Добірка наукової літератури з теми "Approximate bisimulation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Approximate bisimulation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Approximate bisimulation"

1

Ma, Yanfang. "Quantitative Analysis of Software Approximate Correctness." Mathematical Problems in Engineering 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/173012.

Повний текст джерела
Анотація:
Parameterized bisimulation provides an abstract description of software correctness. In real world situations, however, many software products are approximately correct. To characterize the approximate correctness, we generalize the parameterized bisimulation to numerical version and probabilistic setting. First, we propose the definition of the parameterized bisimulation index that expresses the degree to which a binary relation is parameterized bisimulation. Then,λ-parameterized bisimulation over environmenteand its substitutivity laws are presented. Finally,λ-parameterized probabilistic bisimulation is established to describe complicated software products with probabilistic phenomena.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Deng, Hui, and Jinzhao Wu. "Approximate Bisimulation and Optimization of Software Programs Based on Symbolic-Numeric Computation." Mathematical Problems in Engineering 2013 (2013): 1–19. http://dx.doi.org/10.1155/2013/421926.

Повний текст джерела
Анотація:
To achieve behavior and structure optimization for a type of software program whose data exchange processes are represented by nonlinear polynomial systems, this paper establishes a novel formal description called a nonlinear polynomial transition system to represent the behavior and structure of the software program. Then, the notion of bisimulation for software programs is proposed based on the equivalence relation of corresponding nonlinear polynomial systems in their nonlinear polynomial transition systems. However, the exact equivalence is too strict in application. To enhance the flexibility of the relation among the different software systems, the notion of approximate bisimulation within a controllable error range and the calculation algorithm of approximate bisimulation based on symbolic-numeric computation are given. In this calculation, an approximate relation is represented as a MAX function that is resolved with the full filled method. At the same time, the actual error is calculable. An example on a multithreading program indicates that the approximate bisimulation relation is feasible and effective in behavior and structure optimization.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yang, Chao, and Yongming Li. "Approximate bisimulation relations for fuzzy automata." Soft Computing 22, no. 14 (November 9, 2017): 4535–47. http://dx.doi.org/10.1007/s00500-017-2913-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Bai, Jinzhao Wu, and Zhucheng Xie. "Approximate Bisimulation Equivalence and Variable Refinement." Applied Mathematics & Information Sciences 8, no. 4 (July 1, 2014): 1959–66. http://dx.doi.org/10.12785/amis/080454.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gebler, Daniel, and Simone Tini. "Compositionality of Approximate Bisimulation for Probabilistic Systems." Electronic Proceedings in Theoretical Computer Science 120 (July 26, 2013): 32–46. http://dx.doi.org/10.4204/eptcs.120.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Girard, Antoine, and George J. Pappas. "Approximate bisimulation relations for constrained linear systems." Automatica 43, no. 8 (August 2007): 1307–17. http://dx.doi.org/10.1016/j.automatica.2007.01.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Girard, Antoine. "Low-complexity quantized switching controllers using approximate bisimulation." Nonlinear Analysis: Hybrid Systems 10 (November 2013): 34–44. http://dx.doi.org/10.1016/j.nahs.2013.02.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Chao, Jinzhao Wu, Hongyan Tan, and Jun Fu. "Approximate reachability and bisimulation equivalences for transition systems." Transactions of Tianjin University 22, no. 1 (February 2016): 19–23. http://dx.doi.org/10.1007/s12209-016-2565-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

CHOE, Sunseong, Kunihiko HIRAISHI, and Koichi KOBAYASHI. "Approximate Bisimulation for Hybrid Systems Based on Transition Relations." Transactions of the Society of Instrument and Control Engineers 47, no. 12 (2011): 614–20. http://dx.doi.org/10.9746/sicetr.47.614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Stankovic, Aleksandar M., Savo D. Dukic, and Andrija T. Saric. "Approximate Bisimulation-Based Reduction of Power System Dynamic Models." IEEE Transactions on Power Systems 30, no. 3 (May 2015): 1252–60. http://dx.doi.org/10.1109/tpwrs.2014.2342504.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Approximate bisimulation"

1

Savo, Đukić. "Redukcija dinamičkih modela elektroenergetskog sistema primenom teorije balansnih realizacija i aproksimativnih bisimulacionih relacija i funkcija." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2014. http://dx.doi.org/10.2298/NS20131213DJUKIC.

