Добірка наукової літератури з теми "Archean ocean"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Archean ocean".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Archean ocean"
Crowe, S. A., C. Jones, S. Katsev, C. Magen, A. H. O'Neill, A. Sturm, D. E. Canfield, et al. "Photoferrotrophs thrive in an Archean Ocean analogue." Proceedings of the National Academy of Sciences 105, no. 41 (October 6, 2008): 15938–43. http://dx.doi.org/10.1073/pnas.0805313105.
Повний текст джерелаBusigny, Vincent, Noah J. Planavsky, Didier Jézéquel, Sean Crowe, Pascale Louvat, Julien Moureau, Eric Viollier, and Timothy W. Lyons. "Iron isotopes in an Archean ocean analogue." Geochimica et Cosmochimica Acta 133 (May 2014): 443–62. http://dx.doi.org/10.1016/j.gca.2014.03.004.
Повний текст джерелаSharma, S. Das, D. J. Patil, R. Srinivasan, and K. Gopalan. "Very high18o enrichment in Archean cherts from South India: implications for Archean ocean temperature." Terra Nova 6, no. 4 (July 1994): 385–90. http://dx.doi.org/10.1111/j.1365-3121.1994.tb00511.x.
Повний текст джерелаHarrison, C. G. A. "Constraints on ocean volume change since the Archean." Geophysical Research Letters 26, no. 13 (July 1, 1999): 1913–16. http://dx.doi.org/10.1029/1999gl900425.
Повний текст джерелаHabicht, K. S. "Calibration of Sulfate Levels in the Archean Ocean." Science 298, no. 5602 (December 20, 2002): 2372–74. http://dx.doi.org/10.1126/science.1078265.
Повний текст джерелаBusigny, Vincent, Oanez Lebeau, Magali Ader, Bryan Krapež, and Andrey Bekker. "Nitrogen cycle in the Late Archean ferruginous ocean." Chemical Geology 362 (December 2013): 115–30. http://dx.doi.org/10.1016/j.chemgeo.2013.06.023.
Повний текст джерелаAvila-Alonso, Dailé, Jan M. Baetens, Rolando Cardenas, and Bernard De Baets. "Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments." International Journal of Astrobiology 16, no. 3 (September 9, 2016): 271–79. http://dx.doi.org/10.1017/s147355041600032x.
Повний текст джерелаNishizawa, Manabu, Takuya Saito, Akiko Makabe, Hisahiro Ueda, Masafumi Saitoh, Takazo Shibuya, and Ken Takai. "Stable Abiotic Production of Ammonia from Nitrate in Komatiite-Hosted Hydrothermal Systems in the Hadean and Archean Oceans." Minerals 11, no. 3 (March 19, 2021): 321. http://dx.doi.org/10.3390/min11030321.
Повний текст джерелаSleep, Norman H. "Archean plate tectonics: what can be learned from continental geology?" Canadian Journal of Earth Sciences 29, no. 10 (October 1, 1992): 2066–71. http://dx.doi.org/10.1139/e92-164.
Повний текст джерелаOlson, Haley C., Nadja Drabon, and David T. Johnston. "Oxygen isotope insights into the Archean ocean and atmosphere." Earth and Planetary Science Letters 591 (August 2022): 117603. http://dx.doi.org/10.1016/j.epsl.2022.117603.
Повний текст джерелаДисертації з теми "Archean ocean"
Koeksoy, Elif [Verfasser], and Andreas [Akademischer Betreuer] Kappler. "Biogeochemical Fe-S-cycling in a late Archean and Proterozoic ocean model habitat - the high alpine Arvadi Spring / Elif Koeksoy ; Betreuer: Andreas Kappler." Tübingen : Universitätsbibliothek Tübingen, 2018. http://d-nb.info/1198973374/34.
Повний текст джерелаAquila, Quentin. "Explorer la géochimie des océans archéens avec les Formations de fer rubanées (BIF) : apport des compositions isotopiques Hf-Nd-Pb." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0054.
