Добірка наукової літератури з теми "Arbitrary precision"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Arbitrary precision".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Arbitrary precision"
D'Ariano, Giacomo M., and Matteo G. A. Paris. "Arbitrary precision in multipath interferometry." Physical Review A 55, no. 3 (March 1, 1997): 2267–71. http://dx.doi.org/10.1103/physreva.55.2267.
Повний текст джерелаRODRIGUES, B. O., L. A. C. P. DA MOTA, and L. G. S. DUARTE. "NUMERICAL CALCULATION WITH ARBITRARY PRECISION." International Journal of Modern Physics E 16, no. 09 (October 2007): 3045–48. http://dx.doi.org/10.1142/s0218301307009014.
Повний текст джерелаBrisebarre, Nicolas, and Jean-Michel Muller. "Correctly Rounded Multiplication by Arbitrary Precision Constants." IEEE Transactions on Computers 57, no. 2 (February 2008): 165–74. http://dx.doi.org/10.1109/tc.2007.70813.
Повний текст джерелаGhazi, Kaveh R., Vincent Lefevre, Philippe Theveny, and Paul Zimmermann. "Why and How to Use Arbitrary Precision." Computing in Science & Engineering 12, no. 3 (May 2010): 5. http://dx.doi.org/10.1109/mcse.2010.73.
Повний текст джерелаLefevre, Vincent. "Correctly Rounded Arbitrary-Precision Floating-Point Summation." IEEE Transactions on Computers 66, no. 12 (December 1, 2017): 2111–24. http://dx.doi.org/10.1109/tc.2017.2690632.
Повний текст джерелаGraça, D. S., C. Rojas, and N. Zhong. "Computing geometric Lorenz attractors with arbitrary precision." Transactions of the American Mathematical Society 370, no. 4 (October 31, 2017): 2955–70. http://dx.doi.org/10.1090/tran/7228.
Повний текст джерелаMénissier-Morain, Valérie. "Arbitrary precision real arithmetic: design and algorithms." Journal of Logic and Algebraic Programming 64, no. 1 (July 2005): 13–39. http://dx.doi.org/10.1016/j.jlap.2004.07.003.
Повний текст джерелаEl-Araby, Esam, Ivan Gonzalez, Sergio Lopez-Buedo, and Tarek El-Ghazawi. "A Convolve-And-MErge Approach for Exact Computations on High-Performance Reconfigurable Computers." International Journal of Reconfigurable Computing 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/925864.
Повний текст джерелаLee, JunKyu, Gregory D. Peterson, Dimitrios S. Nikolopoulos, and Hans Vandierendonck. "AIR: Iterative refinement acceleration using arbitrary dynamic precision." Parallel Computing 97 (September 2020): 102663. http://dx.doi.org/10.1016/j.parco.2020.102663.
Повний текст джерелаJohansson, Fredrik. "Arb: Efficient Arbitrary-Precision Midpoint-Radius Interval Arithmetic." IEEE Transactions on Computers 66, no. 8 (August 1, 2017): 1281–92. http://dx.doi.org/10.1109/tc.2017.2690633.
Повний текст джерелаДисертації з теми "Arbitrary precision"
Rieu, Raphaël. "Development and verification of arbitrary-precision integer arithmetic libraries." Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASG023.
Повний текст джерелаArbitrary-precision integer arithmetic algorithms are used in contexts where both their performance and their correctness are critical, such as cryptographic software or computer algebra systems. GMP is a very widely-used arbitrary-precision integer arithmetic library. It features state-of-the-art algorithms that are intricate enough that their formal verification is both justified and difficult. This thesis tackles the formal verification of the functional correctness of a large fragment of GMP using the Why3 deductive verification platform.In order to make this verification possible, I have made several additions to Why3 that enable the verification of C programs. Why3 features a functional programming and specification language called WhyML. I have developed models of the memory management and datatypes of the C language, allowing me to reimplement GMP's algorithms in WhyML and formally verify them. I have also extended Why3's extraction mechanism so that WhyML programs can be compiled to idiomatic C code, where only OCaml used to be supported.The compilation of my WhyML algorithms results in a verified C library called WhyMP. It implements many state-of-the-art algorithms from GMP, with almost all of the optimization tricks preserved. WhyMP is compatible with GMP and performance-competitive with the assembly-free version. It goes far beyond existing verified arbitrary-precision arithmetic libraries, and is arguably the most ambitious existing Why3 development in terms of size and proof effort.In an attempt to increase the degree of automation of my proofs, I have also added to Why3 a framework for proofs by reflection. It enables Why3 users to easily write dedicated decision procedures that are formally verified programs and make full use of WhyML's imperative features. Using this new framework, I was able to replace hundreds of handwritten proof annotations in my GMP verification by automated proofs
Kalathungal, Akhil M. S. "An Arbitrary Precision Integer Arithmetic Library for FPGA s." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1383812278.
Повний текст джерелаPoulos, Konstantinos. "NEW TECHNIQUES ON VLSI CIRCUIT TESTING & EFFICIENT IMPLEMENTATIONS OF ARITHMETIC OPERATIONS." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/dissertations/1872.
Повний текст джерелаZivcovich, Franco. "Backward error accurate methods for computing the matrix exponential and its action." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/250078.
Повний текст джерелаKluknavský, František. "Vliv přesnosti aritmetických operací na přesnost numerických metod." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-236465.
Повний текст джерелаMENISSIER-MORAIN, MENISSIER VALERIE. "Arithmetique exacte : conception, algorithmique et performances d'une implementation informatique en precision arbitraire." Paris 7, 1994. http://www.theses.fr/1994PA077271.
Повний текст джерелаFernández, Oliva Alberto. "Estimación probabilística del grado de excepcionalidad de un elemento arbitrario en un conjunto finito de datos: aplicación de la teoría de conjuntos aproximados de precisión variable." Doctoral thesis, Universidad de Alicante, 2010. http://hdl.handle.net/10045/17570.
Повний текст джерелаArend, Andréia Propp. "A análise econômico-jurídica da arbitragem expedita." Universidade do Vale do Rio dos Sinos, 2018. http://www.repositorio.jesuita.org.br/handle/UNISINOS/7343.
Повний текст джерелаMade available in DSpace on 2018-10-10T13:20:24Z (GMT). No. of bitstreams: 1 Andréia Propp Arend_.pdf: 92656160 bytes, checksum: 0a3472ee7d2ccce4b7d2da9e4de30f96 (MD5) Previous issue date: 2018-06-22
Nenhuma
A arbitragem expedita é método adequado e privado de solução de conflitos, com origem internacional e progressivamente adotado no Brasil por força de permissão legislativa e regulamentar, para dirimir questões de baixa complexidade e baixos valores envolvidos. O presente estudo visa a analisar a arbitragem expedita a partir da ótica da Análise Econômica do Direito, como ferramenta para verificação dos custos de transação e de oportunidade na escolha do procedimento a adotar. Para tanto, utilizou-se pesquisa bibliográfica, levantamento de dados e análise legislativa e regulamentar. A pesquisa contribui na identificação do procedimento como modalidade de acesso das empresas à arbitragem mediante excelente relação de custo-benefício, a depender da quantidade e qualidade das informações a que as partes se dispuserem a apresentar entre si e ao julgador em um curto espaço de tempo. Como resultado, conclui-se que pela Análise Econômico-Jurídica da Arbitragem Expedita é possível demonstrar que o procedimento expedito se apresenta como ótimo redutor de custos de transação e de oportunidade, trazendo vantagens às partes que necessitam de um julgamento especializado célere, nas causas de baixa complexidade, não sendo indicado adotá-lo nos contratos multipartes.
Expedited arbitration is an appropriate and private method of conflict resolution, with international origin and progressively adopted in Brazil by virtue of legislative and regulatory permission, to resolve issues of low complexity and low values involved. This study aims to analyze expedited arbitrage from the perspective of the Law & Economics, as a tool to verify transaction and opportunity costs in choosing the procedure to adopt. For this purpose, bibliographic research, data collection and legislative and regulatory analysis were used. The research contributes to the identification of the procedure as a way of accessing companies to arbitration through an excellent cost-benefit relationship, depending on the quantity and quality of the information that the parties are willing to present to each other and to the judge in a short time. As a result, it can be concluded that the Economic-Legal Analysis of Expedited Arbitration can demonstrate that the expedited procedure presents itself as an optimal transaction and opportunity cost reducer, bringing advantages to parties who need a speedy specialized judgment in the causes of low complexity, and it is not recommended to adopt it in multiparty contracts.
Chen, Chi-Hsiang, and 陳濟祥. "A high precision fast locking arbitrary duty cycle clock synchronization circuit." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/08931567795547981001.
Повний текст джерела國立中央大學
電機工程研究所
97
Clock synchronization plays a important role in designing VLSI circuit. Phase-Locked loop (PLL) and delay-locked loop (DLL) are often applied in many synchronization-dependent systems in order to suppress the clock skew. However, these circuits have to consider some problems in using. First, PLL and DLL have issues of bandwidth because they are both closed loop systems. For this reason, they need to consider the stability of circuits. Second, they consume a lot of power in the process of locking. Consequently, the synchronous mirror delay circuit (SMD) was developed to improve the drawbacks. However, there are some drawbacks in conventional SMD. First, the phase error will increase because of the output loading. Next, the duty cycle of input signal is limited. Finally, the poor resolution is due to the delay cell. These shortcomings will limit the application of the SMD. A high precision fast locking arbitrary duty cycle clock synchronization circuit is proposed in the thesis, which not only keeps the advantage of SMD but the phase error between the input signal and output signal is less than 29 ps (simulated). And the tuning range of input signal’s duty cycle is 25% ~75%. Furthermore, the static phase error will not increase as the output loading changes. The test chip is fabricated in a 0.13-μm CMOS process and the supply voltage is 1.2V. It consumes 2.4mW when the operating frequency is 600MHz. The active area (without I/O PAD) is 0.039 mm2 , and the peak-to-peak jitter is 25.2 ps. There will be experimental results in latter half component of the thesis, which confirms the proposed circuit has improved certainly the drawbacks of SMD.
Книги з теми "Arbitrary precision"
Potter, Ronald W. Arbitrary Precision Calculation of Selected Higher Functions. Lulu Press, Inc., 2014.
Знайти повний текст джерелаDynamics of Number Systems: Computation with Arbitrary Precision. Springer, 2016.
Знайти повний текст джерелаKurka, Petr. Dynamics of Number Systems: Computation with Arbitrary Precision. Springer London, Limited, 2016.
Знайти повний текст джерелаHernández, Carlos. Positivismo inclusivo. Universidad Libre sede principal, 2017. http://dx.doi.org/10.18041/978-958-8981-73-4.
Повний текст джерелаЧастини книг з теми "Arbitrary precision"
Kneusel, Ronald T. "Arbitrary Precision Floating-Point." In Numbers and Computers, 265–92. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50508-4_9.
Повний текст джерелаKrückeberg, Fritz. "Arbitrary accuracy with variable precision arithmetic." In Interval Mathematics 1985, 95–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/3-540-16437-5_9.
Повний текст джерелаJohansson, Fredrik. "Numerical Integration in Arbitrary-Precision Ball Arithmetic." In Mathematical Software – ICMS 2018, 255–63. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96418-8_30.
Повний текст джерелаRoussinov, Dmitri. "Towards Semantic Category Verification with Arbitrary Precision." In Lecture Notes in Computer Science, 274–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23318-0_25.
Повний текст джерелаLing, Leevan. "Arbitrary Precision Computations of Variations of Kansa's Method." In Progress on Meshless Methods, 77–83. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8821-6_5.
Повний текст джерелаKrämer, Walter, and Frithjof Blomquist. "Arbitrary Precision Complex Interval Computations in C-XSC." In Parallel Processing and Applied Mathematics, 457–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31500-8_47.
Повний текст джерелаWinitzki, Serge. "Computing the Incomplete Gamma Function to Arbitrary Precision." In Computational Science and Its Applications — ICCSA 2003, 790–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44839-x_83.
Повний текст джерелаStrzebonski, Adam. "A Real Polynomial Decision Algorithm Using Arbitrary-Precision Floating Point Arithmetic." In Developments in Reliable Computing, 337–46. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-1247-7_26.
Повний текст джерелаRieu-Helft, Raphaël, Claude Marché, and Guillaume Melquiond. "How to Get an Efficient yet Verified Arbitrary-Precision Integer Library." In Lecture Notes in Computer Science, 84–101. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72308-2_6.
Повний текст джерелаAbdulla, Parosh Aziz, Mohamed Faouzi Atig, Raj Aryan Agarwal, Adwait Godbole, and Krishna S. "Probabilistic Total Store Ordering." In Programming Languages and Systems, 317–45. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99336-8_12.
Повний текст джерелаТези доповідей конференцій з теми "Arbitrary precision"
Lapuh, R., R. Pajntar, K. e. Rydler, V. Tarasso, and J. Stenarsson. "Calculable Filter for Josephson Arbitrary Wafeform Synthesis." In 2004 Conference on Precision electromagnetic Digest. IEEE, 2004. http://dx.doi.org/10.1109/cpem.2004.305506.
Повний текст джерелаGroßschädl, Johann, Erkay Savas, and Kazim Yumbul. "Realizing Arbitrary-Precision Modular Multiplication with a Fixed-Precision Multiplier Datapath." In 2009 International Conference on Reconfigurable Computing and FPGAs (ReConFig). IEEE, 2009. http://dx.doi.org/10.1109/reconfig.2009.83.
Повний текст джерелаLi, He, James J. Davis, John Wickerson, and George A. Constantinides. "architect: Arbitrary-precision constant-hardware iterative compute." In 2017 International Conference on Field Programmable Technology (ICFPT). IEEE, 2017. http://dx.doi.org/10.1109/fpt.2017.8280123.
Повний текст джерелаKiyama, Masato, Motoki Amagasaki, and Masahiro Iida. "Deep Learning Framework with Arbitrary Numerical Precision." In 2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC). IEEE, 2019. http://dx.doi.org/10.1109/mcsoc.2019.00019.
Повний текст джерелаLefevre, Vincent. "Correctly Rounded Arbitrary-Precision Floating-Point Summation." In 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH). IEEE, 2016. http://dx.doi.org/10.1109/arith.2016.9.
Повний текст джерелаde Fine Licht, Johannes, Christopher A. Pattison, Alexandros Nikolaos Ziogas, David Simmons-Duffin, and Torsten Hoefler. "Fast Arbitrary Precision Floating Point on FPGA." In 2022 IEEE 30th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2022. http://dx.doi.org/10.1109/fccm53951.2022.9786219.
Повний текст джерелаPalafox, L., E. Houtzager, J. M. Williams, H. e. van den Brom, T. J. B. M. Janssen, and O. A. Chevtchenko. "Pulse Drive Electronics for Josephson Arbitrary Waveform Synthesis." In 2004 Conference on Precision Electromagnetic Measurements. IEEE, 2004. http://dx.doi.org/10.1109/cpem.2004.305510.
Повний текст джерелаCoskun Ozturk, Tezgul, Sarp Erturk, Ali Tangel, and Mehedin Arifovic. "Measurement of Arbitrary Waveforms at Low Frequencies." In 2020 Conference on Precision Electromagnetic Measurements (CPEM 2020). IEEE, 2020. http://dx.doi.org/10.1109/cpem49742.2020.9191924.
Повний текст джерелаAdad, Walter F., and Ricardo J. Iuzzolino. "Arbitrary function generator using Direct Digital Synthesis." In 2012 Conference on Precision Electromagnetic Measurements (CPEM 2012). IEEE, 2012. http://dx.doi.org/10.1109/cpem.2012.6251083.
Повний текст джерелаLapuh, Rado, Bostjan Voljc, Miha Kokalj, Borut Pinter, Zoran Svetik, and Matjaz Lindic. "Measurement of repetitive arbitrary waveform RMS value." In 2014 Conference on Precision Electromagnetic Measurements (CPEM 2014). IEEE, 2014. http://dx.doi.org/10.1109/cpem.2014.6898438.
Повний текст джерелаЗвіти організацій з теми "Arbitrary precision"
Bailey, David H., Hida Yozo, Xiaoye S. Li, and Brandon Thompson. ARPREC: An arbitrary precision computation package. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/817634.
Повний текст джерелаGhinculov, A. The Rare Decay B {yields} X{sub s} {ell}{sup +} {ell}{sup -} to NNLL Precision for Arbitrary Dilepton Mass. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/826594.
Повний текст джерела