Добірка наукової літератури з теми "Applied Ethics (incl. Bioethics and Environmental Ethics)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Applied Ethics (incl. Bioethics and Environmental Ethics)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Applied Ethics (incl. Bioethics and Environmental Ethics)":

1

Almeida, José Luiz Telles de, and Fermin Roland Schramm. "Paradigm shift, metamorphosis of medical ethics, and the rise of bioethics." Cadernos de Saúde Pública 15, suppl 1 (1999): S15—S25. http://dx.doi.org/10.1590/s0102-311x1999000500003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Both the increasing incorporation of medical technology and new social demands (including those for health care) beginning in the 1960s have brought about significant changes in medical practice. This situation has in turn sparked a growth in the philosophical debate over problems pertaining to ethical practice. These issues no longer find answers in the Hippocratic ethical model. The authors believe that the crisis in Hippocratic ethics could be described as a period of paradigm shift in which a new set of values appears to be emerging. Beginning with the bioethics movement, the authors expound on the different ethical theories applied to medical practice and conclude that principlism is the most appropriate approach for solving the new moral dilemma imposed on clinical practice.
2

Mijač, Sandra, Goran Slivšek, and Anica Džajić. "Deep Ecology." Southeastern European medical journal 6, no. 1 (April 27, 2022): 129–39. http://dx.doi.org/10.26332/seemedj.v6i1.219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Deep ecology emphasizes the importance of the ecological problems as a practical issue, and its importance is in changing the human understanding of everything, including even man’s understanding of who he is.The aim of this paper was to present deep ecology, what it represents and how it has become a significant ecological movement of the 20th century and to indicate the connection between bioethics as new environmental ethics and deep ecology, as well as other environmental movements which, in the contextualization of bioethics, emphasize changing the outlook on life, giving a better knowledge of it, and allowing questioning of social actions and looking at events from different aspects. The idea is to emphasize that man is not only an active, but also a responsible being which is capable of making a paradigm shift in responsibility, and therefore, taking responsibility for all life on Earth.Content analysis and comparative method were introduced and applied for the requirements of making this review.Based on the obtained results, the review points to the need to create new ethics which could introduce a general value system for all living and non-living things - a paradigm shift involving man as part of nature and not opposed to it, and to successfully address these complex issues. It will take a profound shift in human consciousness to fully comprehend that it is not only plants and animals that need a safe habitat - because they can live without humans, but humans cannot live without them.
3

Hallamaa, Jaana, and Taina Kalliokoski. "AI Ethics as Applied Ethics." Frontiers in Computer Science 4 (April 7, 2022). http://dx.doi.org/10.3389/fcomp.2022.776837.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The need to design and develop artificial intelligence (AI) in a sustainable manner has motivated researchers, institutions, and organizations to formulate suggestions for AI ethics. Although these suggestions cover various topics and address diverse audiences, they share the presupposition that AI ethics provides a generalizable basis for designers that is applicable to their work. We propose that one of the reasons the influence of current ethical codes has remained modest, may be the conception of the applied ethics that they represent. We discuss bioethics as a point of reference for weighing the metaethical and methodological approaches adopted in AI ethics, and propose that AI ethics could be made more methodologically solid and substantively more influential if the resources were enriched by adopting tools from fields of study created to improve the quality of human action and safeguard its desired outcomes. The approaches we consider to be useful for this purpose are the systems theory, safety research, impact assessment approach, and theory of change.
4

Boudreau LeBlanc, Antoine, Bryn Williams-Jones, and Cécile Aenishaenslin. "Bio-Ethics and One Health: A Case Study Approach to Building Reflexive Governance." Frontiers in Public Health 10 (March 18, 2022). http://dx.doi.org/10.3389/fpubh.2022.648593.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Surveillance programs supporting the management of One Health issues such as antibiotic resistance are complex systems in themselves. Designing ethical surveillance systems is thus a complex task (retroactive and iterative), yet one that is also complicated to implement and evaluate (e.g., sharing, collaboration, and governance). The governance of health surveillance requires attention to ethical concerns about data and knowledge (e.g., performance, trust, accountability, and transparency) and empowerment ethics, also referred to as a form of responsible self-governance. Ethics in reflexive governance operates as a systematic critical-thinking procedure that aims to define its value: What are the “right” criteria to justify how to govern “good” actions for a “better” future? The objective is to lay the foundations for a methodological framework in empirical bioethics, the rudiments of which have been applied to a case study to building reflexive governance in One Health. This ongoing critical thinking process involves “mapping, framing, and shaping” the dynamics of interests and perspectives that could jeopardize a “better” future. This paper proposes to hybridize methods to combine insights from collective deliberation and expert evaluation through a reflexive governance functioning as a community-based action-ethics methodology. The intention is to empower individuals and associations in a dialogue with society, which operation is carried out using a case study approach on data sharing systems. We based our reasoning on a feasibility study conducted in Québec, Canada (2018–2021), envisioning an antibiotic use surveillance program in animal health for 2023. Using the adaptive cycle and governance techniques and perspectives, we synthesize an alternative governance model rooted in the value of empowerment. The framework, depicted as a new “research and design (R&D)” practice, is linking operation and innovation by bridging the gap between Reflexive, Evaluative, and Deliberative reasonings and by intellectualizing the management of democratizing critical thinking locally (collective ethics) by recognizing its context (social ethics). Drawing on the literature in One Health and sustainable development studies, this article describes how a communitarian and pragmatic approach can broaden the vision of feasibility studies to ease collaboration through public-private-academic partnerships. The result is a process that “reassembles” the One Health paradigm under the perspective of global bioethics to create bridges between the person and the ecosystem through pragmatic ethics.
5

Pratt, Bridget. "Expanding health justice to consider the environment: how can bioethics avoid reinforcing epistemic injustice?" Journal of Medical Ethics, January 30, 2023, medethics—2022–108458. http://dx.doi.org/10.1136/jme-2022-108458.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We are in the midst of a global crisis of climate change and environmental degradation to which the healthcare sector directly contributes. Yet conceptions of health justice have little to say about the environment. They purport societies should ensure adequate health for their populations but fail to require doing so in ways that avoid environmental harm or injustice. We need to expand our understanding of health justice to consider the environment and do so without reinforcing the epistemic injustice inherent in the field of bioethics. This paper considers what work in philosophy related to the environment should be applied to help build that understanding and develops ideas about the healthcare sector’s responsibilities of justice to the environment. It first introduces the dominant multivalent environmental and ecological justice (EJ) concept in philosophy and each of its dimensions: distribution, participation, recognition and well-being. It then shows why applying that conception alone to broaden our understanding of health justice will reinforce epistemic injustice within bioethics. Drawing on EJ literature from the global South, the paper demonstrates that different ontological and experiential starting points identify additional EJ dimensions—power and harmony—and give rise to a nuanced understanding of the recognition dimension relative to the dominant EJ conception. The paper concludes by applying them to articulate healthcare sector responsibilities of justice to the environment, demonstrating they ground responsibilities beyond reducing its carbon emissions.
6

Cockshaw, Rory. "The End of Factory Farming." Voices in Bioethics 7 (September 16, 2021). http://dx.doi.org/10.52214/vib.v7i.8696.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Photo by Jo-Anne McArthur on Unsplash ABSTRACT The UK-based campaign group Scrap Factory Farming has launched a legal challenge against industrial animal agriculture; the challenge is in the process of judicial review. While a fringe movement, Scrap Factory Farming has already accrued some serious backers, including the legal team of Michael Mansfield QC. The premise is that factory farming is a danger not just to animals or the environment but also to human health. According to its stated goals, governments should be given until 2025 to phase out industrialized “concentrated animal feeding organizations” (CAFOs) in favor of more sustainable and safer agriculture. This paper will discuss the bioethical issues involved in Scrap Factory Farming’s legal challenge and argue that an overhaul of factory farming is long overdue. INTRODUCTION A CAFO is a subset of animal feeding operations that has a highly concentrated animal population. CAFOs house at least 1000 beef cows, 2500 pigs, or 125,000 chickens for at least 45 days a year. The animals are often confined in pens or cages to use minimal energy, allowing them to put on as much weight as possible in as short a time. The animals are killed early relative to their total lifespans because the return on investment (the amount of meat produced compared to animal feed) is a curve of diminishing returns. CAFOs’ primary goal is efficiency: fifty billion animals are “processed” in CAFOs every year. The bioethical questions raised by CAFOs include whether it is acceptable to kill the animals, and if so, under what circumstances, whether the animals have rights, and what animal welfare standards should apply. While there are laws and standards in place, they tend to reflect the farm lobby and fail to consider broader animal ethics. Another critical issue applicable to industrial animal agriculture is the problem of the just distribution of scarce resources. There is a finite amount of food that the world can produce, which is, for the moment, approximately enough to go around.[1] The issue is how it goes around. Despite there being enough calories and nutrients on the planet to give all a comfortable life, these calories and nutrients are distributed such that there is excess and waste in much of the global North and rampant starvation and malnutrition in the global South. The problem of distribution can be solved in two ways: either by efficient and just distribution or by increasing net production (either increase productivity or decrease waste) so that even an inefficient and unjust distribution system will probably meet the minimum nutritional standards for all humans. This essay explores four bioethical fields (animal ethics, climate ethics, workers’ rights, and just distribution) as they relate to current industrial agriculture and CAFOs. l. Animal Ethics Two central paradigms characterize animal ethics: welfarism and animal rights. These roughly correspond to the classical frameworks of utilitarianism and deontology. Welfarists[2] hold the common-sense position that animals must be treated well and respected as individuals but do not have inalienable rights in the same ways as humans. A typical welfare position might be, “I believe that animals should be given the best life possible, but there is no inherent evil in using animals for food, so long as they are handled and killed humanely.” Animal rights theorists and activists, on the other hand, would say, “I believe non-human animals should be given the best lives possible, but we should also respect certain rights of theirs analogous to human rights: they should never be killed for food, experimented upon, etc.” Jeremy Bentham famously gave an early exposition of the animal rights case: “The question is not Can they reason?, nor Can they talk?, but Can they suffer? Why should the law refuse its protection to any sensitive being?” Those who take an animal welfare stance have grounds to oppose the treatment of animals in CAFOs as opposed to more traditional grass-fed animal agriculture. CAFOs cannot respect the natural behaviors or needs of animals who evolved socially for millions of years in open plains. If more space was allowed per animal or more time for socialization and other positive experiences in the animal’s life, the yield of the farm would drop. This is not commercially viable in a competitive industry like animal agriculture; thus, there is very little incentive for CAFOs to treat animals well. Rampant abuse is documented.[3] Acts of cruelty are routine: pigs often have teeth pulled and tails docked because they often go mad in their conditions and attempt to cannibalize each other; chickens have their beaks clipped to avoid them pecking at each other, causing immense pain; cows and bulls have their horns burned off to avoid them damaging others (as this damages the final meat product, too); male chicks that hatch in the egg industry are ground up in a macerator, un-anaesthetized, in the first 24 hours of their life as they will not go on to lay eggs. These practices vary widely among factory farms and among jurisdictions. Yet, arguably, the welfare of animals cannot be properly respected because all CAFOs fundamentally see animals as mere products-in-the-making instead of the complex, sentient, and emotional individuals science has repeatedly shown them to be.[4] ll. Climate Ethics The climate impact of farming animals is increasingly evident. Around 15-20 percent of human-made emissions come from animal agriculture.[5] and deforestation to create space for livestock grazing or growing crops to feed farm animals. An average quarter-pound hamburger uses up to six kilograms of feed, causes 66 square feet of deforestation, and uses up to 65 liters of water, with around 4kg of carbon emissions to boot – a majority of which come from the cattle themselves (as opposed to food processing or food miles).[6] According to environmentalist George Monbiot, “Even if you shipped bananas six times around the planet, their impact would be lower than local beef and lamb.”[7] The disparity between the impact of animal and plant-based produce is stark. Not all animal products are created equally. Broadly, there are two ways to farm animals: extensive or intensive farming. Extensive animal farming might be considered a “traditional” way of farming: keeping animals in large fields, as naturally as possible, often rotating them between different areas to not overgraze any one pasture. However, its efficiency is much lower than intensive farming – the style CAFOs use. Intensive animal farming is arguably more environmentally efficient. That is, CAFOs produce more output per unit of natural resource input than extensive systems do. However, environmental efficiency is relative rather than absolute, as the level of intensive animal agriculture leads to large-scale deforestation to produce crops for factory-farmed animals. CAFOs are also point-sources of pollution from the massive quantities of animal waste produced – around 1,000,000 tons per day in the US alone, triple the amount of all human waste produced per day – which has significant negative impacts on human health in the surrounding areas.[8] The environmental impacts of CAFOs must be given serious ethical consideration using new frameworks in climate ethics and bioethics. One example of a land ethic to guide thinking in this area is that “[it] is right when it tends to preserve the integrity, stability, and beauty of the biotic community. It is wrong when it tends otherwise.”[9] It remains to be seen whether CAFOs can operate in a way that respects and preserves “integrity, stability, and beauty” of their local ecosystem, given the facts above. The pollution CAFOs emit affects the surrounding areas. Hog CAFOs are built disproportionately around predominantly minority communities in North Carolina where poverty rates are high.[10] Animal waste carries heavy metals, infectious diseases, and antibiotic-resistant pathogens into nearby water sources and houses. lll. Workers’ Rights The poor treatment of slaughterhouse workers has been documented in the US during the COVID-19 pandemic, where, despite outbreaks of coronavirus among workers, the White House ordered that they remain open to maintain the supply of meat. The staff of slaughterhouses in the US is almost exclusively people with low socioeconomic status, ethnic minorities, and migrants.[11] Almost half of frontline slaughterhouse workers are Hispanic, and a quarter is Black. Additionally, half are immigrants, and a quarter comes from families with limited English proficiency. An eighth live in poverty, with around 45 percent below 200 percent of the poverty line. Only one-in-forty has a college degree or more, while one-in-six lacks health insurance. Employee turnover rates are around 200 percent per year.[12] Injuries are very common in the fast-moving conveyor belt environment with sharp knives, machinery, and a crowd of workers. OSHA found 17 cases of hospitalizations, two body part amputations per week, and loss of an eye every month in the American industrial meat industry. This is three times the workplace accident rate of the average American worker across all industries. Beef and pork workers are likely to suffer repetitive strain at seven times the rate of the rest of the population. One worker told the US Department of Agriculture (USDA) that “every co-worker I know has been injured at some point… I can attest that the line speeds are already too fast to keep up with. Please, I am asking you not to increase them anymore.”[13] Slaughterhouses pose a major risk to public health from zoonotic disease transmission. 20 percent of slaughterhouse workers interviewed in Kenya admit to slaughtering sick animals, which greatly increases the risk of transmitting disease either to a worker further down the production line or a consumer at the supermarket.[14] Moreover, due to poor hygienic conditions and high population density, animals in CAFOs are overfed with antibiotics. Over two-thirds of all antibiotics globally are given to animals in agriculture, predicted to increase by 66 percent by 2030.[15] The majority of these animals do not require antibiotics; their overuse creates a strong and consistent selection pressure on any present bacterial pathogens that leads to antibiotic resistance that could create devastating cross-species disease affecting even humans. The World Health Organization predicts that around 10 million humans per year could die of antibiotic-resistant diseases by 2050.[16] Many of these antibiotics are also necessary for human medical interventions, so antibiotics in animals have a tremendous opportunity cost. The final concern is that of zoonosis itself. A zoonotic disease is any disease that crosses the species boundary from animals to humans. According to the United Nations, 60 percent of all known infections and 75 percent of all emerging infections are zoonotic.[17] Many potential zoonoses are harbored in wild animals (particularly when wild animals are hunted and sold in wet markets) because of the natural biodiversity. However, around a third of zoonoses originate in domesticated animals, which is a huge proportion given the relative lack of diversity of the animals we choose to eat. Q fever, or “query fever,” is an example of a slaughterhouse-borne disease. Q fever has a high fatality rate when untreated that decreases to “just” 2 percent with appropriate treatment.[18] H1N1 (swine flu) and H5N1 (bird flu) are perhaps the most famous examples of zoonoses associated with factory farming. lV. Unjust Distribution The global distribution of food can cause suffering. According to research commissioned by the BBC, the average Ethiopian eats around seven kilograms of meat per year, and the average Rwandan eats eight.[19] This is a factor of ten smaller than the average European, while the average American clocks in at around 115 kilograms of meat per year. In terms of calories, Eritreans average around 1600kcal per day while most Europeans ingest double that. Despite enough calories on the planet to sustain its population, 25,000 people worldwide starve to death each day, 40 percent of whom are children. There are two ways to address the unjust distribution: efficient redistribution and greater net production, which are not mutually exclusive. Some argue that redistribution will lead to lower net productivity because it disincentivizes labor;[20] others argue that redistribution is necessary to respect human rights of survival and equality.[21] Instead of arguing this point, I will focus on people’s food choices and their effect on both the efficiency and total yield of global agriculture, as these are usually less discussed. Regardless of the metric used, animals always produce far fewer calories and nutrients (protein, iron, zinc, and all the others) than we feed them. This is true because of the conservation of mass. They cannot feasibly produce more, as they burn off and excrete much of what they ingest. The exact measurement of the loss varies based on the metric used. When compared to live weight, cows consume somewhere around ten times their weight. When it comes to actual edible weight, they consume up to 25 times more than we can get out of them. Cows are only around one percent efficient in terms of calorific production and four percent efficient in protein production. Poultry is more efficient, but we still lose half of all crops we put into them by weight and get out only a fifth of the protein and a tenth of the calories fed to them.[22] Most other animals lie somewhere in the middle of these two in terms of efficiency, but no animal is ever as efficient as eating plants before they are filtered through animals in terms of the nutritional value available to the world. Due to this inefficiency, it takes over 100 square meters to produce 1000 calories of beef or lamb compared to just 1.3 square meters to produce the same calories from tofu.[23] The food choices in the Western world, where we eat so much more meat than people eat elsewhere, are directly related to a reduction in the amount of food and nutrition in the rest of the world. The most influential theory of justice in recent times is John Rawls’ Original Position wherein stakeholders in an idealized future society meet behind a “veil of ignorance” to negotiate policy, not knowing the role they will play in that society. There is an equal chance of each policymaker ending up poverty-stricken or incredibly privileged; therefore, each should negotiate to maximize the outcome of all citizens, especially those worst-off in society, known as the “maximin” strategy. In this hypothetical scenario, resource distribution would be devised to be as just as possible and should therefore sway away from animal consumption. CONCLUSION Evidence is growing that animals of all sorts, including fish and certain invertebrates, feel pain in ways that people are increasingly inclined to respect, though still, climate science is more developed and often inspires more public passion than animal rights do. Workers’ rights and welfare in slaughterhouses have become mainstream topics of conversation because of the outbreaks of COVID-19 in such settings. Environmentalists note overconsumption in high-income countries, also shining a light on the starvation of much of the low-income population of the world. At the intersection of these bioethical issues lies the modern CAFO, significantly contributing to animal suffering, climate change, poor working conditions conducive to disease, and unjust distribution of finite global resources (physical space and crops). It is certainly time to move away from the CAFO model of agriculture to at least a healthy mixture of extensive agriculture and alternative (non-animal) proteins. - [1] Berners-Lee M, Kennelly C, Watson R, Hewitt CN; Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elementa: Science of the Anthropocene. 6:52, 2018. DOI: https://doi.org/10.1525/elementa.310 [2] : Lund TB, Kondrup SV, Sandøe P. A multidimensional measure of animal ethics orientation – Developed and applied to a representative sample of the Danish public. PLoS ONE 14(2): e0211656. 2019. DOI: https://doi.org/10.1371/ journal.pone.0211656 [3] Fiber-Ostrow P & Lovell JS. Behind a veil of secrecy: animal abuse, factory farms, and Ag-Gag legislation, Contemporary Justice Review, 19:2, p230-249. 2016. DOI: 10.1080/10282580.2016.1168257 [4] Jones RC. Science, sentience, and animal welfare. Biol Philos 28, p1–30 2013. DOI: https://doi.org/10.1007/s10539-012-9351-1 [5] Twine R. Emissions from Animal Agriculture—16.5% Is the New Minimum Figure. Sustainability, 13, 6276. 2021. DOI: https://doi.org/ 10.3390/su13116276 [6] Capper JL. "Is the Grass Always Greener? Comparing the Environmental Impact of Conventional, Natural and Grass-Fed Beef Production Systems" Animals 2, no. 2: 127-143. 2012. DOI: https://doi.org/10.3390/ani2020127 [7] Monbiot, George. “In Trying to Reduce the Impact of Our Diets, … Their Impact Would Be Lower than Local Beef and Lamb.” Twitter, Twitter, 24 Jan. 2020, twitter.com/GeorgeMonbiot/status/1220691168012460032. [8] Copeland C. Resources, Science, and Industry Division. "Animal waste and water quality: EPA regulation of concentrated animal feeding operations (CAFOs)." Congressional Research Service, the Library of Congress, 2006. [9] Leopold A. A Sand County Almanac, and Sketches Here and There. 1949. [10] Nicole W. “CAFOs and environmental justice: the case of North Carolina.” Environmental health perspectives vol. 121:6. 2013: A182-9. DOI: 10.1289/ehp.121-a182 [11] Fremstad S, Brown H, Rho HJ. CEPR’s Analysis of American Community Survey, 2014-2018 5-Year Estimates. 2020. Accessed 08/06/21 at https://cepr.net/meatpacking-workers-are-a-diverse-group-who-need-better-protections [12] Broadway, MJ. "Planning for change in small towns or trying to avoid the slaughterhouse blues." Journal of Rural Studies 16:1. P37-46. 2000. [13] Wasley A. The Guardian. 2018. Accessed 08/06/2021 at https://www.theguardian.com/environment/2018/jul/05/amputations-serious-injuries-us-meat-industry-plant [14] Cook EA, de Glanville WA, Thomas LF, Kariuki S, Bronsvoort BM, Fèvre EM. Working conditions and public health risks in slaughterhouses in western Kenya. BMC Public Health. 17(1):14. 2017. DOI: 10.1186/s12889-016-3923-y. [15] Global trends in antimicrobial use in food animals. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R. Proceedings of the National Academy of Sciences May 2015, 112 (18) 5649-5654; DOI: 10.1073/pnas.1503141112 [16] Resistance, IICGoA. "No Time to Wait: Securing the future from drug-resistant infections." Report to the Secretary-General of the United Nations: p1-36. 2019. [17] Espinosa R, Tago D, Treich N. Infectious Diseases and Meat Production. Environ Resource Econ 76, p1019–1044. 2020. https://doi.org/10.1007/s10640-020-00484-3 [18] “Q Fever Fact Sheet.” Pennsylvania Department of Health, 4 Jan. 2003. https://www.health.pa.gov/topics/Documents/Diseases%20and%20Conditions/Q%20Fever%20.pdf [19] Ritchie, Hannah. “Which Countries Eat the Most Meat?” BBC News, BBC, 4 Feb. 2019, www.bbc.co.uk/news/health-47057341. [20] Reynolds, Alan. “The Fundamental Fallacy of Redistribution.” Cato.org, 11 Feb. 2016, 1:22 pm, www.cato.org/blog/fundamental-fallacy-redistribution. [21] Patricia Justino Professor and Senior Research Fellow. “Welfare Works: Redistribution Is the Way to Create Less Violent, Less Unequal Societies.” The Conversation, 20 Aug. 2021, theconversation.com/welfare-works-redistribution-is-the-way-to-create-less-violent-less-unequal-societies-128807. [22] Cassidy E, et al, “Redefining Agricultural Yields: From Tonnes to People Nourished Per Hectare.” Environmental Research Letters, V. 8(3), p2-3. IOPScience. 2013, http://iopscience.iop.org/1748-9326/8/3/034015 [23] Poore J, Nemecek T. Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), p987-992. 2018.

Дисертації з теми "Applied Ethics (incl. Bioethics and Environmental Ethics)":

1

Tudor, RG. "Looking out: an investigation of the visitor's experience of natural environment." Thesis, Bec Tudor, 2005. https://eprints.utas.edu.au/1982/1/Masters_of_Art%2C_Design_%26_Env_Research_Paper_-_Bec_Tudor.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A practical, aesthetic and philosophical examination of lookouts as found in Australian National Parks. Investigates the impact of landscape (as refering to both the actual phenomena and cultural product) on environmental values and human relationship with place. Explores the unique relationship between visitors and environments conserved for their 'wilderness' value. Discusses the management of lookouts and the mediation and potential manipulation of visual perception in the design of these facilities. Suggests lookouts subjegate immediate physical 'site' to celebrate a distant 'scene' granted greater environmental value on the basis of aesthetic principles of beauty, the sublime and the photogenic.
2

Ridder, BP. "Biodiversity Versus Nature: Values in Conflict." Thesis, 2007. https://eprints.utas.edu.au/4966/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Harris, Howard. "An account of courage in management decision making." 1999. http://arrow.unisa.edu.au:8081/1959.8/28298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An account of the nature of courage and how it figures in management decisions is developed on the basis of classical and contemporary literature in philosophy and management. The account contains seven elements, including obstacles and tools and a requirement for acting for good. The account is subject to a reality check using content analysis of articles in the business press in Australia, United Kingdom, United States and Hong Kong.
4

Griffin, JG. "The origin of beauty : a metaphysical foundation for ecophilosophy." Thesis, 2007. https://eprints.utas.edu.au/5174/7/Griffin_whole_thesis.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ecophilosophy is distinctive in its willingness to find a solution to the ecological crisis by engaging with the conceptual resources of the past. However, this thesis argues that the influence of the paradigm of modem science has prevented ecophilosophy from adequately assessing the significance of religion, and this has limited its potential. Hence, an appraisal of both the central principles of science that underpin environmental thought, and the central principles of religion is undertaken, in an attempt to further ecophilosophy's standing. The perception of beauty recognised as a pre-rational response to nature is seen as an essential element in both environmentalism and the esoteric dimension of religion. Beauty is therefore utilized as a catalyst to reveal the limitations of environmental thought, the adverse ecological consequences of the scientific paradigm, and the importance of esoterism. The demise of the quality beauty is linked to the emergence, after the Renaissance, of a historically anomalous 'metaphysical' system. The determining aspect of the new cosmology, ontology, and epistemology is identified as quantifcation the reducing of reality to a quantifiable state. The process of quantification has, it is argued, been responsible for the image we have of both ourselves and nature, and therefore our treatment of the world. One consequence of quantification has been an ecological viewpoint, which has, through guiding the emergence of an ecocentric outlook, been responsible for obscuring the traditional metaphysics, or Sophia. A traditional metaphysics affirms a faculty of consciousness capable of transcending the subjectlobject divide, thus invalidating the quantifying approach to nature and reinstating the objective nature of qualities such as beauty. This thesis asserts that a traditional metaphysics validates the phenomenological experience of the beauty of nature, and suggests that nature itself may be used to transform our consciousness of nature. It concludes that an opportunity exists for ecophilosophy to extend its vision and, therefore, relevance by aligning itself with a system of thought adequate to the resolution of the ecological crisis.
5

Kalaitzidis, Evdokia. "professional ethics for professional nursing." 2006. http://arrow.unisa.edu.au:8081/1959.8/30081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The thesis proposes and defends a maxim which can serve as a foundation and guideline for professional ethics in nursing, the maxim that nurses should act so far as possible to promote patient's self-determination. The thesis is informed by philosophical ethics and by knowledge of professional nursing practice.

Книги з теми "Applied Ethics (incl. Bioethics and Environmental Ethics)":

1

Guha, Debashis. Educational Ethics: Practical and Professional Ethics. Concept Publishing Company, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Applied Ethics (incl. Bioethics and Environmental Ethics)":

1

Shriver, Adam. "The Welfarist Account of Disenhancement as Applied to Nonhuman Animals." In The International Library of Environmental, Agricultural and Food Ethics, 533–44. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63523-7_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractI criticize the current usage of the terms “enhancement” and “disenhancement” in the debate over the genetic modification of animals and propose an alternative definition of these terms based on how modifications affect animals’ welfare in particular contexts. The critique largely follows a similar criticism of the use of the term “enhancements” in the human bioethics literature. I first describe how the term “disenhancement” has been used in debates thus far, and argue that the present lack of a shared definition is problematic. I then consider some potential definitions of “disenhancement” that can be adapted from the human bioethics literature and argue that most of these uses are flawed for the purposes of using the term in current ethical debates. Finally, I elaborate on the welfarist conception of disenhancement and consider some potential objections, using examples from the literature to illustrate key points.
2

Naaji, Antoanela. "Bioethics Education in Western Romania." In Applied Ethics: From Bioethics to Environmental Ethics. Trivent Publishing, 2018. http://dx.doi.org/10.22618/tp.aebio.20181.192011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sinaci, Maria, and Stefan Lorenz Sorgner. "Introduction." In Applied Ethics: From Bioethics to Environmental Ethics. Trivent Publishing, 2018. http://dx.doi.org/10.22618/tp.aebio.20181.192001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sorgner, Stefan Lorenz. "Genes, CRISPR/Cas 9, and Posthumans." In Applied Ethics: From Bioethics to Environmental Ethics. Trivent Publishing, 2018. http://dx.doi.org/10.22618/tp.aebio.20181.192002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Viafora, Corrado. "Can Ethics Govern Technology? Bioethics in the Age of Techno-Science." In Applied Ethics: From Bioethics to Environmental Ethics. Trivent Publishing, 2018. http://dx.doi.org/10.22618/tp.aebio.20181.192003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Krémer, Alexander. "The Moral Relationship of the Human and the Non-Human Animals in Light of Ethology." In Applied Ethics: From Bioethics to Environmental Ethics. Trivent Publishing, 2018. http://dx.doi.org/10.22618/tp.aebio.20181.192004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sinaci, Maria. "Neuroethics and Moral Enhancement: The Path to a Moral World?" In Applied Ethics: From Bioethics to Environmental Ethics. Trivent Publishing, 2018. http://dx.doi.org/10.22618/tp.aebio.20181.192005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mladenović, Ivan. "Public Deliberation and Biomedical Enhancements." In Applied Ethics: From Bioethics to Environmental Ethics. Trivent Publishing, 2018. http://dx.doi.org/10.22618/tp.aebio.20181.192006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tari, Gergely, and Gábor Braunitzer. "On the Ethical Issues of Bilateral and Contralateral Risk-Reducing Mastectomy." In Applied Ethics: From Bioethics to Environmental Ethics. Trivent Publishing, 2018. http://dx.doi.org/10.22618/tp.aebio.20181.192007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sasu, Alciona, Mircea Onel, Cristina Ghib-Para, Ligia Piroş, Alin Greluş, and Coralia Cotoraci. "Haematological Patients’ Perception of Their Quality of Life." In Applied Ethics: From Bioethics to Environmental Ethics. Trivent Publishing, 2018. http://dx.doi.org/10.22618/tp.aebio.20181.192008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії