Добірка наукової літератури з теми "Apprentissage parcimonieux"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Apprentissage parcimonieux".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Apprentissage parcimonieux"

1

BOCQUIER, F., N. DEBUS, A. LURETTE, C. MATON, G. VIUDES, C. H. MOULIN, and M. JOUVEN. "Elevage de précision en systèmes d’élevage peu intensifiés." INRAE Productions Animales 27, no. 2 (June 2, 2014): 101–12. http://dx.doi.org/10.20870/productions-animales.2014.27.2.3058.

Повний текст джерела
Анотація:
Les fortes contraintes d’élevage dans les systèmes peu intensifiés (grands troupeaux, larges surfaces, alimentation au pâturage, voire faible productivité par animal) laissent tout de même entrevoir des formes originales d’élevage de précision. Cet élevage de précision peut notamment s’appuyer sur l’identification électronique des animaux qui permet de les reconnaitre et de les localiser. Selon que les lecteurs d’identifiants sont utilisés manuellement, à poste fixe, ou portés par un mâle, il est possible de réaliser, respectivement, des inventaires, des opérations automatisées de tri ou la détection des femelles en chaleurs. C’est au pâturage que la maîtrise du comportement des animaux est la plus délicate car un positionnement judicieux de points d’attraction des animaux (abreuvement, pierres à sel, complémentation) ne suffit pas toujours à maîtriser la répartition de la pression de pâturage pour répondre aux objectifs pastoraux et environnementaux. Dans les situations où la pose de clôtures fixes n’est pas possible ou pas souhaitable et que le gardiennage n’est pas envisageable, les clôtures virtuelles, basées sur un apprentissage comportemental spécifique des animaux, pourraient constituer une aide précieuse à l’utilisation durable des parcours. Dans ces systèmes d’élevage, la précision visée ne se situe pas à l’échelle des individus mais plutôt sur des conduites ajustées à des lots virtuels d’animaux homogènes, qui sont séparés et regroupés grâce à des dispositifs de tri efficaces. L’utilisation de systèmes automatisés de suivi du troupeau où chaque animal est identifié génère une grande quantité de données. Quels que soient les capteurs utilisés, les données recueillies doivent être stockées dans un système d’information et traitées avec des méthodes d’analyse adaptées (algorithmes, statistiques…) pour être ensuite transformées en indicateurs d’aide à la décision ou en action exécutée par des automates (porte de tri, pesées, distributions d’aliments). En alternative à des suivis individuels, une utilisation parcimonieuse des capteurs peut être envisagée pour délivrer des alertes (intrusion, attaque de prédateur, sortie d’une zone géographique définie) ; la quantité de données produites est alors minimisée. Un travail de recherche important reste à mener pour proposer des méthodes d’analyse des données et des règles de décisions pertinentes, basées sur une modélisation du comportement animal. Dans les systèmes d’élevage peu intensifiés, la place de l’éleveur est essentielle car au sein d’un grand troupeau et face à de larges surfaces de parcours les dispositifs électroniques sont à envisager comme des aides spécifiques, à intégrer dans une stratégie de conduite plus large. Notamment, il s’agit pour l’éleveur de choisir quels animaux équiper et où positionner des capteurs, relais ou clôtures virtuelles, et à choisir de le faire aux périodes critiques. Actuellement l’offre matérielle et logicielle est freinée par le manque de souplesse des solutions proposées.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Apprentissage parcimonieux"

1

Avalos, Marta. "Modèles additifs parcimonieux." Phd thesis, Université de Technologie de Compiègne, 2004. http://tel.archives-ouvertes.fr/tel-00008802.

Повний текст джерела
Анотація:
De nombreux algorithmes d'estimation fonctionnelle existent pour l'apprentissage statistique supervisé. Cependant, ils ont pour la plupart été développés dans le but de fournir des estimateurs précis, sans considérer l'interprétabilité de la solution. Les modèles additifs permettent d'expliquer les prédictions simplement, en ne faisant intervenir qu'une variable explicative à la fois, mais ils sont difficiles à mettre en ouvre. Cette thèse est consacrée au développement d'un algorithme d'estimation des modèles additifs. D'une part, leur utilisation y est simplifiée, car le réglage de la complexité est en grande partie intégré dans la phase d'estimation des paramètres. D'autre part, l'interprétabilité est favorisée par une tendance à éliminer automatiquement les variables les moins pertinentes. Des stratégies d'accélération des calculs sont également proposées. Une approximation du nombre effectif de paramètres permet l'utilisation de critères analytiques de sélection de modèle. Sa validité est testée par des simulations et sur des données réelles.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Amate, Laure. "Apprentissage de modèles de formes parcimonieux basés sur des représentations splines." Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00456612.

Повний текст джерела
Анотація:
Il est souvent important de trouver une représentation compacte des propriétés morphologiques d'un ensemble d'objets. C'est le cas lors du déplacement de robots autonomes dans des environnements naturels, qui doivent utiliser les objets dispersés dans la région de travail pour naviguer. Cette thèse est une contribution à la définition de formalismes et méthodes pour l'identification de tels modèles. Les formes que nous voulons caractériser sont des courbes fermées correspondant aux contours des objets détectés dans l'environnement, et notre caractérisation des leurs propriétés sera probabiliste. Nous formalisons la notion de forme en tant que classes d'équivalence par rapport à des groupes d'opérateurs géométriques basiques, introduisant deux approches : discrète et continue. La théorie discrète repose sur l'existence d'un ensemble de points remarquables et est sensible à leur sélection. L'approche continue, qui représente une forme par des objets de dimension infinie, correspond mieux à la notion intuitive de forme mais n'est pas parcimonieuse. Nous combinons les avantages des deux approches en représentant les formes à l'aide de splines : fonctions continues, flexibles, définies par un ensemble de noeuds et de points de contrôle. Nous étudions d'abord l'ajustement d'un modèle spline à une courbe, comme la recherche d'un compromis entre la parcimonie de la représentation et sa fidélité aux données, approche classique dans le cadre de familles imbriquées de dimension croissante. Nous passons en revue les méthodes utilisées dans la littérature, et nous retenons une approche en deux étapes, qui satisfait nos pré-requis : détermination de la complexité du modèle (par une chaîne de Markov à sauts réversibles), suivie de l'estimation des paramètres (par un algorithme de recuit simulé). Nous discutons finalement le lien entre l'espace de formes discrètes et les représentations splines lorsque l'on prend comme points remarquables les points de contrôle. Nous étudions ensuite le problème de modélisation d'un ensemble de courbes, comme l'identification de la distribution des paramètres de leur représentation par des splines où les points de contrôles et les noeuds sont des variables latentes du modèle. Nous estimons ces paramètres par un critère de vraisemblance marginale. Afin de pouvoir traiter séquentiellement un grand nombre de données nous adaptons une variante de l'algorithme EM proposée récemment. Le besoin de recourir à des approximations numériques (méthodes de Monte-Carlo) pour certains calculs requis par la méthode EM, nous conduit à une nouvelle variante de cet algorithme, proposée ici pour la première fois.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Amate, Laure. "Apprentissage de modèles de formes parcimonieux basés sur les représentations splines." Nice, 2009. http://www.theses.fr/2009NICE4117.

Повний текст джерела
Анотація:
Il est souvent important de trouver une représentation compacte des propriétés morphologiques d'un ensemble d'objets. C'est le cas lors du déplacement de robots autonomes dans des environnements naturels, qui doivent utiliser les objets dispersés dans la région de travail pour naviguer. Cette thèse est une contribution à la définition de formalismes et méthodes pour l'identification de tels modèles. Les formes que nous voulons caractériser sont des courbes fermées correspondant aux contours des objets détectés dans l'environnement, et notre caractérisation des leurs propriétés sera probabiliste. Nous formalisons la notion de forme en tant que classes d'équivalence par rapport à des groupes d'opérateurs géométriques basiques, introduisant deux approches : discrète et continue. La théorie discrète repose sur l'existence d'un ensemble de points remarquables et est sensible à leur sélection. L'approche continue, qui représente une forme par des objets de dimension infinie, correspond mieux à la notion intuitive de forme mais n'est pas parcimonieuse. Nous combinons les avantages des deux approches en représentant les formes à l'aide de splines : fonctions continues, flexibles, définies par un ensemble de noeuds et de points de contrôle. Nous étudions d'abord l'ajustement d'un modèle spline à une courbe, comme la recherche d'un compromis entre la parcimonie de la représentation et sa _délité aux données, approche classique dans le cadre de familles imbriquées de dimension croissante. Nous passons en revue les méthodes utilisées dans la littérature, et nous retenons une approche en deux étapes, qui satisfait nos pré-requis : détermination de la complexité du modèle (par une chaîne de Markov à sauts réversibles), suivie de l'estimation des paramètres (par un algorithme de recuit simulé). Nous discutons finalement le lien entre l'espace de formes discrètes et les représentations splines lorsque l'on prend comme points remarquables les points de contrôle. Nous étudions ensuite le problème de modélisation d'un ensemble de courbes, comme l'identification de la distribution des paramètres de leur représentation par des splines où les points de contrôles et les noeuds sont des variables latentes du modèle. Nous estimons ces paramètres par un critère de vraisemblance marginale. Afin de pouvoir traiter séquentiellement un grand nombre de données nous adaptons une variante de l'algorithme EM proposée récemment. Le besoin de recourir à des approximations numériques (méthodes de Monte-Carlo) pour certains calculs requis par la méthode EM, nous conduit à une nouvelle variante de cet algorithme, proposée ici pour la première fois
In many contexts it is important to be able to find compact representations of the collective morphological properties of a set of objects. This is the case of autonomous robotic platforms operating in natural environments that must use the perceptual properties of the objects present in their workspace to execute their mission. This thesis is a contribution to the definition of formalisms and methods for automatic identification of such models. The shapes we want to characterize are closed curves corresponding to contours of objects detected in the scene. We begin with the formal definition of the notion of shape as classes of equivalence with respect to groups of basic geometric operators, introducing two distinct approaches that have been used in the literature: discrete and continuous. The discrete theory, admitting the existence of a finite number of recognizable landmarks, provides in an obvious manner a compact representation but is sensible to their selection. The continuous theory of shapes provides a more fundamental approach, but leads to shape spaces of infinite dimension, lacking the parsimony of the discrete representation. We thus combine in our work the advantages of both approaches representing shapes of curves with splines: piece-wise continuous polynomials defined by sets of knots and control points. We first study the problem of fitting free-knots splines of varying complexity to a single observed curve. The trade-o_ between the parsimony of the representation and its fidelity to the observations is a well known characteristic of model identification using nested families of increasing dimension. After presenting an overview of methods previously proposed in the literature, we single out a two-step approach which is formally sound and matches our specific requirements. It splits the identification, simulating a reversible jump Markov chain to select the complexity of the model followed by a simulated annealing algorithm to estimate its parameters. We investigate the link between Kendall's shape space and spline representations when we take the spline control points as landmarks. We consider now the more complex problem of modeling a set of objects with similar morphological characteristics. We equate the problem to finding the statistical distribution of the parameters of the spline representation, modeling the knots and control points as unobserved variables. The identified distribution is the maximizer of a marginal likelihood criterion, and we propose a new Expectation-Maximization algorithm to optimize it. Because we may want to treat a large number of curves observed sequentially, we adapt an iterative (on-line) version of the EM algorithm recently proposed in the literature. For the choice of statistical distributions that we consider, both the expectation and the maximization steps must resort to numerical approximations, leading to a stochastic/on-line variant of the EM algorithm that, as far as we know, is implemented here for the first time
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Huet, Romain. "Codage neural parcimonieux pour un système de vision." Thesis, Lorient, 2017. http://www.theses.fr/2017LORIS439/document.

Повний текст джерела
Анотація:
Les réseaux de neurones ont connu un vif regain d’intérêt avec le paradigme de l'apprentissageprofond ou deep learning. Alors que les réseaux dits optimisés, de par l'optimisation des paramètres nécessaires pour réaliser un apprentissage, nécessitent de fortes ressources de calcul, nous nous focalisons ici sur des réseaux de neurones dont l'architecture consiste en une mémoire au contenu adressable, appelées mémoires associatives neuronales. Le défi consiste à permettre la réalisation d'opérations traditionnellement obtenues par des calculs en s'appuyant exclusivement sur des mémoires, afin de limiter le besoin en ressources de calcul. Dans cette thèse, nous étudions une mémoire associative à base de clique, dont le codage neuronal parcimonieux optimise la diversité des données codées dans le réseau. Cette grande diversité permet au réseau à clique d'être plus performant que les autres mémoires associatives dans la récupération des messages stockés en mémoire. Les mémoires associatives sont connues pour leur incapacité à identifier sans ambiguïté les messages qu'elles ont préalablement appris. En effet, en fonction de l'information présente dans le réseau et de son codage, une mémoire peut échouer à retrouver le résultat recherché. Nous nous intéressons à cette problématique et proposons plusieurs contributions afin de réduire les ambiguïtés dans le réseau. Ces réseaux à clique sont en outre incapables de récupérer une information au sein de leurs mémoires si le message à retrouver est inconnu. Nous proposons une réponse à ce problème en introduisant une nouvelle mémoire associative à base de clique qui conserve la capacité correctrice du modèle initial tout en étant capable de hiérarchiser les informations. La hiérarchie s'appuie sur une transformation surjective bidirectionnelle permettant de généraliser une entrée inconnue à l'aide d'une approximation d'informations apprises. La validation expérimentale des mémoires associatives est le plus souvent réalisée sur des données artificielles de faibles dimensions. Dans le contexte de la vision par ordinateur, nous présentons ici les résultats obtenus avec des jeux de données plus réalistes etreprésentatifs de la littérature, tels que MNIST, Yale ou CIFAR
The neural networks have gained a renewed interest through the deep learning paradigm. Whilethe so called optimised neural nets, by optimising the parameters necessary for learning, require massive computational resources, we focus here on neural nets designed as addressable content memories, or neural associative memories. The challenge consists in realising operations, traditionally obtained through computation, exclusively with neural memory in order to limit the need in computational resources. In this thesis, we study an associative memory based on cliques, whose sparse neural coding optimises the data diversity encoded in the network. This large diversity allows the clique based network to be more efficient in messages retrieval from its memory than other neural associative memories. The associative memories are known for their incapacity to identify without ambiguities the messages stored in a saturated memory. Indeed, depending of the information present in the network and its encoding, a memory can fail to retrieve a desired result. We are interested in tackle this issue and propose several contributions in order to reduce the ambiguities in the cliques based neural network. Besides, these cliques based nets are unable to retrieve an information within their memories if the message is unknown. We propose a solution to this problem through a new associative memory based on cliques which preserves the initial network's corrective ability while being able to hierarchise the information. The hierarchy relies on a surjective and bidirectional transition to generalise an unknown input with an approximation of learnt information. The associative memories' experimental validation is usually based on low dimension artificial dataset. In the computer vision context, we report here the results obtained with real datasets used in the state-of-the-art, such as MNIST, Yale or CIFAR
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Belilovsky, Eugene. "Apprentissage de graphes structuré et parcimonieux dans des données de haute dimension avec applications à l’imagerie cérébrale." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLC027.

Повний текст джерела
Анотація:
Cette thèse présente de nouvelles méthodes d’apprentissage structuré et parcimonieux sur les graphes, ce qui permet de résoudre une large variété de problèmes d’imagerie cérébrale, ainsi que d’autres problèmes en haute dimension avec peu d’échantillon. La première partie de cette thèse propose des relaxation convexe de pénalité discrète et combinatoriale impliquant de la parcimonie et bounded total variation d’un graphe, ainsi que la bounded `2. Ceux-ci sont dévelopé dansle but d’apprendre un modèle linéaire interprétable et on démontre son efficacacité sur des données d’imageries cérébrales ainsi que sur les problèmes de reconstructions parcimonieux.Les sections successives de cette thèse traite de la découverte de structure sur des modèles graphiques “undirected” construit à partir de peu de données. En particulier, on se concentre sur des hypothèses de parcimonie et autres hypothèses de structures dans les modèles graphiques gaussiens. Deux contributions s’en dégagent. On construit une approche pour identifier les différentes entre des modèles graphiques gaussiens (GGMs) qui partagent la même structure sous-jacente. On dérive la distribution de différences de paramètres sous une pénalité jointe quand la différence des paramètres est parcimonieuse. On montre ensuite comment cette approche peut être utilisée pour obtenir des intervalles de confiances sur les différences prises par le GGM sur les arêtes. De là, on introduit un nouvel algorithme d’apprentissage lié au problème de découverte de structure sur les modèles graphiques non dirigées des échantillons observés. On démontre que les réseaux de neurones peuvent être utilisés pour apprendre des estimateurs efficacaces de ce problèmes. On montre empiriquement que ces méthodes sont une alternatives flexible et performantes par rapport aux techniques existantes
This dissertation presents novel structured sparse learning methods on graphs that address commonly found problems in the analysis of neuroimaging data as well as other high dimensional data with few samples. The first part of the thesis proposes convex relaxations of discrete and combinatorial penalties involving sparsity and bounded total variation on a graph as well as bounded `2 norm. These are developed with the aim of learning an interpretable predictive linear model and we demonstrate their effectiveness on neuroimaging data as well as a sparse image recovery problem.The subsequent parts of the thesis considers structure discovery of undirected graphical models from few observational data. In particular we focus on invoking sparsity and other structured assumptions in Gaussian Graphical Models (GGMs). To this end we make two contributions. We show an approach to identify differences in Gaussian Graphical Models (GGMs) known to have similar structure. We derive the distribution of parameter differences under a joint penalty when parameters are known to be sparse in the difference. We then show how this approach can be used to obtain confidence intervals on edge differences in GGMs. We then introduce a novel learning based approach to the problem structure discovery of undirected graphical models from observational data. We demonstrate how neural networks can be used to learn effective estimators for this problem. This is empirically shown to be flexible and efficient alternatives to existing techniques
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mattei, Pierre-Alexandre. "Sélection de modèles parcimonieux pour l’apprentissage statistique en grande dimension." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCB051/document.

Повний текст джерела
Анотація:
Le déferlement numérique qui caractérise l’ère scientifique moderne a entraîné l’apparition de nouveaux types de données partageant une démesure commune : l’acquisition simultanée et rapide d’un très grand nombre de quantités observables. Qu’elles proviennent de puces ADN, de spectromètres de masse ou d’imagerie par résonance nucléaire, ces bases de données, qualifiées de données de grande dimension, sont désormais omniprésentes, tant dans le monde scientifique que technologique. Le traitement de ces données de grande dimension nécessite un renouvellement profond de l’arsenal statistique traditionnel, qui se trouve inadapté à ce nouveau cadre, notamment en raison du très grand nombre de variables impliquées. En effet, confrontée aux cas impliquant un plus grand nombre de variables que d’observations, une grande partie des techniques statistiques classiques est incapable de donner des résultats satisfaisants. Dans un premier temps, nous introduisons les problèmes statistiques inhérents aux modelés de données de grande dimension. Plusieurs solutions classiques sont détaillées et nous motivons le choix de l’approche empruntée au cours de cette thèse : le paradigme bayésien de sélection de modèles. Ce dernier fait ensuite l’objet d’une revue de littérature détaillée, en insistant sur plusieurs développements récents. Viennent ensuite trois chapitres de contributions nouvelles à la sélection de modèles en grande dimension. En premier lieu, nous présentons un nouvel algorithme pour la régression linéaire bayésienne parcimonieuse en grande dimension, dont les performances sont très bonnes, tant sur données réelles que simulées. Une nouvelle base de données de régression linéaire est également introduite : il s’agit de prédire la fréquentation du musée d’Orsay à l’aide de données vélibs. Ensuite, nous nous penchons sur le problème de la sélection de modelés pour l’analyse en composantes principales (ACP). En nous basant sur un résultat théorique nouveau, nous effectuons les premiers calculs exacts de vraisemblance marginale pour ce modelé. Cela nous permet de proposer deux nouveaux algorithmes pour l’ACP parcimonieuse, un premier, appelé GSPPCA, permettant d’effectuer de la sélection de variables, et un second, appelé NGPPCA, permettant d’estimer la dimension intrinsèque de données de grande dimension. Les performances empiriques de ces deux techniques sont extrêmement compétitives. Dans le cadre de données d’expression ADN notamment, l’approche de sélection de variables proposée permet de déceler sans supervision des ensembles de gènes particulièrement pertinents
The numerical surge that characterizes the modern scientific era led to the rise of new kinds of data united in one common immoderation: the simultaneous acquisition of a large number of measurable quantities. Whether coming from DNA microarrays, mass spectrometers, or nuclear magnetic resonance, these data, usually called high-dimensional, are now ubiquitous in scientific and technological worlds. Processing these data calls for an important renewal of the traditional statistical toolset, unfit for such frameworks that involve a large number of variables. Indeed, when the number of variables exceeds the number of observations, most traditional statistics becomes inefficient. First, we give a brief overview of the statistical issues that arise with high-dimensional data. Several popular solutions are presented, and we present some arguments in favor of the method utilized and advocated in this thesis: Bayesian model uncertainty. This chosen framework is the subject of a detailed review that insists on several recent developments. After these surveys come three original contributions to high-dimensional model selection. A new algorithm for high-dimensional sparse regression called SpinyReg is presented. It compares favorably to state-of-the-art methods on both real and synthetic data sets. A new data set for high-dimensional regression is also described: it involves predicting the number of visitors in the Orsay museum in Paris using bike-sharing data. We focus next on model selection for high-dimensional principal component analysis (PCA). Using a new theoretical result, we derive the first closed-form expression of the marginal likelihood of a PCA model. This allows us to propose two algorithms for model selection in PCA. A first one called globally sparse probabilistic PCA (GSPPCA) that allows to perform scalable variable selection, and a second one called normal-gamma probabilistic PCA (NGPPCA) that estimates the intrinsic dimensionality of a high-dimensional data set. Both methods are competitive with other popular approaches. In particular, using unlabeled DNA microarray data, GSPPCA is able to select genes that are more biologically relevant than several popular approaches
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hérault, Romain. "Vision et apprentissage statistique pour la reconnaissance d'items comportementaux." Compiègne, 2007. http://www.theses.fr/2007COMP1715.

Повний текст джерела
Анотація:
Ce travail consiste en la détection d'items comportementaux permettant la prévention de l'hypovigilance du conducteur au volant. Nous disposons de vidéos prises depuis l'habitacle d'une voiture, chaque image de ces vidéos a été caractérisée par six items comportementaux; notre travail vise à retrouver ces items comportementaux, image par image. L'étude a été décomposée en deux phases : 1) Le suivi du visage et des gestes faciaux sur les vidéos. Nous avons appliqué une méthode de suivi d'objets déformables en vision 3D auquel nous avons inclus un modèle d'apparence basé sur un modèle de mélange. 2) La détection d'items comportementaux à partir des données extraites de ce suivi. Nous avons proposé l'utilisation d'un nouveau critère sensible aux coûts de mauvaise classification afin de résoudre le problème des déséquilibres lié aux items comportementaux. Ce critère est appliqué à la détection des items comportementaux à travers l'utilisation de MLPs et de IOHMMs
This work consists in the detection of behavioral items in order to prevent driver drowsiness. Videos were shot from within a car, and each picture of the video was characterized by six behavioral items. Our work consists in the retrieval of these items, picture by picture. The study was decomposed into two phases: 1) A Head and facial action tracking. A framework to 3D head pose and facial action tracking with an adaptive appearance model based on a mixture model is proposed to deal with face occlusion ; 2) A recognition of the behavioral items based on data retrieved from the tracking. We propose a new criterion leading to an adaptation of maximum likelihood estimation. The model outputs proper conditional probabilities into a user-defined interval. This criterion is applied to MLPs and IOHMMs for the recognition of the behavioral items
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Meghnoudj, Houssem. "Génération de caractéristiques à partir de séries temporelles physiologiques basée sur le contrôle optimal parcimonieux : application au diagnostic de maladies et de troubles humains." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALT003.

Повний текст джерела
Анотація:
Dans cette thèse, une nouvelle méthodologie a été proposée pour la génération de caractéristiques à partir de signaux physiologiques afin de contribuer au diagnostic d'une variété de maladies cérébrales et cardiaques. Basée sur le contrôle optimal parcimonieux, la génération de caractéristiques dynamiques parcimonieuses (SDF) s'inspire du fonctionnement du cerveau. Le concept fondamental de la méthode consiste à décomposer le signal de manière parcimonieuse en modes dynamiques qui peuvent être activés et/ou désactivés au moment approprié avec l'amplitude adéquate. Cette décomposition permet de changer le point de vue sur les données en donnant accès à des caractéristiques plus informatives qui sont plus fidèles au concept de production des signaux cérébraux. Néanmoins, la méthode reste générique et polyvalente puisqu'elle peut être appliquée à un large éventail de signaux. Les performances de la méthode ont été évaluées sur trois problématiques en utilisant des données réelles accessibles publiquement, en abordant des scénarios de diagnostic liés à : (1) la maladie de Parkinson, (2) la schizophrénie et (3) diverses maladies cardiaques. Pour les trois applications, les résultats sont très concluants, puisqu'ils sont comparables aux méthodes de l'état de l'art tout en n'utilisant qu'un petit nombre de caractéristiques (une ou deux pour les applications sur le cerveau) et un simple classifieur linéaire suggérant la robustesse et le bien-fondé des résultats. Il convient de souligner qu'une attention particulière a été accordée à l'obtention de résultats cohérents et significatifs avec une explicabilité sous-jacente
In this thesis, a novel methodology for features generation from physiological signals (EEG, ECG) has been proposed that is used for the diagnosis of a variety of brain and heart diseases. Based on sparse optimal control, the generation of Sparse Dynamical Features (SDFs) is inspired by the functioning of the brain. The method's fundamental concept revolves around sparsely decomposing the signal into dynamical modes that can be switched on and off at the appropriate time instants with the appropriate amplitudes. This decomposition provides a new point of view on the data which gives access to informative features that are faithful to the brain functioning. Nevertheless, the method remains generic and versatile as it can be applied to a wide range of signals. The methodology's performance was evaluated on three use cases using openly accessible real-world data: (1) Parkinson's Disease, (2) Schizophrenia, and (3) various cardiac diseases. For all three applications, the results are highly conclusive, achieving results that are comparable to the state-of-the-art methods while using only few features (one or two for brain applications) and a simple linear classifier supporting the significance and reliability of the findings. It's worth highlighting that special attention has been given to achieving significant and meaningful results with an underlying explainability
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Laporte, Léa. "La sélection de variables en apprentissage d'ordonnancement pour la recherche d'information : vers une approche contextuelle." Toulouse 3, 2013. http://thesesups.ups-tlse.fr/2170/.

Повний текст джерела
Анотація:
L'apprentissage d'ordonnancement, ou learning-to-rank, consiste à optimiser automatiquement une fonction d'ordonnancement apprise à l'aide d'un algorithme à partir de données d'apprentissage. Les approches existantes présentent deux limites. D'une part, le nombre de caractéristiques utilisées est généralement élevé, de quelques centaines à plusieurs milliers, ce qui pose des problèmes de qualité et de volumétrie. D'autre part, une seule fonction est apprise pour l'ensemble des requêtes. Ainsi, l'apprentissage d'ordonnancement ne prend pas en compte le type de besoin ou le contexte de la recherche. Nos travaux portent sur l'utilisation de la sélection de variables en apprentissage d'ordonnancement pour résoudre à la fois les problèmes de la volumétrie et de l'adaptation au contexte. Nous proposons cinq algorithmes de sélection de variables basés sur les Séparateurs à Vaste Marge (SVM) parcimonieux. Trois sont des approches de repondération de la norme L2, une résout un problème d'optimisation en norme L1 et la dernière considère des régularisations non convexes. Nos approches donnent de meilleurs résultats que l'état de l'art sur les jeux de données de référence. Elles sont plus parcimonieuses et plus rapides tout en permettant d'obtenir des performances identiques en matière de RI. Nous évaluons également nos approches sur un jeu de données issu du moteur commercial Nomao. Les résultats confirment la performance de nos algorithmes. Nous proposons dans ce cadre une méthodologie d'évaluation de la pertinence à partir des clics des utilisateurs pour le cas non étudié dans la littérature des documents multi-cliquables (cartes). Enfin, nous proposons un système d'ordonnancement adaptatif dépendant des requêtes basé sur la sélection de variables. Ce système apprend des fonctions d'ordonnancement spécifiques à un contexte donné, en considérant des groupes de requêtes et les caractéristiques obtenues par sélection pour chacun d'eux
Learning-to-rank aims at automatically optimizing a ranking function learned on training data by a machine learning algorithm. Existing approaches have two major drawbacks. Firstly, the ranking functions can use several thousands of features, which is an issue since algorithms have to deal with large scale data. This can also have a negative impact on the ranking quality. Secondly, algorithms learn an unique fonction for all queries. Then, nor the kind of user need neither the context of the query are taken into account in the ranking process. Our works focus on solving the large-scale issue and the context-aware issue by using feature selection methods dedicated to learning-to-rank. We propose five feature selection algorithms based on sparse Support Vector Machines (SVM). Three proceed to feature selection by reweighting the L2-norm, one solves a L1-regularized problem whereas the last algorithm consider nonconvex regularizations. Our methods are faster and sparser than state-of-the-art algorithms on benchmark datasets, while providing similar performances in terms of RI measures. We also evaluate our approches on a commercial dataset. Experimentations confirm the previous results. We propose in this context a relevance model based on users clicks, in the special case of multi-clickable documents. Finally, we propose an adaptative and query-dependent ranking system based on feature selection. This system considers several clusters of queries, each group defines a context. For each cluster, the system selects a group of features to learn a context-aware ranking function
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vezard, Laurent. "Réduction de dimension en apprentissage supervisé : applications à l’étude de l’activité cérébrale." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR15005/document.

Повний текст джерела
Анотація:
L'objectif de ce travail est de développer une méthode capable de déterminer automatiquement l'état de vigilance chez l'humain. Les applications envisageables sont multiples. Une telle méthode permettrait par exemple de détecter automatiquement toute modification de l'état de vigilance chez des personnes qui doivent rester dans un état de vigilance élevée (par exemple, les pilotes ou les personnels médicaux).Dans ce travail, les signaux électroencéphalographiques (EEG) de 58 sujets dans deux états de vigilance distincts (état de vigilance haut et bas) ont été recueillis à l'aide d'un casque à 58 électrodes posant ainsi un problème de classification binaire. Afin d'envisager une utilisation de ces travaux sur une application du monde réel, il est nécessaire de construire une méthode de prédiction qui ne nécessite qu'un faible nombre de capteurs (électrodes) afin de limiter le temps de pose du casque à électrodes ainsi que son coût. Au cours de ces travaux de thèse, plusieurs approches ont été développées. Une première approche propose d'utiliser un pré-traitement des signaux EEG basé sur l'utilisation d'une décomposition en ondelettes discrète des signaux EEG afin d'extraire les contributions de chaque fréquence dans le signal. Une régression linéaire est alors effectuée sur les contributions de certaines de ces fréquences et la pente de cette régression est conservée. Un algorithme génétique est utilisé afin d'optimiser le choix des fréquences sur lesquelles la régression est réalisée. De plus, cet algorithme génétique permet la sélection d'une unique électrode.Une seconde approche est basée sur l'utilisation du Common Spatial Pattern (CSP). Cette méthode permet de définir des combinaisons linéaires des variables initiales afin d'obtenir des signaux synthétiques utiles pour la tâche de classification. Dans ce travail, un algorithme génétique ainsi que des méthodes de recherche séquentielle ont été proposés afin de sélectionner un sous groupes d'électrodes à conserver lors du calcul du CSP.Enfin, un algorithme de CSP parcimonieux basé sur l'utilisation des travaux existant sur l'analyse en composantes principales parcimonieuse a été développé.Les résultats de chacune des approches sont détaillés et comparés. Ces travaux ont aboutit sur l'obtention d'un modèle permettant de prédire de manière rapide et fiable l'état de vigilance d'un nouvel individu
The aim of this work is to develop a method able to automatically determine the alertness state of humans. Such a task is relevant to diverse domains, where a person is expected or required to be in a particular state. For instance, pilots, security personnel or medical personnel are expected to be in a highly alert state, and this method could help to confirm this or detect possible problems. In this work, electroencephalographic data (EEG) of 58 subjects in two distinct vigilance states (state of high and low alertness) were collected via a cap with $58$ electrodes. Thus, a binary classification problem is considered. In order to use of this work on a real-world applications, it is necessary to build a prediction method that requires only a small number of sensors (electrodes) in order to minimize the time needed by the cap installation and the cap cost. During this thesis, several approaches have been developed. A first approach involves use of a pre-processing method for EEG signals based on the use of a discrete wavelet decomposition in order to extract the energy of each frequency in the signal. Then, a linear regression is performed on the energies of some of these frequencies and the slope of this regression is retained. A genetic algorithm (GA) is used to optimize the selection of frequencies on which the regression is performed. Moreover, the GA is used to select a single electrode .A second approach is based on the use of the Common Spatial Pattern method (CSP). This method allows to define linear combinations of the original variables to obtain useful synthetic signals for the task classification. In this work, a GA and a sequential search method have been proposed to select a subset of electrode which are keep in the CSP calculation.Finally, a sparse CSP algorithm, based on the use of existing work in the sparse principal component analysis, was developed.The results of the different approaches are detailed and compared. This work allows us to obtaining a reliable model to obtain fast prediction of the alertness of a new individual
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії