Добірка наукової літератури з теми "APEX ANGLE OF THE CONE"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "APEX ANGLE OF THE CONE".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "APEX ANGLE OF THE CONE"
Stefas, Nikolaos, Patrick A. Plonski, and Volkan Isler. "Approximation algorithms for tours of orientation-varying view cones." International Journal of Robotics Research 39, no. 4 (January 8, 2020): 389–401. http://dx.doi.org/10.1177/0278364919893455.
Повний текст джерелаZHAO, ZIJIE, CHAO GAO, FENG LIU, and SHIJUN LUO. "PLASMA FLOW CONTROL OVER FOREBODY AT HIGH ANGLES OF ATTACK." Modern Physics Letters B 24, no. 13 (May 30, 2010): 1405–8. http://dx.doi.org/10.1142/s0217984910023736.
Повний текст джерелаBourgeois, Laure, Yoshio Bando, Satoshi Shinozaki, Keiji Kurashima, and Tadao Sato. "Boron nitride cones: structure determination by transmission electron microscopy." Acta Crystallographica Section A Foundations of Crystallography 55, no. 2 (March 1, 1999): 168–77. http://dx.doi.org/10.1107/s0108767398008642.
Повний текст джерелаHuang, Geng, and Huan Liu. "Thermal Elastohydrodynamic Lubrication Analysis for Rolling Cone Enveloping End Face Worm Drive." Journal of Physics: Conference Series 2459, no. 1 (March 1, 2023): 012105. http://dx.doi.org/10.1088/1742-6596/2459/1/012105.
Повний текст джерелаPincus, HJ, V. Silvestri, and Y. Fahmy. "Influence of Apex Angle on Cone Penetration Factors in Clay." Geotechnical Testing Journal 18, no. 3 (1995): 315. http://dx.doi.org/10.1520/gtj11000j.
Повний текст джерелаWANG, JIANLEI, HUAXING LI, FENG LIU, and SHIJUN LUO. "CHARACTERISTICS OF FORE-BODY SEPARATE FLOW AT HIGH ANGLE OF ATTACK UNDER PLASMA CONTROL." Modern Physics Letters B 24, no. 13 (May 30, 2010): 1401–4. http://dx.doi.org/10.1142/s0217984910023724.
Повний текст джерелаLi, Peng Fei, Shi Pan, Shi Fa Wu, Yin Li Li, and Wei Sun. "Fabrication of a Brush-Shaped Bent Fiber Probe for Near-Field Optics by Heated Pulling Combined with Chemical Etching." Solid State Phenomena 121-123 (March 2007): 689–92. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.689.
Повний текст джерелаKererat, C. "Bearing Capacity Investigation of Silty Sandy Soil Layer Using Kunzelstab Test." Journal of Applied Engineering Sciences 6, no. 1 (May 1, 2016): 57–61. http://dx.doi.org/10.1515/jaes-2016-0006.
Повний текст джерелаDeng, Jun, Gui Hua Liu, and Li Yue. "A Novel Method of Cone Fitting Based on 3D Point Cloud." Applied Mechanics and Materials 722 (December 2014): 321–26. http://dx.doi.org/10.4028/www.scientific.net/amm.722.321.
Повний текст джерелаQin, Hua, and Cun Zhi Sun. "Design of Novel Beam Demagnifier Based on Total Reflection -Refraction." Advanced Materials Research 338 (September 2011): 22–25. http://dx.doi.org/10.4028/www.scientific.net/amr.338.22.
Повний текст джерелаДисертації з теми "APEX ANGLE OF THE CONE"
Sobieski, Julian Witold. "Assessing steric bulk of protecting groups via a computational determination of exact cone angle and exact solid cone angle." Kent State University Honors College / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ksuhonors1528385706530151.
Повний текст джерелаKrishnan, Vaidyanathan. "The nature of Turbulence in a Narrow Apex Angle Isosceles Triangular Duct." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3811.
Повний текст джерелаPh.D.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering PhD
Durst, Gregory L. "Conformational analysis of phosphine ligands, using molecular mechanics and cone angle calculations." Virtual Press, 1988. http://liblink.bsu.edu/uhtbin/catkey/539633.
Повний текст джерелаDepartment of Chemistry
Alenazi, Khaled. "Comparison between the alpha angle of the maxillary impacted canines on panoramic radiographs and cone beam computed tomography." University of the Western Cape, 2019. http://hdl.handle.net/11394/7069.
Повний текст джерелаThere is a paucity of studies that make use of the alpha angle as a diagnostic tool to assist with the interceptive treatment, prognosis, treatment duration and surgical outcome of possible maxillary canine impaction in orthodontics. While the literature is replete with studies that utilise the sector method, the alpha angle is an alternative approach to assess the possible eruptive outcome of the unerupted canine. It has been reported that if the alpha angle is greater than 25°, there is the possibility of external root resorption. However, if the alpha angle is more than 31°, the prospect of canine eruption decreases even if the deciduous canine is extracted as an interceptive measure. The dental pantomograph has historically been used to predict canine eruption or possible impaction. The use of this method, however, is wrought with limitations. These limitations include magnification, distortion and blurred images. The use of cone-beam computed tomography has been advocated as a means to overcome these limitations.
Baytemir, Gulsen. "Analysis Of Kappa Meson In Light Cone Qcd Sum Rules." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613672/index.pdf.
Повний текст джерелаmeson are studied. Using the QCD sum rules approach, which is a nonperturbative method, the mass and the overlap amplitude of this meson are calculated. As well as the mass and the overlap amplitude, &kappa
&rarr
K^+&pi
^&minus
decay is also studied. For this decay the coupling constant g_&kappa
K^+&pi
^&minus
is obtained using light cone QCD sum rules which is an extension of the QCD sum rules method. Moreover, the coupling constant is calculated using the experimental decay width and it is compared with the value obtained in light cone QCD sum rules approach. The result of the calculation of g_&kappa
K^+&pi
^&minus
, the one obtained from light cone QCD sum rules approach, is also applied to acquire the f_0 &minus
&sigma
scalar mixing angle, &theta
s, using the ratio g^2 (&kappa
&rarr
K^+&pi
^&minus
)/g^2 (&sigma
&rarr
&pi
&pi
) obtained from experimental decay width. The value of scalar mixing angle is also compared with its experimental results.
Mead, Ryan M. "Analysis of Flow in a Spray Nozzle With Emphasis on Exiting Jet Free Surface." [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000138.
Повний текст джерелаMandal, Anirban. "Computational Modeling of Non-Newtonian Fluid Flow in Simplex Atomizer." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1202997834.
Повний текст джерелаHong, Chin Tung. "Analysis of flow in a 3D chamber and a 2D spray nozzle to approximate the exiting jet free surface." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000560.
Повний текст джерелаAlmeida, Kélei Cristina de Mathias. "Avaliação tridimensional do côndilo mandibular em indivíduos pós-surto de crescimento pubertário após uso de Herbst bandado." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/155969.
Повний текст джерелаRejected by Ana Cristina Jorge null (anacris@fclar.unesp.br), reason: Solicitamos que faça as seguintes correções: 1) O sumário deve conter todas as seções e subseções da sua tese (Ex. 2.1 Articulação temporomandibular (ATM) , 2.2.......e demais subseções); 2) As keywords devem ser as apresentadas no DECS. As suas palavras chaves em inglês no DECs são : Malocclusion, Angle class II Orthotic devices Cone-beam computed tomography Imaging, three-dimensional 3) Na ficha catalográfica o número correto de páginas é 108 f ; 4) Nos metadados você assinalou que não recebeu financiamento. Porém, na sua tese você agradece ao apoio financeiro da Capes e da Fapesp. Lembre-se que no caso da Fapesp é obrigatório informar também o número do processo; 5) Você não preencheu o nome do seu Programa de pós graduação no metadados; 6) Também não preencheu no metadados a área de concentração. Atenciosamente on 2018-09-05T18:58:25Z (GMT)
Submitted by Kelei Cristina De Mathias Almeida (keleimathias.almeida@gmail.com) on 2018-09-12T02:42:13Z No. of bitstreams: 1 TESE Doutorado Kélei Almeida.pdf: 2132229 bytes, checksum: f4f99b7fff170f591582b5ec78cec062 (MD5)
Approved for entry into archive by Ana Cristina Jorge null (anacris@fclar.unesp.br) on 2018-09-12T13:08:39Z (GMT) No. of bitstreams: 1 almeida_kcm_dr_arafo_int.pdf: 2132229 bytes, checksum: f4f99b7fff170f591582b5ec78cec062 (MD5)
Made available in DSpace on 2018-09-12T13:08:39Z (GMT). No. of bitstreams: 1 almeida_kcm_dr_arafo_int.pdf: 2132229 bytes, checksum: f4f99b7fff170f591582b5ec78cec062 (MD5) Previous issue date: 2017-03-17
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
O objetivo deste estudo prospectivo foi avaliar tridimensionalmente a remodelação e o deslocamento do côndilo mandibular na fossa articular nos indivíduos, pós-surto de crescimento pubertário, tratados com aparelho Herbst bandado. A amostra foi constituída por 24 indivíduos, de ambos os gêneros, leucodermas, com idade cronológica média de 16 anos e 1 mês. Os indivíduos foram tratados com aparelho Herbst bandado por um período de 8 meses (média da amostra: 9,8 meses). Para a avaliação da remodelação do côndilo mandibular foram utilizadas tomografias computadorizadas de feixe cônico (TCFC) em dois tempos, denominados de T1 (antes da colocação do aparelho e T2 (após a remoção do mesmo). As tomografias foram obtidas pelo tomógrafo i-CAT Classic e os dados foram exportados no formato DICOM (Digital Image and Comunication in Medicine) e avaliados no programa Dolphin® Imaging 11.5 Premium. As medidas foram analisadas nas imagens dos cortes multiplanares (planos coronal, sagital e axial) por um observador, previamente calibrado. Os dados obtidos foram calculados pelo sistema de coordenadas cartesianas tridimensionais em um programa de software Matlab desenvolvido pelo Departamento de Física e Biofísica, da Faculdade Estadual Paulista – UNESP de Botucatu. Para avaliar o grau de concordância entre as mensurações empregouse o coeficiente de correlação intraclasse (ICC). À exceção das medidas FOE (eixo Z), C1E (no eixo X) e C2-T2 em ambos os lados, todas as demais medidas apresentaram alto grau de reprodutibilidade, denotando que o erro do método pode ser desprezado. O deslocamento dos côndilos, no sistema de coordenadas cartesianas, foi calculado com o Ponto Zero na Base do crânio; a remodelação foi calculada com o Ponto Zero na média da distância dos forames mentuais direito e esquerdo, forneceu uma análise quantitativa e qualitativa e distâncias euclidianas. Com relação a base do crânio, o côndilo direito se deslocou de forma moderada (0,71mm) para baixo e de forma relevante (0,91mm) para frente; o côndilo esquerdo se deslocou de forma relevante (0,93mm) para baixo e de forma moderada (0,73mm) para frente. O côndilo direito remodelou de forma relevante 1,08mm para trás e se distanciou da média da distância dos forames mentuais de forma relevante (1,19mm); o côndilo esquerdo remodelou de forma relevante 0,98mm para cima e se distanciou da média da distância dos forames mentuais de forma relevante (0,93mm). Foram mensurados os espaçamentos entre os pontos nos côndilos direito e esquerdo, em relação a fossa articular, sendo observado aumento de forma média, do espaçamento superior do côndilo esquerdo (0,34mm). O tratamento não promoveu alterações significantes nas medidas no eixo X, constatando que não houve movimento de lateralidade. Conclui-se que, com relação a base do crânio, os côndilos direito e esquerdo se deslocaram para baixo e para frente. O côndilo direito remodelou para trás enquanto que o côndilo esquerdo remodelou para cima.
The aim of this prospective study was to evaluate in 3-D the remodeling and displacement of the mandibular condyle in the glenoid fossa in the individuals, post-pubertal growth outbreak, treated with the banded Herbst appliance. The sample consisted of 24 individuals of both genders, leucoderma, with a mean chronological age of 16 years and 1 month. Subjects were treated with banded Herbst appliance during 8 months. Cone beam computed tomography (CBCT) was performed in two times to evaluate the condylar remodeling: T1 (prior to placement of the device) and T2 (after removal).) CT scans were obtained by i-CAT tomography Classic and the data were exported in DICOM (Digital Image and Communication in Medicine) format and evaluated in the Dolphin® Imaging 11.5 Premium program. The measurements were analyzed in multiplanar sections images (coronal, sagittal and axial planes) by an observer, previously calibrated. The data obtained were calculated by 3-D Cartesian coordinate system in a Matlab software, developed by the Department of Physics and Biophysics, UNESP Botucatu. To evaluate the agreement degree between the measurements, the intraclass correlation coefficient (ICC) was used. With the exception of the measurements FOE (Z axis), C1E (X axis) and C2-T2 on both sides, all other measurements showed a high degree of reproducibility, denoting that the error of the method can be neglected. The displacement of the condyles in the Cartesian coordinate system was calculated with the Zero Point in the skull base; the remodeling was calculated with the Point Zero in the mean distance of the right and left mental foramina, provided a quantitative and qualitative analysis and Euclidean distances. In relation to skull base, the right condyle moved moderately (0.71 mm) downwards and significantly (0.91 mm) forward; the left condyle shifted significantly (0.93mm) downwards and moderately (0.73mm) forward. The right condyle significantly remodeled 1.08mm behind and distanced itself from the mean distance of the mental foramina significantly (1.19mm); the left condyle significantly reshaped 0.98mm upward and distanced itself from the mean distance of the mental foramina significantly (0.93mm). The spacing between the points on the right and left condyles were measured, in relation to the glenoid fossa; there was a mean increase in the superior space of the left condyle (0.34 mm). The treatment did not promote significant changes in the measurements on the X axis, noting that there was no laterality movement. It was concluded that, with respect to the skull base, the right and left condyles moved downwards and forward. The right condyle remodeled backwards while the left condyle remodeled upward.
2010/17934-8
Sakuno, Antonio Carlos. "AVALIAÇÃO DAS ALTERAÇÕES DENTOESQUELÉTICAS DECORRENTES DO TRATAMENTO DA MALOCLUSÃO DE CLASSE II COM O APARELHO FORSUS POR MEIO DE TOMOGRAFIA COMPUTADORIZADA." Universidade Metodista de São Paulo, 2011. http://tede.metodista.br/jspui/handle/tede/1281.
Повний текст джерелаThis study aimed to evaluate cephalometrically, by means of Cone Beam Computed Tomography (CBCT), the dentoalveolar and skeletal effects of Class II correction ith the Forsus® appliance. Study group was composed by 10 patients, 7 males and 3 females, with initial mean age of 16,1 years, with at least ½ Class II, minimum overjet of 5mm, no supernumeraries, anodontia or permanent teeth loss. Facial pattern should be meso or brachyfacial. Patients were evaluated and it was shown they were at stage IV or V of bone maturation, seen by cervical vertebrae. Forsus utilization period was 7,16 years on average, with a CBCT (T1) before and another one (T2) after the removal of Forsus. Paired t-test was used for statistical analysis. Results showed a decrease of SNA and a small grown of mandible, what improved maxillomandibular relationship; there was a counter-clockwise mandibular rotation and a clockwise rotation of the occlusal plane. Upper incisors were retruded, retroclined and extruded, and upper molars showed distal angulation. Lower incisors were proclined and intruded, and lower molars were mesialized and extruded. So, Forsus appliance showed to be effective in Class II correction, proportioning more dentoalveolar alterations than skeletal changes.
Este estudo teve como objetivo avaliar cefalometricamente as alterações dentoesqueléticas decorrentes do tratamento da maloclusão de Classe II, divisão 1, com o aparelho Forsus®, por meio de Tomografia Computadorizada de Feixe Cônico (TCFC). O grupo avaliado foi composto por 10 pacientes, sendo 7 do sexo masculino e 3 do sexo feminino, com idade média de 16,1 anos, maloclusão com severidade mínima de 1/2 Classe II, trespasse horizontal mínimo de 5 mm, padrão facial meso ou braquifacial. Estes jovens se encontravam no estágio IV ou V de maturação óssea, verificada pelas vértebras cervicais. O tempo de uso do aparelho Forsus foi de 7,16 meses (média), período de avaliação compreendido entre a aquisição da primeira teleradiografia gerada através da TCFC (T1 - pré-Forsus) e da segunda teleradiografia (T2 - pós-Forsus). Para análise estatística foi utilizado o teste-t pareado. Os resultados mostraram um pequeno crescimento mandibular que, juntamente com uma diminuição do SNA levaram a uma melhora da relação maxilomandibular. Houve uma rotação no sentido anti-horário da mandíbula e do plano oclusal no sentido horário. Os incisivos superiores foram retruídos, verticalizados e extruídos e os molares superiores distalizaram por inclinação. Houve vestibularização, protrusão e intrusão dos incisivos inferiores, além de mesialização e extrusão dos molares inferiores. Desta maneira, conclui-se que o aparelho Forsus foi efetivo na correção da maloclusão de Classe II, propiciando maiores alterações dentoalveolares do que esqueléticas.(AU)
Книги з теми "APEX ANGLE OF THE CONE"
Pamadi, Bandu N. A simple analytical aerodynamic model of Langley winged-cone aerospace plane concept. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Знайти повний текст джерелаNdaona, Chokani, and Langley Research Center, eds. Hypersonic boundary-layer stability experiments on a flared-cone model at angle of attack in a quiet wind tunnel. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Знайти повний текст джерелаNdaona, Chokani, and Langley Research Center, eds. Hypersonic boundary-layer stability experiments on a flared-cone model at angle of attack in a quiet wind tunnel. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Знайти повний текст джерелаNdaona, Chokani, and Langley Research Center, eds. Hypersonic boundary-layer stability experiments on a flared-cone model at angle of attack in a quiet wind tunnel. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Знайти повний текст джерелаNdaona, Chokani, and Langley Research Center, eds. Hypersonic boundary-layer stability experiments on a flared-cone model at angle of attack in a quiet wind tunnel. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Знайти повний текст джерелаD, Podleski Steve, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., eds. Thin-layer and full Navier-Stokes calculations for turbulent supersonic flow over a cone at an angle of attack. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993.
Знайти повний текст джерелаD, Podleski Steve, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., eds. Thin-layer and full Navier-Stokes calculations for turbulent supersonic flow over a cone at an angle of attack. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993.
Знайти повний текст джерелаThin-layer and full Navier-Stokes calculations for turbulent supersonic flow over a cone at an angle of attack. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993.
Знайти повний текст джерелаNational Aeronautics and Space Administration (NASA) Staff. Hypersonic Boundary-Layer Stability Experiments on a Flared-Cone Model at Angle of Attack in a Quiet Wind Tunnel. Independently Published, 2018.
Знайти повний текст джерелаArcher, Nick, and Nicky Manning. Cardiac position. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199230709.003.00122.
Повний текст джерелаЧастини книг з теми "APEX ANGLE OF THE CONE"
Xiao-ling, Yan, Bu Le-ping, and Wang Li-ming. "A Flame Apex Angle Recognition Arithmetic Based on Chain Code." In Advanced Technology in Teaching - Proceedings of the 2009 3rd International Conference on Teaching and Computational Science (WTCS 2009), 29–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-11276-8_5.
Повний текст джерелаvan Keulen, Marte, Cliff A. Megerian, and Nicholas C. Bambakidis. "Case 18: Middle Cranial Fossa Craniotomy for a Left Petrous Apex Lesion." In Surgery of the Cerebellopontine Angle, 389–91. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12507-2_39.
Повний текст джерелаBorsetto, Daniele, and Rupert Obholzer. "Lesions of the Cerebellopontine Angle, Petrous Apex and Jugular Foramen." In Scott-Brown's Essential Otorhinolaryngology, 125–30. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003175995-23.
Повний текст джерелаMengali, Giovanni, and Alessandro A. Quarta. "Optimal Solar Sail Interplanetary Trajectories with Constant Cone Angle." In Advances in Solar Sailing, 831–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-34907-2_50.
Повний текст джерелаIdemen, Mithat. "Tip Singularity of the Electromagnetic Field at the Apex of a Material Cone." In Springer Proceedings in Physics, 161–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18596-0_15.
Повний текст джерелаMeng, Qinglei, Hedyeh Bagherzadeh, Elliot Hong, Yihong Yang, Hanbing Lu, and Fow-Sen Choa. "Angle-Tuned Coil: A Focality-Adjustable Transcranial Magnetic Stimulator." In Brain and Human Body Modelling 2021, 89–97. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15451-5_6.
Повний текст джерелаRichter, Martinus. "Weight Bearing CT Allows for More Accurate Bone Position (Angle) Measurement than Radiographs or CT." In Weight Bearing Cone Beam Computed Tomography (WBCT) in the Foot and Ankle, 27–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31949-6_3.
Повний текст джерелаBhirdi, Viren D., Nikhil S. Mane, and A. M. Patil. "Experimental Investigation of Heat Transfer through Cone Shaped Helical Heat Exchanger with Varying Coil Angle." In Techno-Societal 2018, 417–25. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16962-6_43.
Повний текст джерелаHookham, P. A., M. Rosenblatt, K. Takayama, and M. Watanabe. "Interaction of a Planar Shock with a Cone at an Oblique Angle: Numerical Simulation and Experiment." In Shock Waves @ Marseille IV, 169–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79532-9_27.
Повний текст джерелаChing, Ze Feng, and Alif Zulfakar Pokaad. "Experiment Study of Effect of Apex Angle of Taper Round Tube Under Quasi Static Axial Crushing on Energy Absorption." In Proceedings of the Multimedia University Engineering Conference (MECON 2022), 281–96. Dordrecht: Atlantis Press International BV, 2022. http://dx.doi.org/10.2991/978-94-6463-082-4_26.
Повний текст джерелаТези доповідей конференцій з теми "APEX ANGLE OF THE CONE"
Joulaian, Meysam, Sorush Khajepor, Ahmadreza Pishevar, and Yaser Afshar. "Dissipative Particle Dynamics Simulation of Nano Taylor Cone." In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31089.
Повний текст джерелаBelyaev, M., N. Zubarev, and O. Zubareva. "Conical structures on the surface of a liquid with surface ionic conductivity: the space charge effect." In 8th International Congress on Energy Fluxes and Radiation Effects. Crossref, 2022. http://dx.doi.org/10.56761/efre2022.c1-p-019702.
Повний текст джерелаSymons, Digby D., and Arnaud F. M. Bizard. "Measurement of Film Thickness for Continuous Fluid Flow Within a Spinning Cone." In ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20129.
Повний текст джерелаBrandal, Grant B., Gen Satoh, Y. Lawrence Yao, and Syed Naveed. "Effects of Interfacial Geometry on Laser Joining of Dissimilar NiTi to Stainless Steel Wires." In ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/msec2013-1204.
Повний текст джерелаFranco, Fermin, and Yasuhide Fukumoto. "Mathematical models for turbulent round jets based on “ideal” and “lossy” conservation of mass and energy." In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.4778.
Повний текст джерелаKawasaki, Kazumasa, and Kazuyoshi Shinma. "Accuracy of Straight Bevel Gear by End Mill Using CNC Milling Machine." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34053.
Повний текст джерелаSunak, Harish R. D. "Launching light into rooftop fibers and its effect onintermodal dispersion." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/oam.1985.thc6.
Повний текст джерелаKazakov, Oleg A., and Liudmila A. Uvarova. "Electromagnetic field boundary conditions for metamaterials at the apex of the circular cone and polyhedral cone." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0027311.
Повний текст джерелаKent, Sedef, and Ibrahim Catalkaya. "Effect of apex angle on absorption characteristic of pyramidal absorbers." In 2011 XXXth URSI General Assembly and Scientific Symposium. IEEE, 2011. http://dx.doi.org/10.1109/ursigass.2011.6050436.
Повний текст джерелаLysechko, Victor. "Near-field circular aperture formed by cutting of a semi-infinite cone apex." In 2016 II International Young Scientists Forum on Applied Physics and Engineering (YSF). IEEE, 2016. http://dx.doi.org/10.1109/ysf.2016.7753801.
Повний текст джерелаЗвіти організацій з теми "APEX ANGLE OF THE CONE"
Woolf, Reagan K. Flight Test Validation of an Analytical Method for Predicting Trailing Cone System Drag Force and Droop Angle. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada583117.
Повний текст джерелаJewell, Joseph S., Ross M. Wagnild, Ivett A. Leyva, Graham V. Candler, and Joseph E. Shepherd. Transition Within a Hypervelocity Boundary Layer on a 5-Degree Half-Angle Cone in Air/CO2 Mixtures. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada622458.
Повний текст джерелаStetson, Kenneth F. Hypersonic Laminar Boundary Layer Transition. Part 1. Nosetip Bluntness Effects on Cone Frustum Transition. Part 2. Mach 6 Experiments of Transition on a Cone at Angle of Attack. Fort Belvoir, VA: Defense Technical Information Center, December 1986. http://dx.doi.org/10.21236/ada178877.
Повний текст джерела