Повний текст джерелаThe Banded Iron Formations (BIF) are unique sedimentary archives for studying the primitive oceans of the Archean. However, the environment of formation and the mechanisms involved in the formation of these iron- and silicon-rich chemical sediments are poorly constrained. The BIFs have been little studied for their Nd-Hf isotopic compositions, although they could provide new constraints on the hydrothermal and continental sources feeding the ancient oceans. To better constrain the BIFs environment of formation, I combined field observations with a petro-geochemical study on a sedimentary succession from the Barberton belt (3.25 Ga, South Africa). The deposition model of the Barberton BIFs involves a deep depositional environment, at the base of a slope and distal from the continent. This environment is occasionally disturbed by gravity-driven terrigenous deposits (mafic) characteristics of a deep-sea fan system. I evaluated whether the seawater geochemical signature (REE+Y, low HFSE) indicated the preservation of the primary Hf-Nd-Pb isotopic compositions in a BIF from the Isua belt (3.7 Ga, Greenland). The Isua BIF shows post-depositional disturbances in the Hf-Nd isotopic compositions attributed to the presence of secondary apatites. However, it preserved a 207Pb-206Pb age of 3810 ± 7 Ma inherited from detrital zircons. Therefore, the REE+Y spectrum typical of seawater does not guarantee the preservation of the primary Hf-Nd isotopic compositions of seawater, nor the absence of any terrigenous contamination. Finally, I explored the origin and source of Nd and Hf in the BIFs at the scale of the bands on samples from the Témagami belt (2.7 Ga, Canada). The initial Nd-Hf isotopic compositions of the Si-rich bands of the Témagami BIFs show a decoupling of the two isotopic systems. Conversely, those of the Fe-rich bands remain coupled in Nd-Hf. The Si-rich bands record a radiogenic Hf isotopic composition originating from the weathering waters of felsic continents. Conversely, the Hf and Nd in the Fe-rich bands could mainly originate from submarine hydrothermalism
Mayaga-Mikolo, Francis. "Chronologie des evenements sedimentaires, magmatiques et tectono-metamorphiques du precambrien d'afrique centrale occidentale (gabon) : tectogenese ogooue et heritage archeen." Clermont-Ferrand 2, 1996. http://www.theses.fr/1996CLF21824.
Повний текст джерелаBarbeau, David Longfellow Jr. "Application of Growth Strata and Detrital-Zircon Geochronology to Stratigraphic Architecture and Kinematic History." Diss., The University of Arizona, 2003. http://hdl.handle.net/10150/244092.
Повний текст джерелаLincoln, Sara Ann Lincoln Ph D. Massachusetts Institute of Technology. "Molecular studies of the sources and significance of archaeal lipids in the oceans." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84916.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references.
Marine archaea are ubiquitous and abundant in the modem oceans and have a geologic record extending >100 million years. However, factors influencing the populations of the major clades - chemolithoautotrophic Marine Group I Thaumarchaeota (MG-I) and heterotrophic Marine Group II Euryarchaeota (MG-II) - and their membrane lipid signatures are not well understood. Here, I paired techniques of organic geochemistry and molecular biology to explore the sources and significance of archaeal tetraether lipids in the marine water column. Using metagenomics, 16S rDNA pyrosequencing, QPCR and mass spectrometric analyses, I found that uncultivated MG-IL Euryarchaeota synthesize glycerol dialkyl glycerol tetraether (GDGT) lipids - including crenarchaeol, previously thought limited to autotrophic Thaumarchaeota. This finding has important implications for paleoenvironmental proxies reliant upon GDGTs. To investigate the effects of organic matter and bicarbonate + ammonia amendments on archaeal tetraether lipids and microbial community composition, I conducted large scale microcosm experiments. Experimental conditions did not promote the overall growth of archaea, but several changes in tetraether lipid abundance and relative ring distribution suggest that future incubation labeling studies using whole seawater may be valuable in probing the metabolism of individual archaeal clades in mixed populations. A rapid decrease in GDGT concentrations was observed within the first 44 h of the experiment, suggesting that the residence time of these compounds in the open ocean may be short. Changes in functional gene representation and microbial community composition over the course of the experiment provide potential insight into mechanisms of copiotrophy and the identity of bacteria that may degrade GDGTs. Finally, I present the results of a study of the sources and patterns of bacterial and archaeal GDGTs detected in the Lost City Hydrothermal Vent Field. Branched GDGTs, generally considered markers of terrestrial input to marine sediments, were detected in carbonate chimneys of this alkaline site near the mid-Atlantic Ridge. A relatively uncommon H-shaped GDGT was also present, and appears to be a marker of hydrothermal archaeal input rather than a mesophilic euryarchaeotal signal. Taken together, the work presented in this thesis emphasizes the necessity of understanding the biological underpinnings of archaeal lipids in the environment, increasingly used as biomarkers in microbial ecology and paleoenvironmental reconstruction.
