Дисертації з теми "Antenna applications- Microwave"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Antenna applications- Microwave.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Antenna applications- Microwave".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Zhang, Tieren, University of Western Sydney, of Science Technology and Environment College, and School of Engineering and Industrial Design. "Applications of microwave holography to the assessment of antennas and antenna arrays." THESIS_CSTE_EID_Zhang_T.xml, 2001. http://handle.uws.edu.au:8081/1959.7/770.

Повний текст джерела
Анотація:
Gabor's original holography, which is the basic theory of modern microwave holographic techniques, is introduced. By computer simulations, it is demonstrated that the conventional holographic approach can be used as a tool to reconstruct aperture field distributions of an antenna with some constraints. Computer simulations of the theory and technique of the improved microwave holographic approach originally introduced by Rahmat-Samii et al. are carried out. The results show that it can be used for surface distortion diagnosis of large reflector antennas. The physical optics integral formulation is derived by general solutions of the vector wave equations. The necessary theory , which is needed to reconstruct the aperture field from near-field measurements both in a rectangular coordinate system and in a cylindrical coordinate system is developed. It is based on the plane wave spectrum and the vector wave modal expansion of an electromagnetic field. By using a simple dipole and other well-defined antennas, computer simulations have been performed. The results show that the technique is rigorous and applicable. It is also demonstrated that the sampling intervals and the number of sampling points should be chosen carefully in order to obtain a satisfactory resolution of the reconstructed aperture field. Furthermore, the simulations carried out in this work reveal that the real aperture field distribution of a dipole antenna has a maximum point at each end of the antenna. This characteristic can only be obtained at a very close distance to the antenna. This study also reveals the significant contributions of the evanescent waves to the aperture reconstruction. A simple but effective method for examining the evanescent waves from the measured near-field is also presented. By using dipoles and other well known antennas and antenna arrays, the experiments were carried out. The experimental results provide reasonable good agreements with the simulations. The technique proposed is effective and accurate.
Doctor of Philosophy (PhD)
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Tieren. "Applications of microwave holography to the assessment of antennas and antenna arrays." Thesis, View thesis, 2001. http://handle.uws.edu.au:8081/1959.7/770.

Повний текст джерела
Анотація:
Gabor's original holography, which is the basic theory of modern microwave holographic techniques, is introduced. By computer simulations, it is demonstrated that the conventional holographic approach can be used as a tool to reconstruct aperture field distributions of an antenna with some constraints. Computer simulations of the theory and technique of the improved microwave holographic approach originally introduced by Rahmat-Samii et al. are carried out. The results show that it can be used for surface distortion diagnosis of large reflector antennas. The physical optics integral formulation is derived by general solutions of the vector wave equations. The necessary theory , which is needed to reconstruct the aperture field from near-field measurements both in a rectangular coordinate system and in a cylindrical coordinate system is developed. It is based on the plane wave spectrum and the vector wave modal expansion of an electromagnetic field. By using a simple dipole and other well-defined antennas, computer simulations have been performed. The results show that the technique is rigorous and applicable. It is also demonstrated that the sampling intervals and the number of sampling points should be chosen carefully in order to obtain a satisfactory resolution of the reconstructed aperture field. Furthermore, the simulations carried out in this work reveal that the real aperture field distribution of a dipole antenna has a maximum point at each end of the antenna. This characteristic can only be obtained at a very close distance to the antenna. This study also reveals the significant contributions of the evanescent waves to the aperture reconstruction. A simple but effective method for examining the evanescent waves from the measured near-field is also presented. By using dipoles and other well known antennas and antenna arrays, the experiments were carried out. The experimental results provide reasonable good agreements with the simulations. The technique proposed is effective and accurate.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Tieren. "Applications of microwave holography to the assessment of antennas and antenna arrays." View thesis, 2001. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20040330.103805/index.html.

Повний текст джерела
Анотація:
Thesis (Ph.D.) -- University of Western Sydney, 2001.
"Submitted in fulfilment of requirements for the degree of Doctor of Philosophy, School of Engineering and Industrial Design, University of Western Sydney" Includes bibliography.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gagnon, Nicolas. "Phase Shifting Surface (PSS) and Phase and Amplitude Shifting Surface (PASS) for Microwave Applications." Thesis, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/19826.

Повний текст джерела
Анотація:
This thesis describes an electrically thin surface used for electromagnetic applications in the microwave regime. The surface is free-standing and its primary purpose is to modify the phase distribution, or the phase and amplitude distribution of electromagnetic fields propagating through it: it is called phase shifting surface (PSS) in the first case, and phase and amplitude shifting surface (PASS) in the second case. For practical applications, the surface typically comprises three or four layers of metallic patterns spaced by dielectric layers. The patterns of the metallic layers are designed to locally alter the phase (and amplitude in the case of the PASS) of an incoming wave to a prescribed set of desired values for the outgoing wave. The PSS/PASS takes advantage of the reactive coupling by closely spacing of the metallic layers, which results in a larger phase shift range while keeping the structure significantly thin. The PSS concept is used to design components such as gratings and lens antennas which are presented in this document. The components are designed for an operating frequency of 30 GHz. The PSS phase grating gives high diffraction efficiency, even higher than a dielectric phase grating. Several types of lens antennas are also presented, which show comparable performance to that of a conventional dielectric plano-hyperbolic lens antenna with similar parameters. The PASS concept is used in a beam shaping application in which a flat-topped beam antenna is designed. This work demonstrates the potential for realising thin, lightweight and low-cost antennas at Ka band, in particular for substituting higher-gain antenna technologies such as conventional dielectric shaped lens antennas.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Guardiola, Garcia Marta. "Multi-antenna multi-frequency microwave imaging systems for biomedical applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/134967.

Повний текст джерела
Анотація:
Medical imaging refers to several different technologies that are used to view the human body in order to diagnose, monitor, or treat medical conditions. Each type of technology gives different information about the area of the body being studied depending on the radiation used to illuminate de body. Nowadays there are still several lesions that cannot be detected with the current methods in a curable stage of the disease. Moreover they present some drawbacks that limit its use, such as health risk, high price, patient discomfort, etc. In the last decades, active microwave imaging systems are being considered for the internal inspection of light-opaque materials thanks to its capacity to penetrate and differentiate their constituents based on the contrast in dielectric properties with a sub-centimeter resolution. Moreover, they are safe, relatively low-cost and portable. Driven by the promising precedents of microwaves in other fields, an active electromagnetic research branch was focused to medical microwave imaging. The potential in breast cancer detection, or even in the more challenging brain stroke detection application, were recently identified. Both applications will be treated in this Thesis. Intensive research in tomographic methods is now devoted to develop quantitative iterative algorithms based on optimizing schemes. These algorithms face a number of problems when dealing with experimental data due to noise, multi-path or modeling inaccuracies. Primarily focused in robustness, the tomographic algorithm developed and assessed in this thesis proposes a non-iterative and non-quantitative implementation based on a modified Born method. Taking as a reference the efficient, real-time and robust 2D circular tomographic method developed in our department in the late 80s, this thesis proposes a novel implementation providing an update to the current state-of-the-art. The two main contributions of this work are the 3D formulation and the multi-frequency extension, leading to the so-called Magnitude Combined (MC) Tomographic algorithm. First of all, 2D algorithms were only applicable to the reconstruction of objects that can be assumed uniform in the third dimension, such as forearms. For the rest of the cases, a 3D algorithm was required. Secondly, multi-frequency information tends to stabilize the reconstruction removing the frequency selective artifacts while maintaining the resolution of the higher frequency of the band. This thesis covers the formulation of the MC tomographic algorithm and its assessment with medically relevant scenarios in the framework of breast cancer and brain stroke detection. In the numerical validation, realistic models from magnetic resonances performed to real patients have been used. These models are currently the most realistic ones available to the scientific community. Special attention is devoted to the experimental validation, which constitutes the main challenge of the microwave imaging systems. For this reason, breast phantoms using mixtures of chemicals to mimic the dielectric properties of real tissues have been manufactured and an acquisition system to measure these phantoms has been created. The results show that the proposed algorithm is able to provide robust images of medically realistic scenarios and detect a malignant breast lesion and a brain hemorrhage, both at an initial stage.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Neumann, Niels. "Microwave Photonic Applications - From Chip Level to System Level." Vogt Verlag, 2018. https://tud.qucosa.de/id/qucosa%3A74806.

Повний текст джерела
Анотація:
Die Vermischung von Mikrowellen- und optischen Technologien – Mikrowellenphotonik – ist ein neu aufkommendes Feld mit hohem Potential. Durch die Nutzung der Vorzüge beider Welten hat die Mikrowellenphotonik viele Anwendungsfälle und ist gerade erst am Beginn ihrer Erfolgsgeschichte. Der Weg für neue Konzepte, neue Komponenten und neue Anwendungen wird dadurch geebnet, dass ein höherer Grad an Integration sowie neue Technologien wie Silicon Photonics verfügbar sind. In diesem Werk werden zuerst die notwendigen grundlegenden Basiskomponenten – optische Quelle, elektro-optische Wandlung, Übertragungsmedium und opto-elektrische Wandlung – eingeführt. Mithilfe spezifischer Anwendungsbeispiele, die von Chipebene bis hin zur Systemebene reichen, wird der elektrooptische Codesign-Prozess veranschaulicht. Schließlich werden zukünftige Ausrichtungen wie die Unterstützung von elektrischen Trägern im Millimeterwellen- und THz-Bereich sowie Realisierungsoptionen in integrierter Optik und Nanophotonik diskutiert.
The hybridization between microwave and optical technologies – microwave photonics – is an emerging field with high potential. Benefitting from the best of both worlds, microwave photonics has many use cases and is just at the beginning of its success story. The availability of a higher degree of integration and new technologies such as silicon photonics paves the way for new concepts, new components and new applications. In this work, first, the necessary basic building blocks – optical source, electro-optical conversion, transmission medium and opto-electrical conversion – are introduced. With the help of specific application examples ranging from chip level to system level, the electro-optical co-design process for microwave photonic systems is illustrated. Finally, future directions such as the support of electrical carriers in the millimeter wave and THz range and realization options in integrated optics and nanophotonics are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kokkinos, Titos. "Analysis and design of metamaterial-inspired microwave structures and antenna applications." Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/6094.

Повний текст джерела
Анотація:
Novel metamaterial and metamaterial-inspired structures and microwave/antenna applications thereof are proposed and studied in this thesis. Motivated by the challenge of extending the applicability of metamaterial structures into practical microwave solutions, the underlying objective of this thesis has been the design of low-cost, easily fabricated and deployable metamaterial-related devices and the development of computational tools for the analysis of those. For this purpose, metamaterials composed of tightly coupled resonators are chosen for the synthesis of artificial transmission lines and enabling antenna applications. Specifically, fully-printed double spiral resonators are employed as modular elements for the design of tightly coupled resonators arrays. After thoroughly investigating the properties of such resonators, they are used for the synthesis of artificial lines in either grounded or non-grounded configurations. In the first case, the supported backward waves are exploited for the design of microstrip-based filtering/diplexing devices and series-fed antenna arrays. In the second case, the effective properties of such structures are employed for the design of a novel class of self-resonant, low-profile folded monopoles, exhibiting low mutual coupling and robust radiating properties. Such monopoles are, in turn, used for the synthesis of different sub-wavelength antenna arrays, such as superdirective arrays. Finally, an in-home periodic FDTD-based computational tool is developed and optimized for the efficient and rigorous analysis of planar, metamaterial-based, high-gain antennas.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rodrigues, Dário Barros. "Target-specific multiphysics modeling for thermal medicine applications." Doctoral thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/11296.

Повний текст джерела
Анотація:
Dissertation to obtain the degree of Doctor of Philosophy in Biomedical Engineering
This thesis addresses thermal medicine applications on murine bladder hyperthermia and brain temperature monitoring. The two main objectives are interconnected by the key physics in thermal medicine: heat transfer. The first goal is to develop an analytical solution to characterize the heat transfer in a multi-layer perfused tissue. This analytical solution accounts for important thermoregulation mechanisms and is essential to understand the fundamentals underlying the physical and biological processes associated with heat transfer in living tissues. The second objective is the development of target-specific models that are too complex to be solved by analytical methods. Thus, the software for image segmentation and model simulation is based on numerical methods and is used to optimize non-invasive microwave antennas for specific targets. Two examples are explored using antennas in the passive mode (probe) and active mode (applicator). The passive antenna consists of a microwave radiometric sensor developed for rapid non-invasive feedback of critically important brain temperature. Its design parameters are optimized using a power-based algorithm. To demonstrate performance of the device, we build a realistic model of the human head with separate temperaturecontrolled brain and scalp regions. The sensor is able to track brain temperature with 0.4 °C accuracy in a 4.5 hour long experiment where brain temperature is varied in a 37 °C, 27 °C and 37 °C cycle. In the second study, a microwave applicator with an integrated cooling system is used to develop a new electro-thermo-fluid (multiphysics) model for murine bladder hyperthermia studies. The therapy procedure uses a temperature-based optimization algorithm to maintain the bladder at a desired therapeutic level while sparing remaining tissues from dangerous temperatures. This model shows that temperature dependent biological properties and the effects of anesthesia must be accounted to capture the absolute and transient temperature fields within murine tissues. The good agreement between simulation and experimental results demonstrates that this multiphysics model can be used to predict internal temperatures during murine hyperthermia studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

GUGLIANDOLO, GIOVANNI. "Applications of Microwave Resonators to Thermal Metrology." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2849028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kilic, Ozgehan. "Defected Ground Structure And Its Applications To Microwave Devices And Antenna Feed Networks." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612415/index.pdf.

Повний текст джерела
Анотація:
This thesis reports the analysis of the rectangular shaped defected ground structure (RS-DGS) and the application of the structure on some microwave devices. DGS is analyzed in terms of its superior properties, which enables the designers to easily realize many kind of microwave devices which are impossible to achieve with the standard applications. Within the scope of this thesis, the focus is on the rectangular shaped DGS and its characteristic properties. The basic slow wave and high impedance characteristics are utilized in the design of some microwave devices. The design is carried on at the two different frequency bands: X-band and Ka band, centering at 10 GHz and 35 GHz, respectively. Finally, using the high impedance property and the coupling between the defects, a wide band 1 : 4 beam forming network is designed and implemented at 10 GHz.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Khan, Wasif Tanveer. "Design and development of organically packaged components and modules for microwave and Mm-wave applications." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53085.

Повний текст джерела
Анотація:
Because of the tremendous amount of media streaming, video calling and high definition TV and gaming, the biggest challenge for the wireless industry is the increasing demand of high data rates. Utilization of mm-wave frequencies is an attractive option to meet this high demand. Recent advances in low cost semiconductor technologies allow realization of low-cost on-chip RF front-ends in the high millimeter wave (mm-wave) frequencies, making it possible to realize compact systems for these application areas. Although integrated circuits (ICs) are one of the main building blocks of a mm-wave system, in order to realize a fully functional wireless system, cost-effective antenna design and packaging are two important pre-conditions. Researchers have investigated and reported low-cost electronics packaging up to 100 GHz to a great extent on ceramic substrates, but mm-wave packaging above 100 GHz is relatively less explored, particularly on organic substrates. This Ph.D. dissertation demonstrates the design and development of microwave and mm-wave on-chip and on-package antennas and organically packaged components and modules ranging from 20 GHz to 170 GHz. The focus of this research was to design and develop mm-wave components and modules on LCP, to investigate the viability of this organic substrate and development of fabrication techniques in the K- (18-26.5 GHz), V- (50 to 70 GHz), W- (75 to 110 GHz), and D- (110 to 170 GHz) bands. Additionally, a demonstration of a micro-machined on-chip antenna has also been presented. This dissertation is divided in three parts: (1) characterization of liquid crystal polymer from 110 to 170 GHz. (2) development of highly radiation efficient on-chip and AiP antennas, and (3) development of mm-wave modules with the integration of antennas.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Hutchinson, Bradley Curtis. "Design of an Ultra-Wideband Spiral Antenna for Ground-Penetrating Microwave Impulse Radar Applications." DigitalCommons@CalPoly, 2015. https://digitalcommons.calpoly.edu/theses/1445.

Повний текст джерела
Анотація:
Radar systems that allow early detection of underground IEDs can save lives. The Microwave Impulse Radar (MIR) capable of IED detection requires antennas capable of transmitting sub-nanosecond pulses over ultra-wideband (UWB) frequency ranges. This thesis investigates the suitability of a novel MIR antenna for high-accuracy ground-penetrating radar (GPR) applications. Key GPR antenna considerations are pulse dispersion, size, and cost. UWB horn antennas provide excellent dispersion performance but limit system efficacy due to significant size and cost requirements. Micro-strip spiral antennas provide a low-cost alternative to UWB horn antennas, but common spiral designs demonstrate poor pulse dispersion performance. The article “Low-Dispersion Spiral Antennas” proposes using combination spirals, which combine the performance of multiple simple spiral antennas. This work investigates combination spiral suitability through 3D EM simulations and micro-strip fabrication. Testing results indicate that combination spirals possess improved pulse fidelity versus current spiral designs. Size and cost improvements are realized over horn antenna solutions. Updated simulation hardware and fabrication equipment could allow future combination spiral antennas to rival horn antenna performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Zhang, Lanlin. "Fabrication and materials for magneto-photonic assemblies for high-gain antenna applications at GHz frequencies." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1221248675.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Manekiya, Mohammedhusen Hanifbhai. "Microwave and RF system for Industrial and Biomedical Applications." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/306624.

Повний текст джерела
Анотація:
Modern smartphone technology has created a myriad of opportunities in the field of RF and Microwave. Specifically, Chipless RFID sensor, compact microwave filter, antenna based on a microstrip structure, and many more. In this thesis, innovative ideas for the industrial and biomedical device has been explored. The work presents the reconfigurable filter design, Switch-beam antenna, Microwave interferometer, X-band Rotman Lens antenna, Ultra-wideband antenna based on SIW resonator, L-band Stepped Frequency Continuous Wave antenna, development of a wireless sensor system for environmental monitoring, Indoor Air Quality monitoring, and Wildfire Monitoring based on the modulated scattering technique (MST). The MST sensor probes are based on the scattering properties of small passive antennas and radiate part of the impinging electromagnetic field generated by an interrogating antenna, which also acquires the backscattered signal as information. The MST probes are able to deliver data without a radio frequency front end. They use a simple circuit that alternatively terminates the antenna probe on suitable loads to generate a low modulation signal on the backscattered electromagnetic wave. The antenna presented in this work has been designed in ADS Software by Keysight Technologies. The designed antenna has been assessed numerically and experimentally. The experimental measurement data demonstrate the effectiveness of the individual system. Simultaneously, the MST sensor system has been proposed to obtain the best performance in communication range, load efficiency, and power harvesting. The MST sensor has been fabricated and assessed in practical scenarios. The proposed prototype, able to provide a communication range of about 15 m, serves as a proof-of-concept. The acquired measurements of MST demonstrate the accuracy of the data without radio frequency front end or bulky wired connection with the same efficiency of standard wireless sensors such as radio frequency identifier (RFID) or wireless sensor networks (WSN).
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Manekiya, Mohammedhusen Hanifbhai. "Microwave and RF system for Industrial and Biomedical Applications." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/306624.

Повний текст джерела
Анотація:
Modern smartphone technology has created a myriad of opportunities in the field of RF and Microwave. Specifically, Chipless RFID sensor, compact microwave filter, antenna based on a microstrip structure, and many more. In this thesis, innovative ideas for the industrial and biomedical device has been explored. The work presents the reconfigurable filter design, Switch-beam antenna, Microwave interferometer, X-band Rotman Lens antenna, Ultra-wideband antenna based on SIW resonator, L-band Stepped Frequency Continuous Wave antenna, development of a wireless sensor system for environmental monitoring, Indoor Air Quality monitoring, and Wildfire Monitoring based on the modulated scattering technique (MST). The MST sensor probes are based on the scattering properties of small passive antennas and radiate part of the impinging electromagnetic field generated by an interrogating antenna, which also acquires the backscattered signal as information. The MST probes are able to deliver data without a radio frequency front end. They use a simple circuit that alternatively terminates the antenna probe on suitable loads to generate a low modulation signal on the backscattered electromagnetic wave. The antenna presented in this work has been designed in ADS Software by Keysight Technologies. The designed antenna has been assessed numerically and experimentally. The experimental measurement data demonstrate the effectiveness of the individual system. Simultaneously, the MST sensor system has been proposed to obtain the best performance in communication range, load efficiency, and power harvesting. The MST sensor has been fabricated and assessed in practical scenarios. The proposed prototype, able to provide a communication range of about 15 m, serves as a proof-of-concept. The acquired measurements of MST demonstrate the accuracy of the data without radio frequency front end or bulky wired connection with the same efficiency of standard wireless sensors such as radio frequency identifier (RFID) or wireless sensor networks (WSN).
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Donado, Morcillo Carlos Alberto. "Development of lightweight and low-cost microwave components for remote-sensing applications." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/51733.

Повний текст джерела
Анотація:
The objective of the proposed research is to design, implement, and characterize low-cost, lightweight front-end components and subsystems in the microwave domain through innovative packaging architectures for remote sensing applications. Particular emphasis is placed on system-on-package (SoP) solutions implemented in organic substrates as a low-cost alternative to conventional, expensive, rigid, and fragile radio- frequency substrates. To this end, the dielectric properties of organic substrates RT/duroid 5880, 6002 and 6202 are presented from 30 GHz to 70 GHz, covering most of the Ka and V radar bands, giving also a thorough insight on the uncertainty of the microstrip ring resonator method by means of the Monte Carlo uncertainty analysis. Additionally, an ultra-thin, high-power antenna-array technology, with transmit/ receive (T/R) functionality is introduced for mobile applications in the X band. Two lightweight SoP T/R array panels are presented in this work using novel technologies such as Silicon Germanium integrated circuits and microelectromechanical system switches on a hybrid organic package of liquid crystal polymer and RT/duroid 5880LZ. A maximum power of 47 dBm is achieved in a package with a thickness of 1.8 mm without the need of bulky thermal management devices. Finally, to address the thermal limitations of thin-film substrates of interest (liquid crystal polymer, RT/duroid 6002, alumina and Aluminum Nitride), a thermal assessment of microstrip structures is presented in the X band, along with the thermal characterization of the dielectric properties of RT/duroid 6002 from 20 ºC to 200 ºC and from 30 GHz to 70 GHz. Additional high-power, X-band technologies presented in this work include: a novel and compact topology for evanescent mode filters, and low-profile Wilkinson power dividers implemented on Aluminum Nitride using Tantalum Nitride thin-film resistors.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Donado, Morcillo Carlos Alberto. "Development of lightweight and low-cost microwave components for remote-sensing applications." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47532.

Повний текст джерела
Анотація:
The objective of the proposed research is to design, implement, and characterize low-cost, lightweight front-end components and subsystems in the microwave domain through innovative packaging architectures for remote sensing applications. Particular emphasis is placed on system-on-package (SoP) solutions implemented in organic substrates as a low-cost alternative to conventional, expensive, rigid, and fragile radio- frequency substrates. To this end, the dielectric properties of organic substrates RT/duroid 5880, 6002 and 6202 are presented from 30 GHz to 70 GHz, covering most of the Ka and V radar bands, giving also a thorough insight on the uncertainty of the microstrip ring resonator method by means of the Monte Carlo uncertainty analysis. Additionally, an ultra-thin, high-power antenna-array technology, with transmit/ receive (T/R) functionality is introduced for mobile applications in the X band. Two lightweight SoP T/R array panels are presented in this work using novel technologies such as Silicon Germanium integrated circuits and microelectromechanical system switches on a hybrid organic package of liquid crystal polymer and RT/duroid 5880LZ. A maximum power of 47 dBm is achieved in a package with a thickness of 1.8 mm without the need of bulky thermal management devices. Finally, to address the thermal limitations of thin-film substrates of interest (liquid crystal polymer, RT/duroid 6002, alumina and Aluminum Nitride), a thermal assessment of microstrip structures is presented in the X band, along with the thermal characterization of the dielectric properties of RT/duroid 6002 from 20 C to 200 C and from 30 GHz to 70 GHz. Additional high-power, X-band technologies presented in this work include: a novel and compact topology for evanescent mode filters, and low-profile Wilkinson power dividers implemented on Aluminum Nitride using Tantalum Nitride thin-film resistors.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Adnan, Shahid. "Ultra-wideband antenna design for microwave imaging applications : design, optimisation and development of ultra-wideband antennas for microwave near-field sensing tools, and study the matching and radiation purity of these antennas within near field environment." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5750.

Повний текст джерела
Анотація:
Near field imaging using microwave in medical applications has gain much attention recently as various researches show its high ability and accuracy in illuminating object comparing to the well-known screening tools such as Magnetic Resonance Imaging (MRI), digital mammography, ultrasound etc. This has encourage and motivate scientists continue to exploit the potential of microwave imaging so that a better and more powerful sensing tools can be developed. This thesis documents the development of antenna design for microwave imaging application such as breast cancer detection. The application is similar to the concept of Ground Penetrating Radar (GPR) but operating at higher frequency band. In these systems a short pulse is transmitted from an antenna to the medium and the backscattered response is investigated for diagnose. In order to accommodate such a short pulse, a very wideband antenna with a minimal internal reflection is required. Printed monopole and planar metal plate antenna is implemented to achieve the necessary operating wide bandwidth. The development of new compact printed planar metal plate ultra wide bandwidth antenna is presented. A generalized parametric study is carried out using two well-known software packages to achieve optimum antenna performance. The Prototype antennas are tested and analysed experimentally, in which a reasonable agreement was achieved with the simulations. The antennas present an excellent relative wide bandwidth of 67% with acceptable range of power gain between 3.5 to 7 dBi. A new compact size air-dielectric microstrip patch-antenna designs proposed for breast cancer detection are presented. The antennas consist of a radiating patch mounted on two vertical plates, fed by coaxial cable. The antennas show a wide bandwidth that were verified by the simulations and also confirmed experimentally. The prototype antennas show excellent performance in terms the input impedance and radiation performance over the target range bandwidth from 4 GHz to 8 GHz. A mono-static model with a homogeneous dielectric box having similar properties to human tissue is used to study the interaction of the antenna with tissue. The numerical results in terms the matching required of new optimised antennas were promising. An experimental setup of sensor array for early-stage breast-cancer detection is developed. The arrangement of two elements separated by short distance that confined equivalent medium of breast tissues were modelled and implemented. The operation performances due to several orientations of the antennas locations were performed to determine the sensitivity limits with and without small size equivalent cancer cells model. In addition, a resistively loaded bow tie antenna, intended for applications in breast cancer detection, is adaptively modified through modelling and genetic optimisation is presented. The required wideband operating characteristic is achieved through manipulating the resistive loading of the antenna structure, the number of wires, and their angular separation within the equivalent wire assembly. The results show an acceptable impedance bandwidth of 100.75 %, with a VSWR < 2, over the interval from 3.3 GHz to 10.0 GHz. Feasibility studies were made on the antenna sensitivity for operation in a tissue equivalent dielectric medium. The simulated and measured results are all in close agreement.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Adnan, S. "Ultra-wideband antenna design for microwave imaging applications. Design, optimisation and development of ultra-wideband antennas for microwave near-field sensing tools, and study the matching and radiation purity of these antennas within near field environment." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5750.

Повний текст джерела
Анотація:
Near field imaging using microwave in medical applications has gain much attention recently as various researches show its high ability and accuracy in illuminating object comparing to the well-known screening tools such as Magnetic Resonance Imaging (MRI), digital mammography, ultrasound etc. This has encourage and motivate scientists continue to exploit the potential of microwave imaging so that a better and more powerful sensing tools can be developed. This thesis documents the development of antenna design for microwave imaging application such as breast cancer detection. The application is similar to the concept of Ground Penetrating Radar (GPR) but operating at higher frequency band. In these systems a short pulse is transmitted from an antenna to the medium and the backscattered response is investigated for diagnose. In order to accommodate such a short pulse, a very wideband antenna with a minimal internal reflection is required. Printed monopole and planar metal plate antenna is implemented to achieve the necessary operating wide bandwidth. The development of new compact printed planar metal plate ultra wide bandwidth antenna is presented. A generalized parametric study is carried out using two well-known software packages to achieve optimum antenna performance. The Prototype antennas are tested and analysed experimentally, in which a reasonable agreement was achieved with the simulations. The antennas present an excellent relative wide bandwidth of 67% with acceptable range of power gain between 3.5 to 7 dBi. A new compact size air-dielectric microstrip patch-antenna designs proposed for breast cancer detection are presented. The antennas consist of a radiating patch mounted on two vertical plates, fed by coaxial cable. The antennas show a wide bandwidth that were verified by the simulations and also confirmed experimentally. The prototype antennas show excellent performance in terms the input impedance and radiation performance over the target range bandwidth from 4 GHz to 8 GHz. A mono-static model with a homogeneous dielectric box having similar properties to human tissue is used to study the interaction of the antenna with tissue. The numerical results in terms the matching required of new optimised antennas were promising. An experimental setup of sensor array for early-stage breast-cancer detection is developed. The arrangement of two elements separated by short distance that confined equivalent medium of breast tissues were modelled and implemented. The operation performances due to several orientations of the antennas locations were performed to determine the sensitivity limits with and without small size equivalent cancer cells model. In addition, a resistively loaded bow tie antenna, intended for applications in breast cancer detection, is adaptively modified through modelling and genetic optimisation is presented. The required wideband operating characteristic is achieved through manipulating the resistive loading of the antenna structure, the number of wires, and their angular separation within the equivalent wire assembly. The results show an acceptable impedance bandwidth of 100.75 %, with a VSWR < 2, over the interval from 3.3 GHz to 10.0 GHz. Feasibility studies were made on the antenna sensitivity for operation in a tissue equivalent dielectric medium. The simulated and measured results are all in close agreement.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Rida, Amin Hassan. "Integrated RF modules and passives on low-cost flexible materials for applications up to the mm-wave frequency range." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39552.

Повний текст джерела
Анотація:
The objective of the proposed research is to develop solutions for High-Performance Low-Cost Passives for Radar, Identification, and Communication Applications up to mm-Wave Frequencies. This research will bring to the table potential solutions that will meet three main requirements: small size (or low weight), high performance, and low cost. This research embarks on antenna design and development for passive RFID tags on LCP substrates, and then a transition towards lower cost modules investigates and explores the possibilities of using paper as RF substrates with inkjet printing as a low cost fabrication technology. Modules such as dual band antenna for Wifi frequencies (2.4 GHz and 5 GHz) and UWB (up to 10GHz) on paper substrate using inkjet printing are presented. This work then bridges into developing higher frequency modules. These include: highly selective filter design on LCP for X-band Radar application to be used as a benchmark for an easy adjustment for higher frequencies, and antenna modules LCP using inkjet printing for communication such as mm-Wave WLAN or WPAN. A transition into mm-Wave Modules then takes place for the general realization of low-cost high-performance mm-Wave modules and more specifically the low cost automotive radar. After proposing an architecture for integrated mm-Wave module, this work then investigates 2D/3D interconnections (and their integration with antennas) on LCP using conventional etching design guidelines up to 100GHz. Antenna arrays that are implemented with phase shifters for beam steering are then designed using edge fed and multilayer technology. Furthermore, crosstalk reductions for highly dense transmission lines are analyzed via simulations for the optimum performance and space saving of such mm-Wave modules such as the IC interface where space restrictions are strictly enforced.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Baldwin, Kevin. "Computer aided design and simulation of an integrated photonic delay line system for phased array antenna and other microwave signal processing applications /." Online version of thesis, 1993. http://hdl.handle.net/1850/11081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

BAYAT, AHMAD. "RF characterization and applications of carbon based composites." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2715629.

Повний текст джерела
Анотація:
Graphene is a monolayer of carbon atoms with remarkable electronic and mechanical properties. The attractive electronic properties of thin and thick films made of carbon nanotubes (CNTs) and graphene are increasingly being exploited for environmental and biological sensors. In particular, their sensitivity, selectivity, fast response time, ability to operate at room temperature, and their passive nature (no power consumption) provide competitive advantages of CNTs in sensor applications. However, their design as RF wireless sensors requires the integration of an antenna with the sensor element. Moreover, while the plasmonic nature of graphene at terahertz frequency has been widely reported, investigations on the practical utility of graphene at the microwave frequencies used in wireless sensor nodes are sparse which is indicated in this thesis. First, an ink comprising graphene thick films of different concentrations (12.5%, 25% and 33% in weight) is prepared for deposition, by screen printing. Detailed investigation of the surface morphology of the films using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) reveals that the graphene films present a homogeneous dispersion of the filler with a comparatively lower surface roughness at higher concentrations, and negligible agglomerates. The films are then printed in between copper electrodes on FR-4 substrate, commonly used in RF circuits, and the measured scattering parameters analyzed. A measurement-based RF equivalent circuit model of the graphene film is developed using a microstrip transmission line with a gap loaded by the film. Second, investigation on various patch antennas with different substrates using Multi-Walled Carbon Nanotube (MWCNT) thin film deposition is addressed. Screen printing technique is used to insert a CNT film in a loading stub connected to the antenna patch. The variation of the CNT surface impedance modifies the resonant frequency from the reference value, as revealed by comparison of return loss measured with and without the CNT loading. This CNT stub loaded patch antenna can be used as a bio sensor. Third, a printed RF slot ring resonator is configured with a graphene thin-film for sensor application. The conductive losses in the graphene film are characterized by dielectric spectroscopy and considered in the design. The graphene sensing element comprising the slot ring can be integrated with control electronics as a passive wireless sensor node. The novelty of this research is that RF losses are minimized by capacitively loading the ring at selective locations along its periphery. Dielectric spectroscopy is used to study variation in surface impedance of the film for various graphene loadings, and RF simulations are corroborated with measurements on graphene loaded slot ring resonators used in ammonia gas sensor application. The measurement steps are taken into consideration. As mentioned, the ring resonant frequency shift in presence of the ammonia gas is the factor used to sense the gas. Fourth, a novel design of an aperture coupled antenna which is weakly coupled to an interdigitated capacitor (IDC) is presented that serves the dual purpose of antenna impedance matching and the sensing function, the latter enabled by a thick film of CNTs deposited on the IDC surface. Simulations using CNT films of varying conductivity (or surface impedance) reveal that a strong antenna resonance can be produced. Furthermore, a study of the patch antenna radiation pattern with and without the CNT film shows weak coupling between the film and the antenna (loss of 0.5 dB or less relative to patch alone). Thus, the sensor film and geometry can be independently optimized without affecting radiation pattern.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Salah, Adham M. S. "Investigation of Integrated Decoupling Methods for MIMO Antenna Systems. Design, Modelling and Implementation of MIMO Antenna Systems for Different Spectrum Applications with High Port-to-Port Isolation Using Different Decoupling Techniques." Thesis, University of Bradford, 2019. http://hdl.handle.net/10454/18427.

Повний текст джерела
Анотація:
Multiple-Input-Multiple-Output (MIMO) antenna technology refers to an antenna with multiple radiators at both transmitter and receiver ends. It is designed to increase the data rate in wireless communication systems by achieving multiple channels occupying the same bandwidth in a multipath environment. The main drawback associated with this technology is the coupling between the radiating elements. A MIMO antenna system merely acts as an antenna array if the coupling between the radiating elements is high. For this reason, strong decoupling between the radiating elements should be achieved, in order to utilize the benefits of MIMO technology. The main objectives of this thesis are to investigate and implement several printed MIMO antenna geometries with integrated decoupling approaches for WLAN, WiMAX, and 5G applications. The characteristics of MIMO antenna performance have been reported in terms of scattering parameters, envelope correlation coefficient (ECC), total active reflection coefficient (TARC), channel capacity loss (CCL), diversity gain (DG), antenna efficiency, antenna peak gain and antenna radiation patterns. Three new 2×2 MIMO array antennas are proposed, covering dual and multiple spectrum bandwidths for WLAN (2.4/5.2/5.8 GHz) and WiMAX (3.5 GHz) applications. These designs employ a combination of DGS and neutralization line methods to reduce the coupling caused by the surface current in the ground plane and between the radiating antenna elements. The minimum achieved isolation between the MIMO antennas is found to be better than 15 dB and in some bands exceeds 30 dB. The matching impedance is improved and the correlation coefficient values achieved for all three antennas are very low. In addition, the diversity gains over all spectrum bands are very close to the ideal value (DG = 10 dB). The forth proposed MIMO antenna is a compact dual-band MIMO antenna operating at WLAN bands (2.4/5.2/5.8 GHz). The antenna structure consists of two concentric double square rings radiating elements printed symmetrically. A new method is applied which combines the defected ground structure (DGS) decoupling method with five parasitic elements to reduce the coupling between the radiating antennas in the two required bands. A metamaterial-based isolation enhancement structure is investigated in the fifth proposed MIMO antenna design. This MIMO antenna consists of two dual-band arc-shaped radiating elements working in WLAN and Sub-6 GHz 5th generation (5G) bands. The antenna placement and orientation decoupling method is applied to improve the isolation in the second band while four split-ring resonators (SRRs) are added between the radiating elements to enhance the isolation in the first band. All the designs presented in this thesis have been fabricated and measured, with the simulated and measured results agreeing well in most cases.
Higher Committee for Education Development in Iraq (HCED)
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Yi, Jianjia. "Transformation optics : Application for antennas and microwave devices." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS027/document.

Повний текст джерела
Анотація:
Le concept de l'optique de transformation qui permet de contrôler le trajet des ondes électromagnétiques à volonté en appliquant une variation spatiale judicieusement définie dans les paramètres constitutifs, est exploré pour concevoir des nouveaux types d'antennes et de dispositifs micro-ondes. Dans une première partie, basée sur la transformation de coordonnées, un dispositif d'illusion capable de modifier l'apparence d'une émission électromagnétique et de la délocaliser, est validé par le biais de simulations numériques. Un dispositif de transition de guide d'ondes, permettant d'assurer une transmission quasi totale entre deux guides d'ondes de sections transversales différentes est également conçu et validé expérimentalement par l'utilisation des résonateurs à métamatériaux. Dans une seconde partie, la transformation de l'espace basée sur l'équation de Laplace est étudiée pour concevoir des lentilles pour les applications antennaires. Une lentille de focalisation capable de restaurer les émissions en phase d'un réseau conforme d'éléments rayonnants et une lentille à dépointage qui permet de dévier la direction du faisceau rayonné d'une antenne sont conçues. Des prototypes fabriqués à partir d'un matériau isotrope tout-diélectrique grâce à la technologie d'impression en trois dimensions (3D) permettent de valider expérimentalement la fonctionnalité des lentilles sur une large bande de fréquence
The concept of transformation optics which can control electromagnetic waves at will by applying a judiciously defined spatial variation in the constitutive parameters is explored to design novel type antennas and microwave devices. In a first part, based on coordinate transformation, an illusion device able to modify the appearance of an electromagnetic emission and then delocalize it is validated through numerical simulations. A waveguide tapering device allowing to assure quasi-total transmission between two waveguides of different cross-sections is also designed and validated experimentally through the use of metamaterial resonators. In a second part, space transformation based on Laplace's equation is studied to design lenses for antenna applications. A beam focusing lens able to restore in-phase emissions from a conformal array of radiators and a beam steering lens that allows deflecting the radiated bema of an antenna are designed. Prototypes fabricated by an all-dielectric isotropic material through three-dimensional (3D) polyjet printing technology allow to experimentally validate the functionality of the lenses on a wide frequency range
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Najafabadi, Reza M. "Analysis and design of cylindrically conformable microwave phased array antennas for hyperthermia applications." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/16473.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Ata, Osama Wadie. "Application of ray theory into microwave horn antenna design." Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327873.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Cai, Ming. "Finite difference time domain method and its application in antenna analysis." Thesis, London South Bank University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263739.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Li, Xuyang [Verfasser]. "Body Matched Antennas for Microwave Medical Applications / Xuyang Li." Karlsruhe : KIT Scientific Publishing, 2014. http://www.ksp.kit.edu.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Simon, Matthieu. "Développement d’une sonde de diagraphie diélectrique par propagation électromagnétique." Grenoble INPG, 2006. http://www.theses.fr/2006INPG0050.

Повний текст джерела
Анотація:
Cette thèse s'inscrit dans le cadre d'un projet industriel, dans le domaine de l'exploration pétrolière. Il a pour but le développement d'une sonde de diagraphie permettant une meilleure caractérisation des réservoirs. La sonde est descendue dans des puits, son objectif étant la mesure des propriétés diélectriques des roches, porteuses d'informations pétrophysiques, dans une bande de fréquence allant de 100 MHz à 1 GHz. Le principe de la mesure est basé sur la propagation d'ondes électromagnétiques. Les signaux sont émis et reçus par un réseau d'antennes disposées sur un patin métallique. Ces antennes sont assimilées à des dipôles magnétiques tangentiels, avec deux polarisations. La sonde utilise une mesure différentielle pour déterminer la longueur d'onde et l'épaisseur de peau du milieu, et donc ses propriétés diélectriques. Une étude théorique et expérimentale a permis la réalisation d'antennes blindées assimilables à des dipôles magnétiques purs. Des prototypes, comprenant le réseau d'antennes et l'électronique hyperfréquence associée ont été réalisés. Leur réponse a été analysée au laboratoire ou en conditions réelles, dans des puits, avec une précision conforme aux spécifications. Ces études ont finalement permis de prouver la faisabilité de cette mesure
The topic of this thesis was inspired by an engineering project in the oil industry. The challenge is the development of a formation-evaluation measurement that determines the water content of rocks and other petrophysical features in hydrocarbon-bearing formations. The measurement uses electromagnetic propagation signals between 100 and 1000 MHz to determine the dielectric constant of rocks around a well, as the sonde is moved along a hole through these rocks. The sonde deploys an array of tangential magnetic dipole antennas with two polarizations in a metal housing. The sonde uses a differential measurement to determine the wavelength and skin depth of the signal and that way the dielectric permittivity and electric conductivity of the surrounding medium. These dual-polarization antennas were designed by detailed modeling simulations and were characterized in extensive laboratory experiments. The good agreement between theoretical and experimental studies helped to identify and then eliminate parasitic radiation modes and provide a pure magnetic-dipole radiator. The optimized individual antennas were integrated into prototype arrays that successfully completed field trials with quantitative results that were independently confirmed and reached the expected accuracy and dynamic performance specifications
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Petrović, Nikola. "Measurement System for Microwave Imaging Towards a Biomedical Application." Doctoral thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-24878.

Повний текст джерела
Анотація:
Microwave imaging techniques have shown excellent capabilities in various fields such as civil engineering, nondestructive testing, industrial applications, and have in recent decades experienced strong growth as a research topic in biomedical diagnostics. Many research groups throughout the world work on prototype systems for producing images of human tissues in different biomedical applications, particularly breast tumor detection. However, the research community faces many challenges and in order to be competitive to other imaging modalities one of the means is to put emphasis on experimental work. Consequently, the use of flexible and accurate measurement systems, together with the design and fabrication of suitable antennas, are essential to the development of efficient microwave imaging systems. The first part of this thesis focuses on measurement systems for microwave imaging in terms of antenna design and development, robot controlled synthetic array geometries, permittivity measurements, and calibration. The aim was to investigate the feasibility of a flexible system for measuring the fields around an inhomogeneous object and to create quantitative images. Hence, such an aim requires solving of a nonlinear inverse scattering problem, which in turn requires accurate measurements for producing good quality experimental data. The presented solution by design of a flexible measurement system is validated by examination of microwave imaging from experimental data with a breast phantom. The second part of the thesis deals with the research challenges of designing high performance antennas to be placed in direct contact with or in close proximity to the imaged object. The need for novel antenna applicators is envisaged in the framework of the Mamacell measurement system, where the antenna applicators have to be designed and constructed to effectively couple the energy into the imaging object. For this purpose the main constraints and design requirements are a narrow lobe of the antenna, very small near-field effects, and small size. Numerical simulations and modeling shows that the proposed ridged waveguide antenna is capable of fulfilling the design requirements and the performance goals, demonstrating the potential for the future microwave imaging system called Mamacell.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Fdo, Michael J. "Investigation of microwave antennas in lossy media for medical applications." Thesis, Northumbria University, 2012. http://nrl.northumbria.ac.uk/5848/.

Повний текст джерела
Анотація:
For several years, microwave engineers have dreamed of using non-ionising electromagnetic waves in medical imaging applications. The rate of evolution of microwave techniques for medical application has been immense and shows no signs of relenting. Since the limitations of X-ray mammography are well reported, alternative techniques using microwaves for breast cancer detection are developed. Some of these techniques have progressed to the point where positive clinical experience has emerged.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Vlasits, Tamas. "Modelling and application of a cross-aperture coupled single feed circularly polarised patch antenna." Thesis, Northumbria University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Jalilvand, Malyhe [Verfasser]. "Application-Specific Broadband Antennas for Microwave Medical Imaging / Malyhe Jalilvand." Karlsruhe : KIT Scientific Publishing, 2017. http://www.ksp.kit.edu.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Hamdoun, Abdelaziz. "Design of GaN-based microwave components and application to novel high power reconfigurable antennas." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S069/document.

Повний текст джерела
Анотація:
Cette thèse démontre la faisabilité de l'utilisation de la technologie Nitrure de Gallium (GaN) dans les systèmes RF / micro-ondes reconfigurables. Les principales caractéristiques de ce type de technologie des semi-conducteurs se résident dans ses capacités de supporter des puissances élevées avec un rendement aussi élevé. En outre, la technologie GaN est un candidat très prometteur pour la réalisation des applications haute puissance/haute fréquence. Le travail de cette thèse est divisé en deux parties principales. La première est consacrée au développement, à l’analyse et à la caractérisation en DC et en RF jusqu'à 20 GHz des circuits actifs réalisés à base de la technologie GaN, tels que les diodes varicap et les commutateurs. Les diodes varicap fabriquées ont été modélisées en petit et grand signal par des équations analytiques contenant des coefficients empiriques ainsi un modèle en circuit a été développé, tandis aux commutateurs, un modèle de circuit en petit signal a été proposé. Ces composants actifs ont été réalisés en utilisant les processus GaN HEMTs de fabrication offerts par le Conseil National de Recherches du Canada (CNRC). La deuxième partie aborde les aspects de l'intégration de ces dispositif actifs GaN et de la conception des circuits reconfigurables proposés, tels que déphaseur reconfigurable, -3dB 90° coupleur hybride reconfigurable, oscillateur accordable en fréquence, commutation de faisceau et accordabilité en fréquence d’un réseau d'antennes patch tout en utilisant ces diodes varicap et commutateur GaN développées au fil de cette thèse. A travers cette thèse, l'utilisation de la technologie GaN pour la conception des designs RF reconfigurables en fréquence pour les applications fonctionnant au-dessous de 10 GHz a été démontrée
This thesis demonstrates the feasibility of using the Gallium Nitride (GaN) technology in reconfigurable RF/microwave systems. The main features of this type of semiconductor technology being its high power with high efficiency. In addition, GaN technology is a very promising candidate for realizing high power/high frequency applications. The thesis work is divided in two main parts. The first one is devoted to active GaN devices, such as varactor diodes and switches, development, analyze and characterization via DC and RF up to 20 GHz. The fabricated varactor were modeled by analytic equations containing empirical coefficients and also a physic circuit model was developed, while for the switches only a small signal physic circuit model was proposed. These GaN devices was manufactured by using the Canadian National Research Council (NRC) GaN HEMTs processes. The second part addresses the integration and design aspects of the reconfigurable proposed circuits, such as tunable phase shifter, reconfigurable 3-dB 90° hybrid coupler, tunable frequency oscillator, beam switching antenna array and matching reconfigurable patch antenna based on these developed GaN varactors and switches devices. The use of GaN on highly efficient reconfigurable designs for broadband RF/microwave applications operating below 10 GHz was demonstrated
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Ginn, James. "Broadband Rectifying Antenna Design for Low Power Applications." Honors in the Major Thesis, University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/710.

Повний текст джерела
Анотація:
This item is only available in print in the UCF Libraries. If this is your Honors Thesis, you can help us make it available online for use by researchers around the world by following the instructions on the distribution consent form at http://library.ucf
Bachelors
Engineering and Computer Science
Electrical Engineering
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Andrews, Joel. "Design of SiGe HBT power amplifiers for microwave radar applications." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28116.

Повний текст джерела
Анотація:
Thesis (M. S.)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009.
Committee Member: John Cressler; Committee Member: John Papapolymerou; Committee Member: Joy Laskar; Committee Member: Thomas Morley; Committee Member: William Hunt.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Olgun, Ugur. "Efficient Microwave Energy Harvesting Technology and its Applications." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1348776239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Tang, Wenxuan. "Coordinate transformation based electromagnetic design and applications." Thesis, Queen Mary, University of London, 2012. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8695.

Повний текст джерела
Анотація:
The main objective of this thesis is to take one step forward to practical and realisable devices for antenna and microwave engineering, using the technique of discrete coordinate transformation (DCT), which is a practical implementation of the coordinate transformation method. During this thesis, the DCT technique was demonstrated and analysed from the theory, and was proved to provide an all-dielectric approach to design devices under certain conditions. Two schemes were proposed on how to use this technique in a practical design. The first one is to transform an existing device into a flattened profile, meanwhile maintaining its electromagnetic performance. As examples, a flat reflector and a flat lens were created from a parabolic reflector and a convex lens, respectively. The second scheme is to project the propagating paths of an electromagnetic wave, and then generate a distorted space according to the paths by engineering the electromagnetic properties of the media. In this scheme, two examples of application were presented: an undetectable antenna composed of a carpet cloak and a conducting cavity, and a broadband device which can extraordinarily enhance the transmission through a sub-wavelength aperture. Numerical simulations based on the Finite-Difference Time-Domain (FDTD) method were implemented to verify all the designs. Several specific configurations were employed in the modelling in order to simulate the DCT based devices more efficiently and precisely. Performance of these devices was validated and analysed, and the advantages and disadvantages of this technique were investigated. Realisation and fabrication methods i were also studied, and a prototype was designed, fabricated and measured. At the end, as an extension, a multiple discrete coordinate transformation method was proposed and presented. This multiple transformation was proved to effectively relax the limitation of the one-step transformation, and was used to design an all-dielectric thin absorber from a conventional pyramidal one for demonstration.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Ayissi, manga Aurélien. "Techniques de Maîtrise des Phénomènes de Couplage dans les Antennes Réseaux Imprimées à Balayage Electronique : Application à la Réduction des Directions Aveugles." Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0033/document.

Повний текст джерела
Анотація:
Dès lors que des éléments rayonnants sont placés à proximité les uns des autres, comme c'est le cas au sein des antennes réseaux à balayage électronique, des interactions électromagnétiques parasites se créent entre eux. Ces couplages se manifestent par une perturbation des répartitions de courants des sources du réseau. Leur impact dépend fortement de l'angle de dépointage du réseau mais est généralement néfaste, car ils modifient les caractéristiques du rayonnement des sources. Les différents objectifs de compacité et les spécifications de performances radioélectriques visés pour les radars aéroportées peuvent conduire à des structures qui supportent et favorisent ces phénomènes de couplages parasites, sous la forme d’ondes d’espace et de surface. Ces derniers peuvent aller jusqu'à entrainer l'impossibilité pour l'antenne de rayonner dans certaines directions et à certaines fréquences d’utilisation : on parle de directions aveugles. Ce phénomène limite de manière considérable le volume de dépointage opérationnel d'un système radar. La maîtrise du couplage entre les éléments rayonnants est donc l'une des problématiques essentielles du développement et du dimensionnement d'une antenne réseau. La recherche qui traite de ce sujet n'en est plus à ses débuts (les premiers radars à balayage électronique sont exploités depuis les années 50) mais reste toujours en attente de solutions innovantes permettant de mieux comprendre et maîtriser ces phénomènes. Dans cette thèse, plusieurs méthodes permettant de minimiser les effets du couplage dans les réseaux à balayage électroniques ont été investiguées. Les travaux s'orientent notamment autour du défi de réduire les conséquences des directions aveugles sans modifier la maille initiale du réseau d'antenne (contrainte iso-maille)
When radiating elements are located close to one another, as it is the case in electronically phased array antennas, parasitic electromagnetic interferences occur between them. The impact of these coupling mechanisms depends to a large extent on the scanning angle of the array, but is usually harmful, since it alters the radiating properties and the active input impedance of the sources. The compactness objectives and radioelectric performances required for airborne radars can lead to structures that support and foster these parasitic couplings, in the form of surface or space waves. In some cases, mutual coupling can even result in the impossibility for the array to radiate in certain directions and at certain frequencies. This phenomenon, referred to as scan blindness, significantly reduces the operating scan volume of a radar system. In that respect, the control of coupling mechanisms between radiating elements is a major issue when developing an array antenna and although the research that deals with this subject is no longer in its infancy, it is always pending for new and innovating solutions to master these phenomena. In this thesis, different solutions enabling to minimize the effect of couplings in phased arrays are investigated. The presented research revolves around the challenge of limiting scan blindness consequences without modifying the initial mesh of the array antenna
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Huang, Xianjun. "Electromagnetic applications of graphene and graphene oxide." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/electromagnetic-applications-of-graphene-and-graphene-oxide(873c9618-19a3-4818-b47a-9afbca39857c).html.

Повний текст джерела
Анотація:
Since the isolation of graphene in 2004, a large amount of research has been directed at 2D materials and their applications due to their unique characteristics. This thesis delivers pioneering developments on the applications of graphene and graphene oxide (GO) on electromagnetic ranges such as radio frequency, microwave frequency and THz bands, and specifically 2D materials based antennas, absorbers, sensors and etc. This thesis focuses on exploring electromagnetic applications of monolayer graphene, printed graphene and graphene oxide. In study of monolayer graphene applications, the theoretical and simulation studies are carried out to design tunable terahertz (THz) absorbers, tunable microwave wideband absorbers, and reconfigurable antennas, etc. These studies on the applications of monolayer graphene have proved prospective potentials of graphene in THz sensing, RCS reduction, and reconfigurable antennas. This thesis also presents pioneering advances on electromagnetic applications of printed graphene. Among these works, low-cost highly conductive and mechanically flexible printed graphene is developed for radio frequency (RF) applications. For the first time, effective RF radiation of printed graphene is experimentally demonstrated. Based on these results, applications of printed graphene including RFID (radio frequency identification) tags, anti-tampering RFID, EMI shielding, flexible microwave components such as transmission lines, resonators and antennas, conformable wideband radar absorbers, graphene oxide based wireless sensors, etc. are developed and experimentally demonstrated. This work significantly expands applications of graphene in electromagnetic areas.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Garcia, Miquel Aleix. "Antenna Design and Characterization for Biomedical Applications." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/586219.

Повний текст джерела
Анотація:
The use of radiofrequency in biomedical devices is taking on increasing significance due to its contributions to the prevention, diagnosis and treatment of diseases, either for minimally invasive remote monitoring of physiological data or for other applications such as medical imaging and thermal treatments. The advantages provided by radiofrequency fit perfectly inside the new paradigm of predictive, preventive, personalized and participatory medicine (P4 medicine) in which the individual patient is the central focus of the healthcare system. Although the development of biomedical devices with radiofrequency has been studied in depth in recent years, several challenges still remain. In this context, this thesis deals with one of the most important issues: the design and characterization of antennas in the presence of the human body. The main goal of this thesis is to develop new antenna designs that overcome some of the current limitations, such as miniaturization, efficiency, frequency detuning and integration. This thesis also aims to provide tools and new insights for the development of antenna designs in the presence of the human body by analyzing the interaction between the antennas and the surrounding biological medium. The research carried out has two main focuses: the wireless transmission of physiological data (biotelemetry) and microwave hyperthermia for cancer treatments. For the first, the study presents a theoretical framework review of in- body antennas followed by an exhaustive study of their miniaturization process, the manufacturing and the experimental characterization, as well as the phantom influence. Based on these studies, a novel multilayered broadband antenna and a miniaturized RFID tag are presented. And with regard to thermal treatment of breast cancer, an on-body, compact and configurable applicator with a phased antenna array has been developed. In conclusion, the outcomes of this thesis make contributions in two main areas: (1) the antenna design and characterization for use in the presence of human body and (2) the research of new solutions for in-body biomedical devices with biotelemetry and for the treatment of breast cancer through microwave hyperthermia.
L’ús de la radiofreqüència en dispositius biomèdics és cada vegada més extens degut a la seva contribució a la prevenció, diagnòstic i tractament de malalties, ja sigui pel control remot de dades fisiològiques amb mínima invasivitat o per altres aplicacions. Els avantatges de la radiofreqüència encaixen perfectament dins el nou paradigma de medicina basat en la predicció, prevenció, personalització i participació, i on el pacient es situa en el focus central del sistema sanitari. El desenvolupament de dispositius biomèdics amb radiofreqüència ha estat àmpliament estudiat durant els últims anys, però encara queden molts reptes per assolir. En aquest context, aquesta tesi tracta d’abordar un dels punts més rellevants: el disseny i la caracterització d’antenes en presència del cos humà. L’objectiu principal de la tesi és el desenvolupament de nous dissenys d’antenes que superin algunes de les limitacions actuals, com ara la miniaturització, l’eficiència, la desintonització freqüencial o la integració amb el dispositiu. Aquesta tesi també pretén proporcionar eines pel desenvolupament de dissenys d’antenes en presència del cos humà mitjançant l’anàlisi de la interacció entre les pròpies antenes i el medi biològic que les envolta. La recerca presentada es centra en dos enfocaments diferents: la transmissió sense fils de dades fisiològiques (biotelemetria) i la hipertèrmia de microones per a tractaments de càncer. Per al primer, s’exposa una revisió del marc teòric actual de les antenes implantables seguit d’un estudi exhaustiu del seu procés de miniaturització, fabricació i caracterització experimental, així com també de la influència de l’ús de diferents phantoms. En base a aquests estudis, es presenten una antena de banda ampla multicapa i una etiqueta RFID miniaturitzada basades en la tecnologia LTCC. Per altra banda, es presenta un aplicador de microones compacte format per una matriu d’antenes configurables en fase per ser utilitzat en el tractament tèrmic del càncer de mama. En conclusió, els resultats d’aquesta tesi contribueixen principalment als següents punts: (1) el disseny i caracterització d’antenes en presència del cos humà i (2) la recerca de noves solucions per a dispositius biomèdics amb biotelemetria i per al tractament del càncer de mama mitjançant la hipertèrmia de microones.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Thamae, Leboli Zachia. "Investigation of dielectric resonator antennas for microwave RFID and broadband MIMO communication systems applications." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.685443.

Повний текст джерела
Анотація:
The ever-decreasing size of electronic circuits leads to the challenge of an antenna becoming one of the biggest components in most portable wireless electronic devices. lIenee recent miniaturization techniques such as dielectric resonator antenna (DRA) technology employing compact non-conducting dielectric materials as radiating elements continue to be explored. This thesis seeks the application of DRAs in radio frequency identification (RFID) tags to tackle the problem of frequency detuning and loss of matching faced by most tag antennas when mounted on metallic backgrounds. It then investigates antenna polarization diversity for addressing the challenge of limited space available on small mobile devices for multiple-input multiple-output (MIMO) communication systems by employing single compact narrowband dual- and tri-port regular DRAs and proposed dual-port broadband (4 - 7 GHz) bowtie DRAs and their two-element arrays on representative personal digital assistant (PDA) blocks.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Guelilia, Zakaria. "Modélisation électromagnétique rapide de problèmes multi-échelles incluant une partie variable - Application à la dosimétrie numérique et au couplage entre antennes." Thesis, Rennes, INSA, 2014. http://www.theses.fr/2014ISAR0006/document.

Повний текст джерела
Анотація:
La simulation numérique est un outil indispensable pour la résolution de problèmes électromagnétiques. Le temps de calcul ainsi que la précision des résultats dépendent du niveau de description utilisé et des dimensions électriques du problème analysé. Dans le cas de figure où il est nécessaire de modéliser un environnement électriquement grand, l'emploi de méthodes classiques comme la méthode des différences finies dans le domaine temporel (FDTD) se heurte à des difficultés en termes de temps de simulation. Cet aspect devient particulièrement problématique quand l'analyse doit être menée pour plusieurs valeurs d'un ou plusieurs paramètres définissant le problème étudié. Face à cette variabilité et afin d'éviter la multiplication de simulations coûteuses, Il est nécessaire d'opter pour des méthodes appropriées. Les travaux de cette thèse sont consacrés au développement d'une nouvelle approche permettant de résoudre de manière efficace l'aspect variable rencontré dans un problème multiéchelle. Cette nouvelle méthode issue de l'association de la FDTD à Grille Double (DG-FDTD) avec un modèle de substitution se nomme la MM-DG-FDTD (Macro-Modèle basé sur la DG-FDTD). L'emploi de la DG-FDTD vise à traiter l'aspect multi-échelle en divisant le problème étudié en sous-volumes FDTD possédant chacun ses propres paramètres de simulation. L'utilisation d'un modèle de substitution rapide construit en peu de simulations électromagnétiques permet de remplacer rigoureusement et rapidement la dernière simulation de la DGFDTD. Après avoir validé le bon fonctionnement du modèle de substitution sur des cas simples, une utilisation de la MM-DGFDTD est effectuée sur deux applications inscrites dans deux contextes : la dosimétrie numérique et le couplage entre antennes. La première propose d'estimer la valeur du champ électrique à l'intérieur de l'oeil gauche d'un modèle de corps humain. Ce dernier est soumis au rayonnement électromagnétique d'une antenne localisée sur un véhicule. Cette étude est effectuée pour un grand nombre de positions du corps autour du véhicule. La seconde application consiste à évaluer la valeur du coefficient de transmission entre deux antennes ULB (Ultra-Large Bande). La position de l'antenne de réception évolue au sein d'un grand environnement. Pour ces deux études, la MM-DG-FDTD montre sa capacité à donner des résultats rapides et précis en comparaison d'une utilisation classique de la DG-FDTD
Numerical modelling is an essential tool for solving electromagnetic problems. The computation time and the accuracy of the results depend on the description level used and electrical dimensions of the analyzed problem. When it is necessary to model an electrically large environment, the use of conventional methods such as the finite difference time domain (FDTD) face difficulties in terms of simulation time. This becomes particularly problematic when the analysis must be carried out for several values of one or more parameters defining the studied problem. Considering this variability aspect and in order to avoid multiplication of costly simulations, it is necessary to choose suitable methods. This thesis aims to develop a new approach to solve effectively the variable feature encountered in some multi-scale problems. This new method called the MM-DG-FDTD (MacroModel based Dual Grid-FDTD) results from the association of the Dual Grid- FDTD (DG-FDTD) method with a substitution model. The use of the DG-FDTD permits to treat multiscale aspect dividing the studied problem into FDTD sub-volumes. Each step has its own simulation parameters. The fast substitution model built in few electromagnetic simulations replaces in a rigorous and efficient way the last expensive DG-FDTD simulation. The proper operation of the substitution model is firstly validated using simple cases. Next, a use of the MM-DG-FDTD is performed on two applications belonging to two contexts: numerical dosimetry and antennas coupling. The first one proposes to estimate the value of the electric field inside the left eye of a human body model. It receives electromagnetic radiation from an antenna located onboard a vehicle. This study is carried out for a large number of positions of the body around the vehicle. The second application is to assess the value of the transmission coefficient between two UWB (Utra-Wide Band) antennas. The position of the receiving antenna changes in a large environment. For both studies, MM-DG-FDTD shows its ability to give fast and accurate results compared to a classic use of the DG-FDTD
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Zhu, Wenhao. "Artificial microwave volume holograms based on printed dielectrics: Theory, performance analysis and potential application in antenna systems." Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/29327.

Повний текст джерела
Анотація:
A new type of complex electromagnetic structure, the artificial microwave volume hologram (AMVH), has been studied systematically. The structure consists of cascaded planar lattices of metallic circular patches with varying size and can be designed to have an effective dielectric modulation that follows a holographic interference pattern. Under the illumination of certain electromagnetic waves, an AMVH can reproduce a required wave field pattern based on its design, just like a traditional volume hologram in optical holography. A theoretical model, namely the self-consistent dynamic-dipole interaction theory (DDIT), has been developed to characterize AMVHs for wave scattering and beam form conversion. It can also be used for designing AMVHs as well as for optimization. Multiplex AMVHs have been proposed and simulated, in which more than two wave beams interact with the structure, which results in wave beam conversion, splitting or combining. Their flexibility and application potential are illustrated through a number of examples such as multi-beam antennas, shared apertures, and beam splitting and combining. Experimental validation of the theory has been carried out on several fabricated AMVHs, which has confirmed the theory. An alternative patch geometry, namely a square patch, has been proposed and analyzed for application in AMVHs, which can provide significant higher electric polarizability. Finally, a full-wave FEM simulation has been done to verify the accuracy of the theoretical model.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Yurduseven, Okan. "Integration of microwave antennas with solar PV for multiband and wideband mobile, WLAN and WiMAX applications." Thesis, Northumbria University, 2014. http://nrl.northumbria.ac.uk/17466/.

Повний текст джерела
Анотація:
The primary goal of this research is to investigate the existing photovoltaic antenna integration techniques and develop a new solar antenna integration topology in order to address the drawbacks of these techniques. With the increasing demands for low-profile antennas and a growing move towards the microgeneration of electricity, primarily by photovoltaics, photovoltaic antennas are of increasing importance with a growing amount of research in this area being developed. At present there are a number of designs for photovoltaic antennas which could be divided into two distinct categories. The first type is the use of solar cells as an RF ground plane, whilst the second type involves the use of solar cells as an RF radiating element. Both techniques bring significant challenges if they are to be widely adopted. Considering the first technique, using a solar cell as an RF ground plane introduces an optical shading problem, which significantly reduces the solar efficiency of the solar antennas using this integration topology. To this end, meshing the RF radiating element is investigated in this thesis to achieve optical transparency at the expense of increasing the cost and complexity of the fabrication process of photovoltaic antennas. Conversely, using a solar cell as an RF radiating element limits the ability to modify the resonance response using traditional RF bandwidth enhancement techniques due to the fact that solar cells need to have a homogeneous structure to achieve optimum solar performance. In order to address these challenges, a third solar antenna integration topology is proposed in this thesis. This method is based upon the use of solar cells as an RF stacked parasitic patch element suspended above the conventional RF radiating element of the integrated antennas. This integration topology enables the integrated solar cells to achieve an optimum solar efficiency due to their suspended position eliminating the shading problem. It also enables the RF radiating element to be modified to excite multiple TMmn propagation modes to achieve enhanced resonance response for multiband and wideband applications. This new topology has been further developed and applied to design a dual-polarised photovoltaic antenna for polarisation diverse communication systems, which has been extended to produce a photovoltaic array antenna for beam steering applications. This thesis addresses a major knowledge gap in the field of photovoltaic antennas. As a result of this, greater understanding of the design procedures of photovoltaic antennas and associated trade-offs from such designs is developed. Using this knowledge, novel designs that overcome the associated problems of current photovoltaic antennas are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Castro, Juan De Dios. "Engineered Nanocomposite Materials for Microwave/Millimeter-Wave Applications of Fused Deposition Modeling." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6643.

Повний текст джерела
Анотація:
A variety of high-permittivity (high-k) and low-loss ceramic-thermoplastic composite materials as fused deposition modeling (FDM) feedstock, based on cyclo-olefin polymer (COP) embedded with sintered ceramic fillers, have been developed and investigated for direct digital manufacturing (DDM) of microwave components. The composites presented in this dissertation use a high-temperature sintering process up to 1500°C to further enhance the dielectric properties of the ceramic fillers. The electromagnetic (EM) properties of these newly developed FDM composites were characterized up to the Ku-band by using the cavity perturbation technique. Several models for prediction of the effective relative dielectric permittivity of composites based on the filler loading volume fraction have been evaluated, among which Hanai-Bruggeman and Maxwell models have shown the best accuracy with less than 2% and 5% discrepancies, respectively. The 30 vol. % COP-TiO2 FDM-ready composites with fillers sintered at 1200°C have exhibited a relative permittivity (εr) of 4.78 and a dielectric loss tangent (tan δd) lower than 0.0012 at 17 GHz. Meanwhile, the 30 vol. % COP-MgCaTiO2 composites with fillers sintered at 1200°C have exhibited a εr of 4.82 and a tan δd lower than 0.0018. The DDM approach combines FDM of the engineered EM composites and micro-dispensing for deposition of conductive traces to fabricate by 3D-printing edge-fed patch antennas operating at 17.2 GHz and 16.5 GHz. These antennas were demonstrated by employing a 25 vol. % COP-MgCaTiO2 composite FDM filament with the fillers sintered at 1100°C and a pure COP filament, which were both prepared and extruded following the process described in this dissertation. The low dielectric loss of the 25 vol. % COP-MgCaTiO2 composite material (tan δd lower than 0.0018) has been leveraged to achieve a peak realized gain of 6 dBi. Also, the high-permittivity (εr of 4.74), which corresponds to an index of refraction of 2.17, results in a patch area miniaturization of 50% when compared with an antenna designed and DPAM-printed over a Rogers RT/duroid® 5870 laminate core through micro-dispensing of CB028 silver paste. This reference antenna exhibited a measured peak realized gain of 6.27 dBi that is comparable. Also, two low-loss FDM-ready composite materials for DDM technologies are presented and characterized at V-band mm-wave frequencies. Pure COP thermoplastic exhibits a relative permittivity εr of 2.1 and a dielectric loss tangent tan δd below 0.0011 at 69 GHz, whereas 30 vol. % COP-MgCaTiO2 composites with fillers sintered at 1200°C exhibit a εr of 4.88 and a tan δd below 0.0070 at 66 GHz. To the best of my knowledge, these EM properties (combination of high-k and low-loss) are superior to other 3D-printable microwave materials reported by the scientific microwave community and are on par with materials developed for high-performance microwave laminates by RF/microwave industry as shown in Chapter 5 and Chapter 7 and summarized in Table 5.4 and Table 7.1. Meanwhile, the linear coefficient of thermal expansion (CTE) from -25°C to 100°C of the reinforced 30 vol. % COP-MgCaTiO2 composite with fillers sintered at 1200°C is 64.42 ppm/°C, which is about 20 ppm/°C lower when compared with pure ABS and 10 ppm/°C lower as compared to high-temperature polyetherimide (PEI) ULTEM™ 9085 resin from Stratasys, Ltd. The CTE at 20°C of the same composite material is 84.8 ppm/°C which is about 20 ppm/°C lower when compared with pure ABS that is widely used by the research community for 3D printed RF/microwave devices by FDM. The electromagnetic (EM) composites with tailored EM properties studied by this work have a great potential for enabling the next generation of high-performance 3D-printed RF/microwave devices and antennas operating at the Ku-band, K-band, and mm-wave frequencies.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Ghavami, Navid. "Ultra-wideband imaging techniques for medical applications." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:6f590d26-ee7c-41d7-a89b-393c864c9d82.

Повний текст джерела
Анотація:
Ultra-wideband (UWB) radio techniques have long promised good contrast and high resolution for imaging human tissue and tumours; however, to date, this promise has not entirely been realised. In recent years, microwave imaging has been recognised as a promising non-ionising and non-invasive alternative screening technology, gaining its applicability to breast cancer by the significant contrast in the dielectric properties at microwave frequencies of normal and malignant tissues. This thesis deals with the development of two novel imaging methods based on UWB microwave signals. First, the mode-matching (MM) Bessel-functions-based algorithm, which enables the identification of the presence and location of significant scatterers inside cylindrically-shaped objects is introduced. Next, with the aim of investigating more general 3D problems, the Huygens principle (HP) based procedure is presented. Using HP to forward propagate the waves removes the need to apply matrix generation/inversion. Moreover, HP method provides better performance when compared to conventional time-domain approaches; specifically, the signal to clutter ratio reaches 8 dB, which matches the best figures that have been published. In addition to their simplicity, the two proposed methodologies permit the capture of a minimum dielectric contrast of 1:2, the extent to which different tissues, or differing conditions of tissues, can be discriminated in the final image. Moreover, UWB allows all the information in the frequency domain to be utilised, by combining information gathered from the individual frequencies to construct a consistent image with a resolution of approximately one quarter of the shortest wavelength in the dielectric medium. The power levels used and the specific absorption rates are well within safety limits, while the bandwidths satisfy the UWB definition of being at least 20% of the centre frequencies. It follows that the methodologies permit the detection and location of significant scatterers inside a volume. Validation of the techniques through both simulations and measurements have been performed and presented, illustrating the effectiveness of the methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Almustafa, Mohamad. "Modélisation des micro-plasmas, conception des circuits micro-ondes, Coupleur Directionnel Hybride pour Mesures et des applications en Télécommunication." Phd thesis, Toulouse, INPT, 2013. http://oatao.univ-toulouse.fr/14170/1/almustafa.pdf.

Повний текст джерела
Анотація:
L'intégration des nouveaux éléments basés sur la physique des plasmas dans le domaine des circuits et des systèmes micro-ondes est l'objectif de ce travail. En profitant des caractéristiques électromagnétiques des plasmas et en jouant sur leur architecture, on développe des micro-commutateurs micro-ondes et d'autres circuits radio et hyperfréquences en technologies microrubans ou en guide d'onde… La simulation de la propagation des ondes électromagnétiques dans un plasma et les études de l'interaction entre un plasma et les ondes électromagnétiques nécessite la connaissance des paramètres fondamentaux du plasma comme la permittivité. C'est pour cela qu'on étudie aussi les mesures plasmas par différents techniques comme la transmission/réflexion des ondes électromagnétiques, la perturbation des cavités résonnantes, ... Un schéma électrique équivalent modélisant un micro-commutateur hyperfréquence en plasma, est obtenu grâce aux mesures des courants de décharge électrique, à la rétro-simulation et aux techniques de modélisation numérique. Un coupleur directif hybride compact est utilisé pour les mesures plasmas en assurant la protection du matériel et de l'équipement de mesure des signaux d'un plasma.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Augustine, Robin. "Electromagnetic modelling of human tissues and its application on the interaction between antenna and human body in the BAN context." Phd thesis, Université Paris-Est, 2009. http://tel.archives-ouvertes.fr/tel-00499255.

Повний текст джерела
Анотація:
Les réseaux BAN (Body Area Network) révolutionnent le concept de la surveillance et de la prise en charge à distance de la santé du patient. Le BAN fournit des informations sur l'état de santé du patient en temps réel quelque soit l'endroit où il se trouve. Dans le « télé monitoring », des capteurs de mouvement, de respiration ou du rythme cardiaque placés à l'intérieur ou sur le corps humain transmettent des données via le réseau sans fil constituant le BAN, une antenne étant associée à chaque nœud du réseau. La communication peut être in/on, on/on ou on/off selon que les antennes sont placées à l'intérieur, sur ou à l'extérieur du corps. Le développement des BAN nécessite la réalisation de modèles (ou fantômes) simulant au mieux les propriétés électromagnétiques du corps humain. Des antennes portables, miniaturisées doivent être réalisées avec des contraintes d'intégration d'une part (aux vêtements, à des objets type montre ou badge), des contraintes de résistance ou de prise en compte de l'influence du corps d'autre part. La réduction de l'impact des antennes sur les tissus en terme de SAR (Specific Absorption Rate) doit également être considérée. Dans ce travail, l'objectif est de développer des fantômes valables pour les communications dans et sur le corps. Les matériaux de base sélectionnés sont d'origine biologique (biocéramiques et biopolymères) avec des propriétés proches de celles des tissus humains. Ces fantômes étant biocompatibles, ils sont essentiellement non toxiques alors que les fantômes usuels le sont en général. D'autre part, différents types d'antennes conformables, fonctionnant dans la bande ISM 2.4 GHz ont été développées et étudiées dans la perspective du BAN. Les antennes voient leur adaptation et leur efficacité chuter au contact ou à proximité du corps, ce qui constitue un écueil majeur pour établir une bonne communication. Différentes méthodes permettant de réduire l'influence du corps (plan de masse à l'arrière, surface haute impédance, feuille de ferrite polymère) sont testés et leurs avantages et inconvénients développés. Des mesures de SAR permettent aussi de démontrer l'efficacité de ces méthodes sur la réduction de la puissance absorbée par les tissus. Au final, ce travail apporte une contribution à l'étude théorique et expérimentale de l'interaction entre corps humain et antenne dans le cadre des réseaux BAN appliqués à la télésurveillance de la santé
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Noutehou, Nathan. "Conception de circulateurs et isolateurs pour des applications spatiales : nouvelles technologies d'intégration." Thesis, Brest, 2019. http://www.theses.fr/2019BRES0033/document.

Повний текст джерела
Анотація:
L’objectif de cette thèse est d’explorer de nouvelles technologies permettant de faciliter l’intégration des isolateurs dans les chaînes radiofréquences de satellites. Ces composants sont utilisés pour contrôler l’adaptation des amplificateurs dans les sections d’entrée et de sortie des équipements RF bas niveaux. Nous proposons deux voies de réalisation de ces isolateurs. Une première voie basée sur l’utilisation de matériaux ferricomposites est étudiée pour concevoir des composants en bande Ku. Une deuxième voie, basée sur l’utilisation d’hexaferrites de strontium et de baryum préorientés, a été étudiée pour concevoir des composants auto-polarisés (sans aimants) en bandes Q et Ka
The goal of this PhD thesis is to explore new technologies that make possible to improve the integration of isolators in radiofrequency chain of satellites. These components are especially used to control matching of amplifiers.We propose two ways of producing these isolators. At first, ferricomposite materials are studied to design low-cost isolators at Kuband.Then, we studied pre-oriented strontium or barium hexaferrites to design self-biased components (without magnets) for Q and Ka band frequencies
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії