Добірка наукової літератури з теми "Approximation de Boussinesq quadratique"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Approximation de Boussinesq quadratique".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Approximation de Boussinesq quadratique"
Young, William R. "Dynamic Enthalpy, Conservative Temperature, and the Seawater Boussinesq Approximation." Journal of Physical Oceanography 40, no. 2 (February 1, 2010): 394–400. http://dx.doi.org/10.1175/2009jpo4294.1.
Повний текст джерелаWood, T. S., and P. J. Bushby. "Oscillatory convection and limitations of the Boussinesq approximation." Journal of Fluid Mechanics 803 (August 30, 2016): 502–15. http://dx.doi.org/10.1017/jfm.2016.511.
Повний текст джерелаRAJAGOPAL, K. R., M. RUZICKA, and A. R. SRINIVASA. "ON THE OBERBECK-BOUSSINESQ APPROXIMATION." Mathematical Models and Methods in Applied Sciences 06, no. 08 (December 1996): 1157–67. http://dx.doi.org/10.1142/s0218202596000481.
Повний текст джерелаTéchené, Jean-Jacques. "Les aspects fondamentaux de l'admissibilité en approximation quadratique d'applications linéaires." Linear Algebra and its Applications 264 (October 1997): 389–419. http://dx.doi.org/10.1016/s0024-3795(96)00405-3.
Повний текст джерелаBarletta, Antonio, Michele Celli, and D. Andrew S. Rees. "On the Use and Misuse of the Oberbeck–Boussinesq Approximation." Physics 5, no. 1 (March 17, 2023): 298–309. http://dx.doi.org/10.3390/physics5010022.
Повний текст джерелаGomes, Diogo A., and Claudia Valls. "Approximation of ill-posed boussinesq equations." Dynamical Systems 19, no. 4 (December 2004): 345–57. http://dx.doi.org/10.1080/1468936042000269587.
Повний текст джерелаBaron-Pertuz, Cristian-Fabian, Ana-Magnolia Marin-Ramirez, and Ruben-Dario Ortiz-Ortiz. "An approximation to the Boussinesq equations." International Journal of Mathematical Analysis 8 (2014): 2433–37. http://dx.doi.org/10.12988/ijma.2014.48274.
Повний текст джерелаPRUŠA, VÍT, and K. R. RAJAGOPAL. "ON MODELS FOR VISCOELASTIC MATERIALS THAT ARE MECHANICALLY INCOMPRESSIBLE AND THERMALLY COMPRESSIBLE OR EXPANSIBLE AND THEIR OBERBECK–BOUSSINESQ TYPE APPROXIMATIONS." Mathematical Models and Methods in Applied Sciences 23, no. 10 (July 12, 2013): 1761–94. http://dx.doi.org/10.1142/s0218202513500516.
Повний текст джерелаSiddiqui, Perwez. "Density Modelling in Mixed Convection Flow in a Vertical Parallel Plate Channel." International Journal of Heat and Technology 39, no. 4 (August 31, 2021): 1294–304. http://dx.doi.org/10.18280/ijht.390428.
Повний текст джерелаGrandi, Diego, and Arianna Passerini. "On the Oberbeck–Boussinesq approximation for gases." International Journal of Non-Linear Mechanics 134 (September 2021): 103738. http://dx.doi.org/10.1016/j.ijnonlinmec.2021.103738.
Повний текст джерелаДисертації з теми "Approximation de Boussinesq quadratique"
Ferré, Alexis. "Etude CFD et expérimentale d'un stockage thermique de type thermocline." Electronic Thesis or Diss., Pau, 2024. http://www.theses.fr/2024PAUU3023.
Повний текст джерелаEnergy storage is essential to the energy transition as it allows decoupling energy production from its consumption. Water-based thermocline heat storage, used in medium or low-temperature heating networks, relies on thermal stratification in a tank. The performance of this type of storage is strongly linked to the proper stratification of the fluid, which can be disrupted by the injection and extraction of the liquid, aspects that are scarcely explored in the literature.The objective of this thesis is to reliably model such storage to analyze the fluid distribution. The aim is to better understand the physical phenomena governing the thermocline during operating cycles and to enhance its energy performance through improved design or control. To achieve this, numerical studies using CFD (Computational Fluid Dynamics) were conducted and compared with experimental data available in the literature and obtained via a new experimental setup.Initially, a CFD model was developed based on an existing experimental case from the literature. In water thermocline storage, there is often coexistence between a laminar region in the tank and a turbulent region near the distributors. This coexistence is a major challenge in modeling because most turbulence models cannot reliably represent the transition from turbulent to laminar flow. For this work, a RANS (Reynolds Average Numerical Simulation) statistical method is adopted, and the k-omega-SST model is selected as it can represent near-wall flows. Regarding buoyancy, there are two methods to consider its effects: using a variable density in all equations or a constant density except in the buoyancy term. The latter is known as the Boussinesq approximation but is only valid over a narrow range of ΔT. The accuracy of the Boussinesq approximation has been questioned, and a second-order approach of this model is employed. This allows obtaining the same buoyancy term as a variable density model but with a calculation time reduced by half. Comparison with experimental data highlighted the impact of the initial temperature state (stratified or homogeneous storage). An exploratory study of the impact of progressive injection according to a flow ramp showed its effect on reducing the thermocline thickness at the time of its creation.As part of the model validation and verification of numerical observations, a new experimental setup was designed. It measures the temperature using 300 thermocouples placed in the tank and allows precise control of operating conditions. Static phase studies to evaluate thermal losses were conducted. Dynamic studies allowed varying relevant operating parameters: axial propagation speed, temperature difference, extraction device, and progressive injection. For this system, the results show that it is possible to obtain stratification at high speed (> 2 mm/s) as long as the ΔT is sufficiently high.Finally, the flow in the test section was numerically studied with an updated CFD model. The variable fields showed that the numerical and experimental results are consistent, especially during the formation of the thermocline. However, excessive diffusion during the propagation of the thermal gradient at low flow is notable. For all the tests carried out, the experimental and numerical discrepancies were quantified: except for critical conditions, the discrepancy in thermocline thickness is ±50% and ranges from 0 to -10% for the restitution rate
McQuarrie, Shane Alexander. "Data Assimilation in the Boussinesq Approximation for Mantle Convection." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6951.
Повний текст джерелаHaschke, Heike. "Splitting-Techniken zur spektralen Approximation der Navier-Stokes- und Boussinesq-Gleichungen." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=96361083X.
Повний текст джерелаRubio, Diana. "Distributed Parameter Control of Thermal Fluids." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/30330.
Повний текст джерелаPh. D.
Hu, Weiwei. "Approximation and Control of the Boussinesq Equations with Application to Control of Energy Efficient Building Systems." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/38664.
Повний текст джерелаPh. D.
Schneider, Nicolas. "Vorticité et mélange dans les écoulements de Rayleigh-Taylor turbulents, en approximation anélastique et de Boussinesq." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066466/document.
Повний текст джерелаThe Rayleigh-Taylor instability (RTI) is especially observed in inertial confinement fusion experiments, and its development prevents the success of these experiments. The purpose of this work is to study the growth of the RTI for different compressibility regimes by using a multidomain pseudospectral Chebyshev-Fourier-Fourier simulation code. The asymptotic expansion method allows to establish several low Mach number models which do not contains acoustics. The implantation of the anelastic model, which deals with stratified fluids and captures thermal effects, has been improved. Moreover, the Boussinesq model is added to the simulation code. The accuracy of the entire numerical method is studied, as a function of the subdomain separation, and several validation elements are shown, including a comparison with an experimental study. The first simulation to be analyzed is achieved with the Boussinesq model. We focus on the self-similarity of the RTI growth. The temporal scalings of vorticity and dissipation are displayed, and the structures of turbulence and mixing are discussed. Some properties of isotropic and homogeneous turbulence are observed, however some anisotropy remains at small scales. The first three-dimensional anelastic simulations are presented. The influence of compressibility effects on the first stages of the growth is studied. Finally, a developed anelastic mixing layer involving weakly stratified fluids is described and was found to display non-negligible compressibility effects
Bérard, Bergery Blandine. "Approximation du temps local et intégration par régularisation." Thesis, Nancy 1, 2007. http://www.theses.fr/2007NAN10058/document.
Повний текст джерелаThe setting of this work is the integration by regularization of Russo and Vallois. The first part studies schemes of approximation of the local time of continuous semimartingales. If X is a reversible diffusion, the convergence of a first schema of approximation to the local time of X is proven, in probability uniformly on the compact sets. From this first schema, two other schemas of approximation for the local time are found. One converges in the semi-martingale case, the other in the Brownian case. Moreover, in the Brownian case, we estimate the rate of convergence in L^2(Omega) and a result of almost sure convergence is proven. The second part study the forward integral and the generalized quadratic variation, which have been defined by convergence of families of integrals, in probability uniformly on the compacts sets. In the case of Hölder processes, the almost sure convergence is proven. Finally, the second order convergence is studied in many cases
Toqué, Nathalie. "Diffusion turbulente anisotrope dans les zones radiatives d'étoiles." Thèse, Paris 6, 2004. http://hdl.handle.net/1866/17334.
Повний текст джерелаNguyen, Phuong Anh. "Contrôle optimal localisé sur des structures fines pour des équations paraboliques semilinéaires et le système de Boussinesq." Toulouse 3, 2000. http://www.theses.fr/2000TOU30195.
Повний текст джерелаBerard, Bergery Blandine. "Approximation du temps local et intégration par régularisation." Phd thesis, Université Henri Poincaré - Nancy I, 2007. http://tel.archives-ouvertes.fr/tel-00181777.
Повний текст джерелаКниги з теми "Approximation de Boussinesq quadratique"
Rubinstein, Robert. Renormalization group theory of Bolgiano scaling in Boussinesq turbulence. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаMerkle, Klaus. Einfluss gleich- und gegensinniger Drehrichtung der Verbrennungsluftstro me auf die Stabilisierung turbulenter Doppeldrall-Diffusionsflammen. Karlsruhe: Univ.-Verl. Karlsruhe, 2006.
Знайти повний текст джерелаЧастини книг з теми "Approximation de Boussinesq quadratique"
Herwig, Heinz. "Boussinesq-Approximation (Boussinesq approximation)." In Wärmeübertragung A-Z, 23–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56940-1_6.
Повний текст джерелаZeytounian, Radyadour. "The Boussinesq Approximation." In Asymptotic Modeling of Atmospheric Flows, 142–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-73800-5_8.
Повний текст джерелаDewan, Anupam. "Models Based on Boussinesq Approximation." In Tackling Turbulent Flows in Engineering, 49–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14767-8_5.
Повний текст джерелаFeireisl, Eduard, and Maria E. Schonbek. "On the Oberbeck–Boussinesq Approximation on Unbounded Domains." In Nonlinear Partial Differential Equations, 131–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25361-4_7.
Повний текст джерелаHinze, Michael, and Ulrich Matthes. "Optimal and Model Predictive Control of the Boussinesq Approximation." In International Series of Numerical Mathematics, 149–74. Basel: Birkhäuser Basel, 2007. http://dx.doi.org/10.1007/978-3-7643-7721-2_7.
Повний текст джерелаDenisova, I. V., and V. A. Solonnikov. "Motion of Two Fluids in the Oberbeck-Boussinesq Approximation." In Motion of a Drop in an Incompressible Fluid, 205–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70053-9_9.
Повний текст джерелаStraughan, Brian. "The Navier-Stokes Equations, the Boussinesq Approximation, and the Standard Bénard Problem." In The Energy Method, Stability, and Nonlinear Convection, 38–55. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2194-2_3.
Повний текст джерелаHolm, Darryl D., Ruiao Hu, and Oliver D. Street. "On the Interactions Between Mean Flows and Inertial Gravity Waves in the WKB Approximation." In Mathematics of Planet Earth, 111–41. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40094-0_5.
Повний текст джерелаDorok, O., W. Grambow, and L. Tobiska. "Aspects of Finite Element Discretizations for Solving the Boussinesq Approximation of the Navier-Stokes Equations." In Numerical methods for the Navier-Stokes equations, 50–61. Wiesbaden: Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-663-14007-8_6.
Повний текст джерелаNaveen, P., and Ch RamReddy. "Soret and Viscous Dissipation Effects on MHD Flow Along an Inclined Channel: Nonlinear Boussinesq Approximation." In Numerical Heat Transfer and Fluid Flow, 267–74. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1903-7_31.
Повний текст джерелаТези доповідей конференцій з теми "Approximation de Boussinesq quadratique"
Burns, John A., and Weiwei Hu. "Approximation methods for boundary control of the Boussinesq equations." In 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6759923.
Повний текст джерелаXiao, Jianjun, John R. Travis, and Wolfgang Breitung. "Non-Boussinesq Integral Model for Horizontal Turbulent Strongly Buoyant Plane Jets." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48169.
Повний текст джерелаWilson, Carlos Perez, and Serge Blancher. "ON THE BOUSSINESQ APPROXIMATION FOR THE POISEUILLE-RAYLEIGH-BENARD PROBLEM." In Proceedings of CHT-08 ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2008. http://dx.doi.org/10.1615/ichmt.2008.cht.1780.
Повний текст джерелаGobbi, Maurício F., Andrew B. Kennedy, and James T. Kirby. "A Comparison of Higher Order Boussinesq and Local Polynomial Approximation Models." In 26th International Conference on Coastal Engineering. Reston, VA: American Society of Civil Engineers, 1999. http://dx.doi.org/10.1061/9780784404119.046.
Повний текст джерелаMehdizadeh, A. M., M. R. Bazargan-Lari, A. Mansoori, and A. Mehdizadeh. "Two-Phase Flow Simulation of a Non-Boussinesq Density Current." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37274.
Повний текст джерелаKamel, John K., and Samuel Paolucci. "Heat Transfer and Fluid Flow in a Furnace Using the Non-Boussinesq Approximation." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56466.
Повний текст джерелаBhuyan, Shikha, and Dipankar Narayan Basu. "Numerical analysis of mixed convection flow using non-Boussinesq approximation lattice Boltzmann method." In Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019). Connecticut: Begellhouse, 2019. http://dx.doi.org/10.1615/ihmtc-2019.970.
Повний текст джерелаPitz, Diogo B., John W. Chew, Olaf Marxen, and Nicholas J. Hills. "Direct Numerical Simulation of Rotating Cavity Flows Using a Spectral Element-Fourier Method." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56486.
Повний текст джерелаBarhaghi, Darioush G., and Lars Davidson. "On the Validity of the Boussinesq Approximation in a Developing Mixed Convection Boundary Layer." In 2007 International Conference on Thermal Issues in Emerging Technologies: Theory and Application. IEEE, 2007. http://dx.doi.org/10.1109/theta.2007.363439.
Повний текст джерелаZhou, Hongqiang, and Michelle H. Teng. "Higher-Order Modeling of Water Waves Generated by Submerged Moving Disturbances." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-80063.
Повний текст джерела