by Sara Ann Lincoln.
Ph.D.in Geochemistry
Halter, Ghislaine. "Zonalite des alterations dans l'environnement des gisements d'uranium associes a la discordance du proterozoique moyen (saskatchewan, canada)." Université Louis Pasteur (Strasbourg) (1971-2008), 1988. http://www.theses.fr/1988STR13078.
Повний текст джерелаCámara, Mor Patricia. "Radionuclides in the Arctic Ocean: tracing sea ice origin, drifting and interception of atmospheric fluxes." Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/123297.
Повний текст джерелаThe Arctic Ocean is characterized by being covered by sea ice with a large variability between summer and winter. Sea ice incorporates particles and associated chemical species (metals, nutrients, contaminants, etc.) during its formation mainly in the continental shelves, while dissolved solutes are excluded. Along the whole life cycle of sea ice, diverse physical, chemical and biological processes determine the concentration of the sea-ice sediments (SIS) and chemical species entrapped in it. During its drifts offshore to the central Arctic Basin, sea ice also intercepts/incorporates chemical species from the atmosphere although, SIS may also incorporate some chemical solute compounds from the surface waters. Eventually, transported chemical species and SIS, are released to the underlying water column during melting process. Thus, sea ice becomes an important transport and distribution agent. However, the interception efficiency of atmospheric fluxes by sea ice, the origin of the entrapped SIS and radionuclides, the transit times of sea ice in the Arctic Ocean, as well as the importance of the transport of chemical species and SIS and its release in the ablation area are all poorly understood. To address these questions, a suite of natural (7Be, 210Po-210Pb and 234Th) and artificial (137Cs, 239,240Pu) radionuclides, characterized to have well-known sources and different half-lives, were analysed in samples from precipitation, sea ice, surface water, water beneath ice and SIS collected during the ARK XXII/2 expedition in 2007 along the central Arctic. The distributions of 7Be showed enrichment in sea ice (129±90Bq·m-3) with respect to surface water (7.1±1.3Bq·m-3). Since any 7Be incorporated to sea ice during its formation has decayed during drift, the direct atmospheric flux appears as the most important source of 7Be in sea ice. A mass balance was used to calculate that sea ice intercepts about 30% of the 7Be atmospheric flux. This estimation may be extrapolated to other atmospheric chemical species, such as nutrients or contaminants. Given that 7Be and 210Pb are intercepted and accumulated during sea ice transit and may also scavenge by SIS, both radionuclides can be used to assess sea ice transit time. The presence of SIS indicates that ice floes are formed in continental shelves. The presence of artificial radionuclides in SIS (240Pu/239Pu atom ratio, in combination with 137Cs and 239,240Pu activity) allow constraining their geographical origin. SIS originating in the Laptev and Kara Seas has 240Pu/239Pu atom ratios lower than those imprinted by global fallout (0.18), while SIS originating from the Alaskan shelf present 240Pu/239Pu atom ratios greater than global fallout. Data showed that most of the SIS in the Eurasian Basin originated from the Siberian shelves, in agreement with back-trajectory analyses and main drift patterns. The evidence of using 7Be/210Pb ratio, 137Cs and 239,240Pu in SIS as tracers to estimate sea ice transit time and origin, and the fact that SIS did not contain 234Thxs or that a small fraction of 7Be activity in SIS is explained by scavenging of seawater if all 210Pb in SIS does, make the atmospheric deposition the main source of radionuclides in SIS. The relevance of sea ice as a significant transport and source of radionuclides in melting areas, such as the Fram Strait, is reflected in the annual fluxes of dissolved 7Be carried by sea ice (67±55Bq·m-2·y-1), which are comparable to atmospheric inputs in this region (113-131Bq·m-2·y-1). In addition, the annual mass flux of SIS at the Fram Strait, assessed using a 7Be mass balance and the mean annual ice area efflux through it, is on average 240 (4.5-1700)·106 tons, value comparable to 115·106 tons discharged annually by Arctic rivers.
Yamaguchi, Kosei. "Geochemistry of Archean-Paleoproterozoic black shales the early evolution of the atmosphere, oceans, and biosphere /." 2002. http://www.etda.libraries.psu.edu/theses/approved/PSUonlyIndex/ETD-128/index.html.
Повний текст джерелаКниги з теми "Archean ocean"
Enright, Joseph F. Shinano!: The sinking of Japan's secret supership. London: Bodley Head, 1987.
Знайти повний текст джерелаEnright, Joseph F. Shinano!: The sinking of Japan's secret supership. Taiwan: Xing Guang, 1987.
Знайти повний текст джерелаLa Busqueda De Archelon/ the Search for Archelon. Alfaguara, 2006.
Знайти повний текст джерелаRobinson, Carol. Phytoplankton Biogeochemical Cycles. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199233267.003.0005.
Повний текст джерелаMoney, Nicholas P. 6. Microbial ecology and evolution. Oxford University Press, 2014. http://dx.doi.org/10.1093/actrade/9780199681686.003.0006.
Повний текст джерелаKirchman, David L. Community structure of microbes in natural environments. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0004.
Повний текст джерелаKirchman, David L. The nitrogen cycle. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0012.
Повний текст джерелаЧастини книг з теми "Archean ocean"
Shen, Yanan, Daniele L. Pinti, and Ko Hashizume. "Biogeochemical cycles of sulfur and nitrogen in the Archean ocean and atmosphere." In Archean Geodynamics and Environments, 305–20. Washington, D. C.: American Geophysical Union, 2006. http://dx.doi.org/10.1029/164gm19.
Повний текст джерелаVolk, Tyler, and Martin I. Hoffert. "Ocean Carbon Pumps: Analysis of Relative Strengths and Efficiencies in Ocean-Driven Atmospheric CO2 Changes." In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 99–110. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0099.
Повний текст джерелаHsü, Kenneth J., and Judith A. Mckenzie. "A “Strangelove” Ocean in the Earliest Tertiary." In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 487–92. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0487.
Повний текст джерелаWenk, T., and U. Siegenthaler. "The High-Latitude Ocean as a Control of Atmospheric CO2." In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 185–94. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0185.
Повний текст джерелаMclean, Dewey M. "Mantle Degassing Induced Dead Ocean in the Cretaceous-Tertiary Transition." In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 493–503. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0493.
Повний текст джерелаHerring, James R. "Charcoal Fluxes into Sediments of the North Pacific Ocean: The Cenozoic Record of Burning." In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 419–42. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0419.
Повний текст джерелаPeterson, L. C., and W. L. Prell. "Carbonate Preservation and Rates of Climatic Change: An 800 KYR Record from the Indian Ocean." In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 251–69. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0251.
Повний текст джерелаToggweiler, J. R., and J. L. Sarmiento. "Glacial to Interglacial Changes in Atmospheric Carbon Dioxide: The Critical Role of Ocean Surface Water in High Latitudes." In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 163–84. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0163.
Повний текст джерелаCurry, W. B., and G. P. Lohmann. "Carbon Deposition Rates and Deep Water Residence Time in the Equatorial Atlantic Ocean Throughout the Last 160,000 Years." In The Carbon Cycle and Atmospheric CO2 : Natural Variations Archean to Present, 285–301. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm032p0285.
Повний текст джерелаTakai, Ken, Fumio Inagaki, and Koki Horikoshi. "Distribution of unusual archaea in subsurface biosphere." In The Subseafloor Biosphere at Mid-Ocean Ridges, 369–81. Washington, D. C.: American Geophysical Union, 2004. http://dx.doi.org/10.1029/144gm23.
Повний текст джерелаТези доповідей конференцій з теми "Archean ocean"
Lambrecht, Nicholas, Elizabeth Swanner, Chad Wittkop, Cody Sheik, and Sergei Katsev. "MICROBIAL COMMUNITIES OF TWO ARCHEAN OCEAN ANALOGS." In 52nd Annual North-Central GSA Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018nc-312978.
Повний текст джерелаZheng, Xin-Yuan, Aaron M. Satkoski, Brian L. Beard, Thiruchelvi R. Reddy, Nicolas J. Beukes, and Clark M. Johnson. "TRACING OF THE COUPLED SI AND FE CYCLE IN THE ARCHEAN OCEAN." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-300243.
Повний текст джерелаHinz, Isaac L., Christine Nims, Christine Nims, Samantha Theuer, Samantha Theuer, Alexis S. Templeton, Alexis S. Templeton, Jena E. Johnson, and Jena E. Johnson. "FERRIC IRON CATALYZES THE FORMATION OF IRON-RICH SILICATES UNDER ARCHEAN OCEAN-LIKE CONDITIONS." In 54th Annual GSA North-Central Section Meeting - 2020. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020nc-347861.
Повний текст джерелаJohnson, Aleisha C., Stephen J. Romaniello, Chadlin M. Ostrander, Christopher T. Reinhard, Timothy W. Lyons, and Ariel D. Anbar. "ASSESSING THE BIOAVAILABILITY OF MO IN ARCHEAN OCEANS." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-341070.
Повний текст джерелаKatsev, Sergei, Mojtaba Fakhraee, Emily Hyde, Madelyn Petersen, Cody Sheik, and Kathryn Schreiner. "Sulfide, Sulfite, and Sulfate Production from Organic Sulfur in Archean Oceans and Modern Lakes." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1256.
Повний текст джерелаOsterhout, Jeffrey T., and Andrew D. Czaja. "STABLE ISOTOPE GEOCHEMISTRY OF A LATE ARCHEAN MICROBIAL ECOSYSTEM: DIVERSITY IN THE PRE-GOE OCEANS." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-307829.
Повний текст джерелаRibeiro, Elton J. B., Edson Luiz Labanca, Cesar Bartz, and Andre Iwane. "Tubarão Martelo Field Development: Lazy S Riser Configuration Using Mid Water Arch (MWA)." In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41873.
Повний текст джерелаMurray, John J., Harish Mukundan, Apurva Gupta, and Guibog Choi. "Dry Disconnectable Riser System for Low Keel Clearance Floaters." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79734.
Повний текст джерелаЗвіти організацій з теми "Archean ocean"
Mueller, C., S. J. Piercey, M. G. Babechuk, and D. Copeland. Stratigraphy and lithogeochemistry of rocks from the Nugget Pond Deposit area, Baie Verte Peninsula, Newfoundland. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328989.
Повний текст джерелаThomas, M. D. Magnetic and gravity characteristics of the Thelon and Taltson orogens, northern Canada: tectonic implications. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329250.
Повний текст джерелаBarbie, Alexander. ARCHES Digital Twin Framework. GEOMAR, December 2022. http://dx.doi.org/10.3289/sw_arches_core_1.0.0.
Повний текст джерелаMueller, C., S. J. Piercey, M. G. Babechuk, and D. Copeland. Stratigraphy and lithogeochemistry of the Goldenville horizon and associated rocks, Baie Verte Peninsula, Newfoundland. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328990.
Повний текст джерелаSommer, Stefan, Sascha Flögel, Michael Walter, and Frank Wenzhöfer. Autonomous Robotic Network to Resolve Coastal Oxygen Dynamics : Cruise No. AL547, 20.10. – 31.10.2020, Kiel – Kiel, ARCODYN. GEOMAR Helmholtz Centre for Ocean Research Kiel, 2022. http://dx.doi.org/10.3289/cr_al547.
Повний текст джерела