Повний текст джерела
Анотація:
Disertacijom su opisane postojeće tehnike redukcije dinamičkih modela koje se koriste u teoriji upravljanja i postojeće tehnike za redukciju dinamičkih modela i ekvivalentiranje elektroenergetskih sistema. Predložen je nov pristup na fizici problema zasnovanoj redukciji dinamičkog modela elektroenergetskog sistema korišćenjem teorije balansnih realizacija. Takođe se predlaže korišćenje aproksimativnih bisimulacionih relacija za redukciju dinamičkih modela elektroenergetskog sistema. Postojeće tehnike i predloženi pristupi i algoritmi su primenjeni za redukciju dinamičkih modela dva razmatrana test sistema.
Dissertation describes the existing dynamic model reduction techniques used in control theory and existing techniques that are used for the reduction (equivalencing) of power system dynamic models. A new approach to physics-based reduction of power system dynamic model based on the balanced realization theory is proposed. Use of approximate bisimulation relations for reduction of power system dynamic models is also proposed. Existing techniques and proposed approaches and algorithms are applied to reduce the dynamic models of two considered test systems. 
Стилі APA, Harvard, Vancouver, ISO та ін.
2

PANAROTTO, Federica. "Measures on probabilistic automata." Doctoral thesis, 2017. http://hdl.handle.net/11562/913985.

Повний текст джерела
Анотація:
In questa tesi consideriamo i processi probabilistici non-deterministici modellati attraverso automi. Il nostro obiettivo \`e l'analisi dei problemi di bisimulazioni approssimate. Queste relazioni sono usate, generalmente, per semplificare i modelli di alcuni sistemi e per modellare agenti e attaccanti nei protocolli di sicurezza. In questo ultimo campo ci sono diversi proposte di utilizzo di metriche, le quali sono l'analogo quantitativo della bisimulazione probabilistica e permettono una miglior precisione. Una metrica \`e grossomodo un grado di similarit\`a tra stati. Iniziando dalla formalizzazione di (bi)simulazione approssimata data nel lavoro di Turrini, definiamo due metriche su stati e su distribuzioni. Queste metriche sono basate sul concetto di errore ammesso durante la simulazione di uno stato rispetto un altro stato. Investigheremo la relazione tra queste metriche con una metrica largamente utilizzata, la metrica di Kantorovich, e scopriremo che esse sono equivalenti. Poi riadatteremo per gli automi probabilistici il trasformatore di misure proposto da De Alfaro e al., ottenendo un nuovo funzionale F che \`e una estensione conservativa dei trasformatori proposti in letteratura. Mostreremo che il minimo punto fisso di F coincide con la sua sovra-approssimazione dalle misure derivate dal lavoro di Turrini, attraverso la dimostrazione dell'esistenza di una stretta relazione tra le bisimulazioni approssimate di Turrini con le metriche in letteratura.
In this thesis we consider nondeterministic probabilistic processes modeled by automata. Our purpose is the analysis of the problem of approximated bisimulations. These relations are used, generally, to simplify the models of some systems and to model agents and attackers in security protocols. For the latter field there are several proposals to use metrics, which are the quantitative analogue of probabilistic bisimilarity and allow a greater precision. A metric is about a degree of similarity between states. Starting from the formalisation of approximate (bi)simulation given in Turrini's work, we define two metrics on states and on distributions. These metrics are based on the concept of error allowed during the simulation of a state with respect to another one. We investigate the relation between these metrics with a largely used one, the Kantorovich metric, and discover that they are equivalent. Then we recast for probabilistic automata the transformer of measures proposed by De Alfaro et al., obtaining a new functional F that is a conservative extension of the transformers proposed in the literature. We show that the minimum fix point of F coincides with its over-aproximated by the measures derived from Turrini's work thus showing the existence of a strict relation between the Turrini’s approximate bisimulations with the literature on metrics.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Approximate bisimulation"

1

Topology in Process Calculus: Approximate Correctness and Infinite Evolution of Concurrent Programs. New York, NY: Springer New York, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Approximate bisimulation"

1

Yan, Gaogao, Li Jiao, Yangjia Li, Shuling Wang, and Naijun Zhan. "Approximate Bisimulation and Discretization of Hybrid CSP." In FM 2016: Formal Methods, 702–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48989-6_43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bian, Gaoang, and Alessandro Abate. "On the Relationship Between Bisimulation and Trace Equivalence in an Approximate Probabilistic Context." In Lecture Notes in Computer Science, 321–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54458-7_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Harwood, Will, Faron Moller, and Anton Setzer. "Weak Bisimulation Approximants." In Computer Science Logic, 365–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11874683_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wild, Paul, and Lutz Schröder. "A Quantified Coalgebraic van Benthem Theorem." In Lecture Notes in Computer Science, 551–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71995-1_28.

Повний текст джерела
Анотація:
AbstractThe classical van Benthem theorem characterizes modal logic as the bisimulation-invariant fragment of first-order logic; put differently, modal logic is as expressive as full first-order logic on bisimulation-invariant properties. This result has recently been extended to two flavours of quantitative modal logic, viz. fuzzy modal logic and probabilistic modal logic. In both cases, the quantitative van Benthem theorem states that every formula in the respective quantitative variant of first-order logic that is bisimulation-invariant, in the sense of being nonexpansive w.r.t. behavioural distance, can be approximated by quantitative modal formulae of bounded rank. In the present paper, we unify and generalize these results in three directions: We lift them to full coalgebraic generality, thus covering a wide range of system types including, besides fuzzy and probabilistic transition systems as in the existing examples, e.g. also metric transition systems; and we generalize from real-valued to quantale-valued behavioural distances, e.g. nondeterministic behavioural distances on metric transition systems; and we remove the symmetry assumption on behavioural distances, thus covering also quantitative notions of simulation.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Murthy, Abhishek, Md Ariful Islam, Ezio Bartocci, Elizabeth M. Cherry, Flavio H. Fenton, James Glimm, Scott A. Smolka, and Radu Grosu. "Approximate Bisimulations for Sodium Channel Dynamics." In Computational Methods in Systems Biology, 267–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33636-2_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Abate, Alessandro, Marta Kwiatkowska, Gethin Norman, and David Parker. "Probabilistic Model Checking of Labelled Markov Processes via Finite Approximate Bisimulations." In Lecture Notes in Computer Science, 40–58. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06880-0_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Approximate bisimulation"

1

Pan, Haiyu, Min Zhang, Yixiang Chen, and Hengyang Wu. "Approximate Bisimulation for Metric Doubly Labeled Transition System." In 2011 IEEE 5th International Symposium on Theoretical Aspects of Software Engineering (TASE). IEEE, 2011. http://dx.doi.org/10.1109/tase.2011.22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Julius, A. A., A. Girard, and G. J. Pappas. "Approximate bisimulation for a class of stochastic hybrid systems." In 2006 American Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/acc.2006.1657467.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pola, Giordano, Antoine Girard, and Paulo Tabuada. "Symbolic models for nonlinear control systems using approximate bisimulation." In 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xu, Xiangru, Necmiye Ozay, and Vijay Gupta. "Passivity degradation in discrete control implementations: An approximate bisimulation approach." In 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015. http://dx.doi.org/10.1109/cdc.2015.7403293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xiang, Weiming, and Zhongzhu Shao. "Approximate Bisimulation Relations for Neural Networks and Application to Assured Neural Network Compression." In 2022 American Control Conference (ACC). IEEE, 2022. http://dx.doi.org/10.23919/acc53348.2022.9867845.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dukic, Savo D., Andrija T. Saric, and Aleksandar M. Stankovic. "Approximate bisimulation-based reduction of power system dynamic model with application to transient stability analysis." In 2013 North American Power Symposium (NAPS). IEEE, 2013. http://dx.doi.org/10.1109/naps.2013.6666882.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ma, Guoqi, Linlin Qin, Xinghua Liu, Chun Shi, and Gang Wu. "Approximate bisimulations for constrained discrete-time linear systems (ICCAS 2015)." In 2015 15th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2015. http://dx.doi.org/10.1109/iccas.2015.7364774.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ma, Guoqi, and Xinghua Liu. "Analysis for a class of discrete-time switched systems via approximate bisimulations." In 2016 12th World Congress on Intelligent Control and Automation (WCICA). IEEE, 2016. http://dx.doi.org/10.1109/wcica.2016.7578722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wild, Paul, Lutz Schröder, Dirk Pattinson, and Barbara König. "A Modal Characterization Theorem for a Probabilistic Fuzzy Description Logic." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/263.

Повний текст джерела
Анотація:
The fuzzy modality probably is interpreted over probabilistic type spaces by taking expected truth values. The arising probabilistic fuzzy description logic is invariant under probabilistic bisimilarity; more informatively, it is non-expansive wrt. a suitable notion of behavioural distance. In the present paper, we provide a characterization of the expressive power of this logic based on this observation: We prove a probabilistic analogue of the classical van Benthem theorem, which states that modal logic is precisely the bisimulation-invariant fragment of first-order logic. Specifically, we show that every formula in probabilistic fuzzy first-order logic that is non-expansive wrt. behavioural distance can be approximated by concepts of bounded rank in probabilistic fuzzy description logic.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії