Добірка наукової літератури з теми "Anomalous viscosity liquids"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Anomalous viscosity liquids".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Anomalous viscosity liquids"

1

Tariq, M., K. Shimizu, J. M. S. S. Esperança, J. N. Canongia Lopes, and L. P. N. Rebelo. "Viscosity minima in binary mixtures of ionic liquids + molecular solvents." Physical Chemistry Chemical Physics 17, no. 20 (2015): 13480–94. http://dx.doi.org/10.1039/c5cp01563d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kuleshov, V. S., and K. V. Moiseev. "Convection of thermoviscouse fluid in a cell heated from the side." Multiphase Systems 14, no. 1 (March 2019): 67–72. http://dx.doi.org/10.21662/mfs2019.1.010.

Повний текст джерела
Анотація:
The work is devoted to the peculiarities of free-convective flow of liquids with viscosity temperature anomaly (the presence of extremes on the viscosity curve). Examples of such liquids are polymer solutions, metal melts, well-purified liquid sulfur, and other fluids. The mechanism of the anomalous viscosity behavior of such liquids (in the case of polymers) can be explained by polymerization and depolymerization reactions. At a certain temperature interval, the molecules of a substance interlock, forming long chains and, as a result, increasing the viscosity, then when the upper limit polymerization temperature is reached, the reaction begins that is reverse to the polymerization, which proceeds according to the chain mechanism and results in the sequential cleavage of molecules from the chain and leads to a decrease in viscosity . The features of behavior of such environments are currently not well understood and require increased attention to experimental and theoretical studies, especially now, mainly due to the intensive development of computer technologies and numerical modeling. Based on computational experiments on the process of free convection of a liquid with a Gaussian dependence of viscosity on temperature, the possibility of the existence of isolated regimes of convection of a liquid in a square cell heated from the side is shown. It was assumed that the viscosity function has one extremum and is unambiguously described by two parameters: the ratio of the highest to the lowest viscosity at a given temperature range and the degree of fullness of a given temperature range. As a mathematical model, a system of equations was used in the Oberbeck–Boussinesq approximation. For the numerical solution of the system of equations, the control volume method with the SIMPLE procedure is modified and implemented.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vuckovac, Maja, Matilda Backholm, Jaakko V. I. Timonen, and Robin H. A. Ras. "Viscosity-enhanced droplet motion in sealed superhydrophobic capillaries." Science Advances 6, no. 42 (October 2020): eaba5197. http://dx.doi.org/10.1126/sciadv.aba5197.

Повний текст джерела
Анотація:
It is well known that an increased viscosity slows down fluid dynamics. Here we show that this intuitive rule is not general and can fail for liquids flowing in confined liquid-repellent systems. A gravity-driven, highly viscous glycerol droplet inside a sealed superhydrophobic capillary is moving more than 10 times faster than a water droplet with three-orders-of-magnitude lower viscosity. Using tracer particles, we show that the low-viscosity droplets are rapidly rotating internally, with flow velocities greatly exceeding the center-of-mass velocity. This is in stark contrast to the faster moving high-viscosity droplets with nearly vanishing internal flows. The anomalous viscosity-enhanced flow is caused by a viscosity-suppressed deformation of the droplet-air interface and a hydro- and aerodynamic coupling between the droplet and the air trapped within the micro/nanostructures (plastron). Our work demonstrates the unexpected role of the plastron in controlling fluid flow beyond the mere reduction in contact area and friction.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Асадуллин, Наиль, and Nail Asadullin. "CLASSIFICATION OF FODDER MASSES APPLIED TO ITS HYDRO-MECHANICS." Vestnik of Kazan State Agrarian University 13, no. 2 (August 6, 2018): 71–75. http://dx.doi.org/10.12737/article_5b35058f6bef38.44028308.

Повний текст джерела
Анотація:
The current stage in the development of agricultural production in livestock is characterized by the extensive use of pipeline transport to move the forage masses, which are related to non-Newtonian fluids. Production experience and scientific work on the study of hydrotransport systems showed that this method of transportation is the most economical and promising, it has high reliability of structural elements, improves sanitary and hygienic working conditions and makes it possible to fully automate the transportation process. The complex nature of the transportation of mixtures has not allowed to create a unified theory of hydrodynamic calculation of their parameters to date, therefore, various models are used for theoretical investigation of the nature of motion. To select a particular model, it is always important to correctly classify viscous semiliquid media with respect to hydrodynamics. Therefore, the article did not set out the specific goal of choosing a method for studying non-Newtonian systems, but solved the problem of their classification by known defining characteristics. The proposed classification does not pretend to be exhaustive in terms of the physical and chemical nature of the fluid, especially their combinations, but it covers almost all the anomalous phenomena that occur in the fluid during its transportation and helps to select a quantitative method for calculating the transporting fluid. The classification of non-Newtonian fluids with respect to their hydromechanics is based on the dependence of the shear stress on the shear gradient. For this dependence, each type of liquid is considered. The developed classification scheme further promotes a more complete account of the rheological properties of high-viscosity liquids during their transportation through pipes and facilitates the development of quantitative calculation methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Archie, Chas N. "Viscosity and thermodynamic evidence for liquid 3He being nearly metamagnetic." Canadian Journal of Physics 65, no. 11 (November 1, 1987): 1421–25. http://dx.doi.org/10.1139/p87-223.

Повний текст джерела
Анотація:
Study of the melting process in rapid melting of spin-polarized 3He reveals that the liquid's magnetic susceptibility is enhanced at moderate temperatures (above 30 mK) and moderate polarization (20–40%) but declines at higher polarization. The first transport measurement on the enhanced polarized liquid shows anomalous behavior. Together, these measurements favor a microscopic model in which, at moderate temperatures and as a function of polarization, the liquid approaches but does not achieve a new phase.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tsepelev, Vladimir, Yuri N. Starodubtsev, Viktor V. Konashkov, and Yekaterina A. Kochetkova. "Kinematic Viscosity and Electrical Resistivity of a Multicomponent Melt due to Liquid–Liquid Structure Transition." Key Engineering Materials 904 (November 22, 2021): 111–16. http://dx.doi.org/10.4028/www.scientific.net/kem.904.111.

Повний текст джерела
Анотація:
We investigated the kinematic viscosity and electrical resistivity of the multicomponent Fe74Cu1Nb1.5Mo1.5B8.5Si13.5 melt during three heating–cooling cycles. The temperature dependence of kinematic viscosity and electrical resistivity have the anomalous zones in the same temperature range and they are associated with the liquid–liquid structure transition (LLST). The anomalies were explained by changes in the activation energy and the cluster size. As the cluster size decreases, the activation energy decreases, but the viscosity and electrical resistance increase. LLST begins with the cluster dissolution, and as a result, the Arrhenius plot becomes nonlinear in the transition temperature range. After three cycles of heating–cooling, the temperature dependences of the kinematic viscosity and electrical resistance did not qualitatively change, and this allows us to conclude that LLST is thermoreversible. With an increase in the number of thermal cycles, the activation energy of viscous flow decreases, as well as the onset temperature and temperature range of LLST.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

ZHAO, JIANGANG, and ROGER E. KHAYAT. "Spread of a non-Newtonian liquid jet over a horizontal plate." Journal of Fluid Mechanics 613 (October 1, 2008): 411–43. http://dx.doi.org/10.1017/s0022112008003431.

Повний текст джерела
Анотація:
The flow of an impinging non-Newtonian jet onto a solid flat plate is examined theoretically in this study. Similarity solutions are sought for both shear-thinning and shear-thickening fluids of the power-law type. The jet is assumed to spread out in a thin layer bounded by a hydraulic jump. In addition to the stagnation-flow region, the flow domain is divided into three main regions: a developing boundary layer, fully viscous boundary layer and hydraulic jump. The anomalous behaviour of power-law fluids at small shear rate is remedied by seeking a two-layer solution in each domain. Such anomalies include the singularity of viscosity for shear-thinning fluids, and the vanishing of viscosity as well the overshoot in velocity for shear-thickening fluids. Although the rate of shear-thinning appears to affect significantly the film profile and velocity, only the overall viscosity influences the position of the hydraulic jump.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Singh, Lokendra P., Bruno Issenmann, and Frédéric Caupin. "Pressure dependence of viscosity in supercooled water and a unified approach for thermodynamic and dynamic anomalies of water." Proceedings of the National Academy of Sciences 114, no. 17 (April 12, 2017): 4312–17. http://dx.doi.org/10.1073/pnas.1619501114.

Повний текст джерела
Анотація:
The anomalous decrease of the viscosity of water with applied pressure has been known for over a century. It occurs concurrently with major structural changes: The second coordination shell around a molecule collapses onto the first shell. Viscosity is thus a macroscopic witness of the progressive breaking of the tetrahedral hydrogen bond network that makes water so peculiar. At low temperature, water at ambient pressure becomes more tetrahedral and the effect of pressure becomes stronger. However, surprisingly, no data are available for the viscosity of supercooled water under pressure, in which dramatic anomalies are expected based on interpolation between ambient pressure data for supercooled water and high pressure data for stable water. Here we report measurements with a time-of-flight viscometer down to 244K and up to 300MPa, revealing a reduction of viscosity by pressure by as much as 42%. Inspired by a previous attempt [Tanaka H (2000) J Chem Phys 112:799–809], we show that a remarkably simple extension of a two-state model [Holten V, Sengers JV, Anisimov MA (2014) J Phys Chem Ref Data 43:043101], initially developed to reproduce thermodynamic properties, is able to accurately describe dynamic properties (viscosity, self-diffusion coefficient, and rotational correlation time) as well. Our results support the idea that water is a mixture of a high density, “fragile” liquid, and a low density, “strong” liquid, the varying proportion of which explains the anomalies and fragile-to-strong crossover in water.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Khizbullina, S. F. "Filtration of anomalous thermoviscous liquid in layered non-uniform formation." Proceedings of the Mavlyutov Institute of Mechanics 4 (2006): 251–57. http://dx.doi.org/10.21662/uim2006.1.022.

Повний текст джерела
Анотація:
The mathematical model is developed and the numerical research of a filtration flow features of liquid with model nonmonotonic dependence of viscosity on temperature is conducted. Existence of the ”viscous barrier“ defining character of a filtration flow of anomalous thermoviscous liquid in the porous medium is established. Characteristic pictures of the steady distribution of viscosity and temperature in layered non-uniform formation are constructed. It is established that formation flow rate depends on a maximum of viscosity coefficient and pressure difference essentially.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Qin, Hai Ou, Hao Ran Geng, and Zhen Yuan Li. "Quasicrystal Al63Cu25Fe12 Melting Nearby Resistivity and Viscosity Properties Research." Applied Mechanics and Materials 55-57 (May 2011): 913–17. http://dx.doi.org/10.4028/www.scientific.net/amm.55-57.913.

Повний текст джерела
Анотація:
A four-probe dc method for measuring the electrical resistivity of liquid quasicrystal Al63Cu25Fe12 was investigated in this article and found out that the resistivity of the melt temperature negative factors. Resistivity in alloy melting temperature near the lower interval occurred in phase I and λ, but is not happen to shift in β phase. That would not cause phase change of electronic transport, may be held without fracture, and held the bond length is changed. The viscosity of liquid quasicrystal Al63Cu25Fe12 was tested by using torsional oscillation viscosity measurement. Anomalous change at the temperature of (1401-1473)K occurred from the viscosity-temperature cures, some liquid-liquid change has taken place at this temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Anomalous viscosity liquids"

1

Разаві, Сейед Фаршад. "Гідродинамічні особливості потока аномально-в'язких рідин у конічної поверхні ковзання". Doctoral thesis, Київ, 2019. https://ela.kpi.ua/handle/123456789/29180.

Повний текст джерела
Анотація:
Дисертаційна робота присвячена дослідженню впливу гідродинаміки в'язких і аномально в'язких мастильних матеріалів у конічних зазорах зі змінною величиною конусності. Подібні завдання є актуальними при дослідженні конічних опорних підшипників, які знайшли широке застосування в гідротурбінобудуванні та інших сферах гідромашинобудування. Одним з важливих питань у даному напрямку є визначення крутного моменту сил в'язкого тертя в щілинних конічних зазорах. В роботі, проведено критичний аналіз досліджень, присвячених даній темі, зроблено висновок про недостатність досліджень і поставлена задача, розв’язання якої пропонується в даній роботі. На підставі досліджень інших авторів виведені основні критерії подібності, які можуть охарактеризувати цей процес поведінки рідини в зазорі, де одна з поверхонь (внутрішня) може обертатися навколо своєї осі. Проведено фізичне і математичне моделювання поведінки рідини в конічних підшипниках. На підставі експериментальних досліджень були отримані функціональні залежності визначення крутного моменту як функції частоти обертання внутрішнього конуса, в'язкості змащує рідини, ширини щілинного зазору між конічними поверхнями. Отримані результати були зіставлені з аналогічними даними для циліндричних щілинних зазорів (циліндричних підшипників ковзання). Представлені рекомендації по розрахунку основних характеристик потоку. Проведення математичне моделювання дало можливість оцінити ступінь відмінності між результатами експерименту і теорії, пояснити розбіжності в результатах. Одним з найважливіших моментів дослідження є результат, пов'язаний з поведінкою аномально-в'язких рідин (деякі з мастильних матеріалів за своєю поведінкою близькі до рідин, поведінка яких можна описати рівнянням Освальда де Віля). Проведене моделювання процесів, що розглядаються в конічних щілинних зазорах, дало можливість забезпечити раціональний вибір змащувальних матеріалів для зниження моменту тертя (сил тертя) в конічних зазорах.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Anomalous viscosity liquids"

1

Finney, John. "5. The anomalies explained." In Water: A Very Short Introduction, 77–91. Oxford University Press, 2015. http://dx.doi.org/10.1093/actrade/9780198708728.003.0005.

Повний текст джерела
Анотація:
‘The anomalies explained’ considers why water behaves differently from most other liquids and why this is so important chemically, biologically, and environmentally. Ice contracts on melting; a normal liquid expands. Below 4°C liquid water contracts on heating; a normal liquid expands. Between the melting point and 46°C, water’s compressibility falls as temperature increases; for a normal liquid it increases. Water’s viscosity at or below about 30°C falls as pressure increases from 1 to 1,000 atmospheres; it increases for a normal liquid. The local intermolecular geometry is responsible for these ‘anomalies’. The electrical properties of the water molecule result in other distinct properties: water is a very powerful solvent and it conducts electricity.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Anomalous viscosity liquids"

1

Zhou, Ronghui, Dmitri Lastochkin, and Hsueh-Chia Chang. "Anomalous Capillary Wetting Dynamics of Blood Suspensions." In ASME 2004 2nd International Conference on Microchannels and Minichannels. ASMEDC, 2004. http://dx.doi.org/10.1115/icmm2004-2430.

Повний текст джерела
Анотація:
When blood suspension penetrates a capillary radius by wetting, the advancing meniscus decelerates rapidly when the blood cell volume fraction is above a certain critical concentration. Below the critical concentration, blood suspension behaves like a homogeneous liquid and the wetted length increases as the 0.5 power of time. We attribute the former deceleration dynamics to a unique packing mechanism behind the meniscus that is driven by radial migration of the deformable blood cells. Unlike rigid particle suspensions, a concentrated slug develops behind the meniscus of blood suspension and its concentration increases linearly with respect to the meniscus position downstream due to this packing mechanism. As the suspension viscosity blow up with a −2 power with respect to blood concentration φ at maximum packing, viscous dissipation at the slug quickly controls the meniscus speed if the slug length is comparable to the total wetted length, thus significantly delaying the meniscus penetration dynamics. The critical concentration is measured empirically and shown to be a linear function of the capillary radius R with a simple scaling theory. For 40% whole blood, penetration rate is too slow, in the order of μm /s at 2cm from the entrance, to be widely used in sample loading for miniature diagnostic kits with diameter less than 26 micron.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

San Andre´s, Luis. "Rotordynamic Force Coefficients of Bubbly Mixture Annular Pressure Seals." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45264.

Повний текст джерела
Анотація:
As oil fields deplete, in particular in deep sea reservoirs, pump and compression systems work under more strenuous conditions with gas in liquid and liquid in gas mixtures, mostly inhomogeneous. Off-design operation affects system overall efficiency and reliability, including penalties in leakage and rotordynamic performance of secondary flow components, namely seals. The paper details a bulk-flow model for annular damper seals operating with gas in liquid mixtures. The analysis encompasses all-liquid and all-gas seals, as well as seals lubricated with homogenous (bubbly) mixtures, and predicts the static and dynamic force response of mixture lubricated seals; namely: leakage, power loss, reaction forces and rotordynamic force coefficients, etc., as a function of the mixture volume fraction (βS), supply and discharge pressures, rotor speed, whirl frequency, etc. A seal example with a Nitrogen gas mixed with light oil is analyzed. The large pressure drop (70 bar) causes a large expansion of the gas within the seal even for (very) small gas volume fractions (βS). Predictions show leakage and power loss decrease as β → 1; albeit at low βS (<0.3) (re)laminarization of the flow and an apparent increase in mixture viscosity, produce a hump in power loss. Cross-coupled stiffnesses and direct damping coefficients decrease steadily with increases in the gas volume fraction; however some anomalies are apparent when the flow turns laminar. Mixture lubricated seals show frequency dependent force coefficients. The equivalent damping decreases above and below βS∼0.10. The direct stiffness coefficients show atypical behavior: a low βS = 0.1 produces stiffness hardening as the excitation frequency increases. Recall that an all liquid seal has a dynamic stiffness softening as frequency increases due to the apparent fluid mass. The predictions call for an experimental program to quantify the static and dynamic forced performance of annular seals operating with (bubbly) mixtures and to validate the current predictive model results.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kuchibhotla, Aditya, and Debjyoti Banerjee. "Forced Convection Heat Transfer of Nanofluids: A Review." In ASME 2017 Heat Transfer Summer Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ht2017-5050.

Повний текст джерела
Анотація:
Stable homogeneous colloidal suspensions of nanoparticles in a liquid solvents are termed as nanofluids. In this review the results for the forced convection heat transfer of nanofluids are gleaned from the literature reports. This study attempts to evaluate the experimental data in the literature for the efficacy of employing nanofluids as heat transfer fluids (HTF) and for Thermal Energy Storage (TES). The efficacy of nanofluids for improving the performance of compact heat exchangers were also explored. In addition to thermal conductivity and specific heat capacity the rheological behavior of nanofluids also play a significant role for various applications. The material properties of nanofluids are highly sensitive to small variations in synthesis protocols. Hence the scope of this review encompassed various sub-topics including: synthesis protocols for nanofluids, materials characterization, thermo-physical properties (thermal conductivity, viscosity, specific heat capacity), pressure drop and heat transfer coefficients under forced convection conditions. The measured values of heat transfer coefficient of the nanofluids varies with testing configuration i.e. flow regime, boundary condition and geometry. Furthermore, a review of the reported results on the effects of particle concentration, size, temperature is presented in this study. A brief discussion on the pros and cons of various models in the literature is also performed — especially pertaining to the reports on the anomalous enhancement in heat transfer coefficient of nanofluids. Furthermore, the experimental data in the literature indicate that the enhancement observed in heat transfer coefficient is incongruous compared to the level of thermal conductivity enhancement obtained in these studies. Plausible explanations for this incongruous behavior is explored in this review. A brief discussion on the applicability of conventional single phase convection correlations based on Newtonian rheological models for predicting the heat transfer characteristics of the nanofluids is also explored in this review (especially considering that nanofluids often display non-Newtonian rheology). Validity of various correlations reported in the literature that were developed from experiments, is also explored in this review. These comparisons were performed as a function of various parameters, such as, for the same mass flow rate, Reynolds number, mass averaged velocity and pumping power.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mortazavi, Farzam, and Debjyoti Banerjee. "Review of Molten Salt Nanofluids." In ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-7316.

Повний текст джерела
Анотація:
Literature review of molten salt nanofluids is performed in this study with focus on the thermo-fluidic properties and performance in thermal management applications. The colloidal mixture of nanoparticles in a base liquid phase is called nanofluid. Molten salts such as alkali nitrate eutectics, alkali carbonate eutectics and alkali chloride eutectics have high melting temperatures. These materials are suitable for various high temperature applications, including as Heat Transfer Fluid (HTF), Thermal Energy Storage (TES), Concentrated Solar Power (CSP) plants, nuclear power, etc. The major drawback of molten salt materials is their low thermal conductivity and specific heat capacity. Enhancing the thermo-physical properties of molten salt materials can lower the cost of power production involving these materials (e.g., as HTF and/ or TES in CSP or nuclear power plants. Mixing molten alt eutectics with nanoparticles (e.g., molten salt nanofluids) can provide a cost-effective technique for enhancing the specific heat capacity and thermal conductivity which in turn can enable the reduction in the cost of power production. In this review - the following topics involving molten salt nanofluids were explored: thermo-physical property measurements, numerical modeling (e.g., Molecular Dynamics/ MD simulations), materials characterization (e.g., using electron microscopy techniques — such as SEM and TEM). For example, SEM studies in conjunction with MD simulation results confirm the formation of a dense layer of fluid molecules on the surface of nanoparticles that can enhance the specific heat capacity of these molten salt nanomaterials. Subsequently the concepts of nanofins was explored (which involves the study of interfacial thermal impedance, such as resistance, capacitance and diodicity). The contribution of these interfacial thermal impedances to the enhancement of specific heat capacity and thermal conductivity are also explored. Specific heat enhancement as high as 100% has been observed for various molten salt eutectics when doped with 1.5% (weight) silica nanoparticles. Various synthesis protocols such as one-step, two-step and three-step methods as well as conventional experimental methods used for specific heat capacity measurement are compared and examined. A review of the effects of concentration, nanoparticle size, temperature, base fluid, and nanofluid chemical properties is also performed. Other topics of interest are the anomalous enhancement of thermal conductivity in molten salt nanofluids which contradict typical predictions obtained from using the effective medium theory. The available data in literature shows enhancement in thermal conductivity by as much as 35–45% for carbonate eutectics doped with silica nanoparticles at 1% mass fraction. The possible mechanisms suggested for this improvement are briefly discussed and compared with experimental observations (e.g., using SEM). In addition, nanofluids often display non-Newtonian rheological behavior. This necessitates a rigorous study, since the applications of nanofluids will impact the required pumping power. Studies show that the rheological properties of molten salt nanofluids are a function of base salt composition, shape of nanoparticles selected, chemical formula of nanoparticles, concentration of nanoparticles, size of nanoparticles, temperature, shear rate and synthesis protocol of the nanofluid. Several models are introduced to predict the viscosity variation along with their advantageous and disadvantages. SEM results show agglomeration of nanoparticles can be reduced by doping the nanofluids with very small values of mass fractions of additives such as Gum Arabic.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії