacterial infection, such as a 90% reduction of CD8+ T cells, functionally impaired NK cells, as well as a deficiency in iNOS and IL-12p40 induction. Interestingly, IRF-1-/- mice infected with diverse Brucella abortus strains reacted differently in a death and survival manner depending on the dose of injection and the level of virulence. Notably, 50% of IRF-1-/- mice intraperitoneally infected with a sublethal dose in C57BL/6 mice, i.e., 5 x 105 CFU of virulent S2308 or the attenuated vaccine S19, died at 10 and 20 days post-infection, respectively. Interestingly, the same dose of RB51, an attenuated new vaccine strain, did not induce the death of IRF-1-/- mice for the 4 weeks of infection. IRF-1-/- mice infected with four more other genetically manipulated S2308 mutants at 5 x 105 CFU also reacted in a death or survival manner depending on the level of virulence. Splenic CFU from C57BL/6 mice infected with 5 x 105 CFU of S2308, S19, or RB51, as well as four different S2308 mutants supports the finding that reduced virulence correlates with survival Of IRF-1-/- mice. Therefore, these results suggest that IRF-1 regulation of multi-gene transcription plays a crucial role in controlling B. abortus infection, and IRF-1 mice could be used as an animal model to determine the degree of B. abortus virulence by examining death or survival. A3 Diagnostic Tests for Detection of B. melitensis Rev 1 (Kimron) In this project we developed an effective PCR tool that can distinguish between Rev1 field isolates and B. melitensis virulent field strains. This has allowed, for the first time, to monitor epidemiological outbreaks of Rev1 infection in vaccinated flocks and to clearly demonstrate horizontal transfer of the strain from vaccinated ewes to unvaccinated ones. Moreover, two human isolates were characterized as Rev1 isolates implying the risk of use of improperly controlled lots of the vaccine in the national campaign. Since atypical B. melitensis biotype 1 strains have been characterized in Israel, the PCR technique has unequivocally demonstrated that strain Rev1 has not diverted into a virulent mutant. In addition, we could demonstrate that very likely a new prototype biotype 1 strain has evolved in the Middle East compared to the classical strain 16M. All the Israeli field strains have been shown to differ from strain 16M in the PstI digestion profile of the omp2a gene sequence suggesting that the local strains were possibly developed as a separate branch of B. melitensis. Should this be confirmed these data suggest that the Rev1 vaccine may not be an optimal vaccine strain for the Israeli flocks as it shares the same omp2 PstI digestion profile as strain 16M.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Paran, Ilan, and Allen Van Deynze. Regulation of pepper fruit color, chloroplasts development and their importance in fruit quality. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598173.bard.

Повний текст джерела
Анотація:
Pepper exhibits large natural variation in chlorophyll content in the immature fruit. To dissect the genetic and molecular basis of this variation, we conducted QTL mapping for chlorophyll content in a cross between light and dark green-fruited parents, PI 152225 and 1154. Two major QTLs, pc1 and pc10, that control chlorophyll content by modulation of chloroplast compartment size in a fruit-specific manner were detected in chromosomes 1 and 10, respectively. The pepper homolog of GOLDEN2- LIKE transcription factor (CaGLK2) was found as underlying pc10, similar to its effect on tomato fruit chloroplast development. A candidate gene for pc1was found as controlling chlorophyll content in pepper by the modulation of chloroplast size and number. Fine mapping of pc1 aided by bulked DNA and RNA-seq analyses enabled the identification of a zinc finger transcription factor LOL1 (LSD-One-Like 1) as a candidate gene underlying pc1. LOL1 is a positive regulator of oxidative stress- induced cell death in Arabidopsis. However, over expression of the rice ortholog resulted in an increase of chlorophyll content. Interestingly, CaAPRR2 that is linked to the QTL and was found to affect immature pepper fruit color in a previous study, did not have a significant effect on chlorophyll content in the present study. Verification of the candidate's function was done by generating CRISPR/Cas9 knockout mutants of the orthologues tomato gene, while its knockout experiment in pepper by genome editing is under progress. Phenotypic similarity as a consequence of disrupting the transcription factor in both pepper and tomato indicated its functional conservation in controlling chlorophyll content in the Solanaceae. A limited sequence diversity study indicated that null mutations in CaLOL1 and its putative interactorCaMIP1 are present in C. chinensebut not in C. annuum. Combinations of mutations in CaLOL1, CaMIP1, CaGLK2 and CaAPRR2 are required for the creation of the extreme variation in chlorophyll content in Capsicum.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Locy, Robert D., Hillel Fromm, Joe H. Cherry, and Narendra K. Singh. Regulation of Arabidopsis Glutamate Decarboxylase in Response to Heat Stress: Modulation of Enzyme Activity and Gene Expression. United States Department of Agriculture, January 2001. http://dx.doi.org/10.32747/2001.7575288.bard.

Повний текст джерела
Анотація:
Most plants accumulate the nonprotein amino acid, g-aminobutyric acid (GABA), in response to heat stress. GABA is made from glutamate in a reaction catalyzed by glutamate decarboxylase (GAD), an enzyme that has been shown by the Israeli PI to be a calmodulin (CaM) binding protein whose activity is regulated in vitro by calcium and CaM. In Arabidopsis there are at least 5 GAD genes, two isoforms of GAD, GAD1 and GAD2, are known to be expressed, both of which appear to be calmodulin-binding proteins. The role of GABA accumulation in stress tolerance remains unclear, and thus the objectives of the proposed work are intended to clarify the possible roles of GABA in stress tolerance by studying the factors which regulate the activity of GAD in vivo. Our intent was to demonstrate the factors that mediate the expression of GAD activity by analyzing the promoters of the GAD1 and GAD2 genes, to determine the role of stress induced calcium signaling in the regulation of GAD activity, to investigate the role of phosphorylation of the CaM-binding domain in the regulation of GAD activity, and to investigate whether ABA signaling could be involved in GAD regulation via the following set of original Project Objectives: 1. Construction of chimeric GAD1 and GAD2 promoter/reporter gene fusions and their utilization for determining cell-specific expression of GAD genes in Arabidopsis. 2. Utilizing transgenic plants harboring chimeric GAD1 promoter-luciferase constructs for isolating mutants in genes controlling GAD1 gene activation in response to heat shock. 3. Assess the role of Ca2+/CaM in the regulation of GAD activity in vivo in Arabidopsis. 4. Study the possible phosphorylation of GAD as a means of regulation of GAD activity. 5. Utilize ABA mutants of Arabidopsis to assess the involvement of this phytohormone in GAD activation by stress stimuli. The major conclusions of Objective 1 was that GAD1 was strongly expressed in the elongating region of the root, while GAD2 was mainly expressed along the phloem in both roots and shoots. In addition, GAD activity was found not to be transcriptionally regulated in response to heat stress. Subsequently, The Israeli side obtained a GAD1 knockout mutation, and in light of the objective 1 results it was determined that characterization of this knockout mutation would contribute more to the project than the proposed Objective 2. The major conclusion of Objective 3 is that heat-stress-induced changes in GAD activity can be explained by heat-stress-induced changes in cytosolic calcium levels. No evidence that GAD activity was transcriptionally or translationally regulated or that protein phosphorylation was involved in GAD regulation (objective 4) was obtained. Previously published data by others showing that in wheat roots ABA regulated GABA accumulation proved not to be the case in Arabidopsis (Objective 5). Consequently, we put the remaining effort in the project into the selection of mutants related to temperature adaptation and GABA utilization and attempting to characterize events resulting from GABA accumulation. A set of 3 heat sensitive mutants that appear to have GABA related mutations have been isolated and partially characterized, and a study linking GABA accumulation to growth stimulation and altered nitrate assimilation were conducted. By providing a better understanding of how GAD activity was and was not regulated in vivo, we have ruled out the use of certain genes for genetically engineering thermotolerance, and suggested other areas of endeavor related to the thrust of the project that may be more likely approaches to genetically engineering thermotolerance.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Casey, Therese, Sameer J. Mabjeesh, Avi Shamay, and Karen Plaut. Photoperiod effects on milk production in goats: Are they mediated by the molecular clock in the mammary gland? United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598164.bard.

Повний текст джерела
Анотація:
US scientists, Dr. Theresa Casey and Dr. Karen Plaut, collaborated with Israeli scientists, Dr. SameerMabjeesh and Dr. AviShamay to conduct studies proposed in the BARD Project No. US-4715-14 Photoperiod effects on milk production in goats: Are they mediated by the molecular clock in the mammary gland over the last 3 years. CLOCK and BMAL1 are core components of the circadian clock and as heterodimers function as a transcription factor to drive circadian-rhythms of gene expression. Studies of CLOCK-mutant mice found impaired mammary development in late pregnancy was related to poor lactation performance post-partum. To gain a better understanding of role of clock in regulation of mammary development studies were conducted with the mammary epithelial cell line HC11. Decreasing CLOCK protein levels using shRNA resulted in increased mammary epithelial cell growth rate and impaired differentiation, with lower expression of differentiation markers including ad herens junction protein and fatty acid synthesis genes. When BMAL1 was knocked out using CRISPR-CAS mammary epithelial cells had greater growth rate, but reached stationary phase at a lower density, with FACS indicating cells were growing and dying at a faster rate. Beta-casein milk protein levels were significantly decreased in BMAL1 knockout cells. ChIP-seq analysis was conducted to identify BMAL1 target genes in mammary epithelial cells. Studies conducted in goats found that photoperiod duration and physiological state affected the dynamics of the mammary clock. Effects were likely independent of the photoperiod effects on prolactin levels. Interestingly, circadian rhythms of core body temperature, which functions as a key synchronizing cue sent out by the central clock in the hypothalamus, were profoundly affected by photoperiod and physiological state. Data support that the clock in the mammary gland regulates genes important to development of the gland and milk synthesis. We also found the clock in the mammary is responsive to changes in physiological state and photoperiod, and thus may serve as a mechanism to establish milk production levels in response to environmental cues.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jander, Georg, and Daniel Chamovitz. Investigation of growth regulation by maize benzoxazinoid breakdown products. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600031.bard.

Повний текст джерела
Анотація:
Introduction Previous research had suggested that benzoxazinoids, a class of defensive metabolites found in maize, wheat, rye, and wild barley, are not only direct insect deterrents, but also influence other areas of plant metabolism. In particular, the benzoxazinoid 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxa- zin-3(4H)- one (DIMBOA) was implicated in: (i) altering plant growth by interfering with auxin signaling, and (ii) leading to the induction of gene expression changes and secondary plant defense responses. The overall goal of this proposal was to identify mechanisms by which benzoxazinoids influence other aspects of plant growth and defense. Specifically, the following hypotheses were proposed to be tested as part of an approved BARD proposal: Benzoxazinoid breakdown products directly interfere with auxin perception Global changes in maize and barley gene expression are induced by benzoxazinoid activation. There is natural variation in the maize photomorphogenic response to benzoxazinoids. Although the initial proposal included experiments with both maize and barley, there were some technical difficulties with the proposed transgenic barley experiments and most of the experimental results were generated with maize. Summary of major findings Previous research by other labs, involving both maize and other plant species, had suggested that DIMBOA alters plant growth by interfering with auxin signaling. However, experiments conducted in both the Chamovitz and the Jander labs using Arabidopsis and maize, respectively, were unable to confirm previously published reports of exogenously added DIMBOA effects on auxin signaling. Nevertheless, analysis of bx1 and bx2 maize mutant lines, which have almost no detectable benzoxazinoids, showed altered responses to blue light signaling. Transcriptomic analysis of maize mutant lines, variation in inbred lines, and responses to exogenously added DIMBOA showed alteration in the transcription of a blue light receptor, which is required for plant growth responses. This finding provides a novel mechanistic explanation of the trade-off between growth and defense that is often observed in plants. Experiments by the Jander lab and others had demonstrated that DIMBOA not only has direct toxicity against insect pests and microbial pathogens, but also induces the formation of callose in both maize and wheat. In the current project, non-targeted metabolomic assays of wildtype maize and mutants with defects in benzoxazinoid biosynthesis were used to identify unrelated metabolites that are regulated in a benzoxazinoid-dependent manner. Further investigation identified a subset of these DIMBOA-responsive compounds as catechol, as well as its glycosylated and acetylated derivatives. Analysis of co-expression data identified indole-3-glycerol phosphate synthase (IGPS) as a possible regulator of benzoxazinoid biosynthesis in maize. In the current project, enzymatic activity of three predicted maize IGPS genes was confirmed by heterologous expression. Transposon knockout mutations confirmed the function of the maize genes in benzoxazinoid biosynthesis. Sub-cellular localization studies showed that the three maize IGPS proteins are co-localized in the plastids, together with BX1 and BX2, two previously known enzymes of the benzoxazinoid biosynthesis pathway. Implications Benzoxazinoids are among the most abundant and effective defensive metabolites in maize, wheat, and rye. Although there is considerable with-in species variation in benzoxazinoid content, very little is known about the regulation of this variation and the specific effects on plant growth and defense. The results of this research provide further insight into the complex functions of maize benzoxazinoids, which are not only toxic to pests and pathogens, but also regulate plant growth and other defense responses. Knowledge gained through the current project will make it possible to engineer benzoxazinoid biosynthesis in a more targeted manner to produce pest-tolerant crops without negative effects on growth and yield.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lichter, Amnon, Gopi K. Podila, and Maria R. Davis. Identification of Genetic Determinants that Facilitate Development of B. cinerea at Low Temperature and its Postharvest Pathogenicity. United States Department of Agriculture, March 2011. http://dx.doi.org/10.32747/2011.7592641.bard.

Повний текст джерела
Анотація:
Botrytis cinerea is the postharvest pathogen of many agricultural produce with table grapes, strawberries and tomatoes as major targets. The high efficiency with which B. cinerea causes disease on these produce during storage is attributed in part due to its exceptional ability to develop at very low temperature. Our major goal was to understand the genetic determinants which enable it to develop at low temperature. The specific research objectives were: 1. Identify expression pattern of genes in a coldenriched cDNA library. 2. Identify B. cinerea orthologs of cold-induced genes 3. Profile protein expression and secretion at low temperature on strawberry and grape supplemented media. 4. Test novel methods for the functional analysis of coldresponsive genes. Objective 1 was modified during the research because a microarray platform became available and it allowed us to probe the whole set of candidate genes according to the sequence of 2 strains of the fungus, BO5.10 and T4. The results of this experiment allowed us to validate some of our earlier observations which referred to genes which were the product of a SSH suppression-subtraction library. Before the microarray became available during 2008 we also analyzed the expression of 15 orthologs of cold-induced genes and some of these results were also validated by the microarray experiment. One of our goals was also to perform functional analysis of cold-induced genes. This goal was hampered for 3 years because current methodology for transformation with ‘protoplasts’ failed to deliver knockouts of bacteriordopsin-like (bR) gene which was our primary target for functional analysis. Consequently, we developed 2 alternative transformation platforms, one which involves an air-gun based technique and another which involves DNA injection into sclerotia. Both techniques show great promise and have been validated using different constructs. This contribution is likely to serve the scientific community in the near future. Using these technologies we generated gene knockout constructs of 2 genes and have tested there effect on survival of the fungus at low temperature. With reference to the bR genes our results show that it has a significant effect on mycelial growth of the B. cinerea and the mutants have retarded development at extreme conditions of ionic stress, osmotic stress and low temperature. Another gene of unknown function, HP1 is still under analysis. An ortholog of the yeast cold-induced gene, CCH1 which encodes a calcium tunnel and was shown to be cold-induced in B. cinerea was recently cloned and used to complement yeast mutants and rescue them from cold-sensitivity. One of the significant findings of the microarray study involves a T2 ribonuclease which was validated to be cold-induced by qPCR analysis. This and other genes will serve for future studies. In the frame of the study we also screened a population of 631 natural B. cinerea isolates for development at low temperature and have identified several strains with much higher and lower capacity to develop at low temperature. These strains are likely to be used in the future as candidates for further functional analysis. The major conclusions from the above research point to specific targets of cold-induced genes which are likely to play a role in cold tolerance. One of the most significant observations from the microarray study is that low temperature does not induce ‘general stress response in B. cinerea, which is in agreement to its exceptional capacity to develop at low temperature. Due to the tragic murder of the Co-PI Maria R. Davis and GopiPodila on Feb. 2010 it is impossible to deliver their contribution to the research. The information of the PI is that they failed to deliver objective 4 and none of the information which relates to objective 3 has been delivered to the PI before the murder or in a visit to U. Alabama during June, 2010. Therefore, this report is based solely on the IS data.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії