Добірка наукової літератури з теми "Anisotropic turbulence models"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Anisotropic turbulence models".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Anisotropic turbulence models":

1

Nazarov, F. Kh. "Comparing Turbulence Models for Swirling Flows." Herald of the Bauman Moscow State Technical University. Series Natural Sciences, no. 2 (95) (April 2021): 25–36. http://dx.doi.org/10.18698/1812-3368-2021-2-25-36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The paper considers a turbulent fluid flow in a rotating pipe, known as the Taylor --- Couette --- Poiseuille flow. Linear RANS models are not suitable for simulating this type of problems, since the turbulence in these flows is strongly anisotropic, which means that solving these problems requires models accounting for turbulence anisotropy. Modified linear models featuring corrections for flow rotations, such as the SARC model, make it possible to obtain satisfactory solutions. A new approach to turbulence problems has appeared recently. It allowed a novel two-fluid turbulence model to be created. What makes this model different is that it can describe strongly anisotropic turbulent flows; moreover, it is easy to implement numerically while not being computationally expensive. We compared the results of solving the Taylor --- Couette --- Poiseuille flow problem using the novel two-fluid model and the SARC model. The numerical investigation results obtained from the novel two-fluid model show a better agreement with the experimental data than the results provided by the SARC model
2

CUI, G. X., C. X. XU, L. FANG, L. SHAO, and Z. S. ZHANG. "A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence." Journal of Fluid Mechanics 582 (June 14, 2007): 377–97. http://dx.doi.org/10.1017/s002211200700599x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new subgrid eddy-viscosity model is proposed in this paper. Full details of the derivation of the model are given with the assumption of homogeneous turbulence. The formulation of the model is based on the dynamic equation of the structure function of resolved scale turbulence. By means of the local volume average, the effect of the anisotropy is taken into account in the generalized Kolmogorov equation, which represents the equilibrium energy transfer in the inertial subrange. Since the proposed model is formulated directly from the filtered Navier–Stokes equation, the resulting subgrid eddy viscosity has the feature that it can be adopted in various turbulent flows without any adjustments of model coefficient. The proposed model predicts the major statistical properties of rotating turbulence perfectly at fairly low-turbulence Rossby numbers whereas subgrid models, which do not consider anisotropic effects in turbulence energy transfer, cannot predict this typical anisotropic turbulence correctly. The model is also tested in plane wall turbulence, i.e. plane Couette flow and channel flow, and the major statistical properties are in better agreement with those predicted by DNS results than the predictions by the Smagorinsky, the dynamic Smagorinsky and the recent Cui–Zhou–Zhang–Shao models.
3

Barbi, G., A. Chierici, V. Giovacchini, F. Quarta, and S. Manservisi. "Numerical simulation of a low Prandtl number flow over a backward facing step with an anisotropic four-equation turbulence model." Journal of Physics: Conference Series 2177, no. 1 (April 1, 2022): 012006. http://dx.doi.org/10.1088/1742-6596/2177/1/012006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract In recent years the use of liquid metals has become more and more popular for heat transfer applications in many fields ranging from IV generation fast nuclear reactors to solar power plants. Due to their low Prandtl number values, the similarity between dynamical and thermal fields cannot be assumed and sophisticated heat turbulence models are required to take into account the anisotropy of the turbulent heat transfer involving liquid metals. In the present work, we solve an anisotropic four-equation turbulence model coupled with the Reynolds Averaged Navier Stokes system of equations to simulate a turbulent flow of liquid sodium over a vertical backward-facing step. We implement an explicit algebraic model for Reynolds stress tensor and turbulent heat flux that takes into account flow anisotropic behavior. We study forced and mixed convection regimes when a uniform heat flux is applied on the wall behind the step. Linear isotropic approximations for eddy viscosity and eddy thermal diffusivity underestimate the turbulent heat flux components while this anisotropic model shows a better agreement with DNS results.
4

Chang, Ning, Zelong Yuan, Yunpeng Wang, and Jianchun Wang. "The effect of filter anisotropy on the large eddy simulation of turbulence." Physics of Fluids 35, no. 3 (March 2023): 035134. http://dx.doi.org/10.1063/5.0142643.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We study the effect of filter anisotropy and sub-filter scale (SFS) dynamics on the accuracy of large eddy simulation (LES) of turbulence, by using several types of SFS models including the dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and the direct deconvolution model (DDM) with the anisotropic filter. The aspect ratios (AR) of the filters for LES range from 1 to 16. We show that the DDM is capable of predicting SFS stresses accurately at highly anisotropic filter. In the a priori study, the correlation coefficients of SFS stress reconstructed by the DDM are over 90%, which are much larger than those of the DSM and DMM models. The correlation coefficients decrease as the AR increases. In the a posteriori studies, the DDM outperforms DSM and DMM models in the prediction of various turbulence statistics, including the velocity spectra, and probability density functions of the vorticity, SFS energy flux, velocity increments, strain-rate tensors and SFS stress. As the anisotropy increases, the results of DSM and DMM become worse, but DDM can give satisfactory results for all the filter-anisotropy cases. These results indicate that the DDM framework is a promising tool in developing advanced SFS models in the LES of turbulence in the presence of anisotropic filter.
5

Faragó, Dávid, and Péter Bencs. "Measurement of turbulence properties." Analecta Technica Szegedinensia 14, no. 1 (June 8, 2020): 67–75. http://dx.doi.org/10.14232/analecta.2020.1.67-75.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The aim of the research is to investigate anisotropic turbulence intensities, id est to investigate the distribution of Reynolds stresses and energy spectra in a square cross-section channel, downstream of a semi-active jet turbulence grid generating anisotropic turbulent airflow. In addition to the semi-active jet turbulence grid, another type of turbulence grid was developed and experimentally investigated. This grid contains vertical, flexible strips of aluminum (in this case, there are no perpendicular (horizontal) grid elements), which vibrate at a frequency depending on the velocity of the main airflow. Besides the investigation of the velocity- and turbulence intensity distributions, another main objective of the research is to measure the von Kármán energy spectrum when the turbulence cannot be considered isotropic. This aspiration of ours is justified by the knowledge gap present in the literature in this specific field. Monin has carried out a theoretical study to extend and generalize the von Kármán – Howarth isotropic principal stress equation to the anisotropic regime. The proposed new experimental work aims to provide a solid experimental background for verifying and validating the physical correctness of the Monin equation, which may result in a new theoretical understanding and perception of the major issues and the nature of anisotropic turbulence. Since the anisotropic energy spectra are expected to exhibit different characteristics from the isotropic Kolmogorov spectra, these new experimental results may contribute to the development of new anisotropic and engineering turbulence models that can be used in industrial applications.
6

Cui, Linyan. "Atmosphere turbulence MTF models in moderate-to-strong anisotropic turbulence." Optik 130 (February 2017): 68–75. http://dx.doi.org/10.1016/j.ijleo.2016.11.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

DEN TOONDER, J. M. J., M. A. HULSEN, G. D. C. KUIKEN, and F. T. M. NIEUWSTADT. "Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments." Journal of Fluid Mechanics 337 (April 25, 1997): 193–231. http://dx.doi.org/10.1017/s0022112097004850.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In order to study the roles of stress anisotropy and of elasticity in the mechanism of drag reduction by polymer additives we investigate a turbulent pipe flow of a dilute polymer solution. The investigation is carried out by means of direct numerical simulation (DNS) and laser Doppler velocimetry (LDV). In our DNS two different models are used to describe the effects of polymers on the flow. The first is a constitutive equation based on Batchelor's theory of elongated particles suspended in a Newtonian solvent which models the viscous anisotropic effects caused by the polymer orientation. The second is an extension of the first model with an elastic component, and can be interpreted as an anisotropic Maxwell model. The LDV experiments have been carried out in a recirculating pipe flow facility in which we have used a solution of water and 20 w.p.p.m. Superfloc A110. Turbulence statistics up to the fourth moment, as well as power spectra of various velocity components, have been measured. The results of the drag-reduced flow are first compared with those of a standard turbulent pipe flow of water at the same friction velocity at a Reynolds number of Reτ≈1035. Next the results of the numerical simulation and of the measurements are compared in order to elucidate the role of polymers in the phenomenon of drag reduction. For the case of the viscous anisotropic polymer model, almost all turbulence statistics and power spectra calculated agree in a qualitative sense with the measurements. The addition of elastic effects, on the other hand, has an adverse effect on the drag reduction, i.e. the viscoelastic polymer model shows less drag reduction than the anisotropic model without elasticity. Moreover, for the case of the viscoelastic model not all turbulence statistics show the right behaviour. On the basis of these results, we propose that the viscous anisotropic stresses introduced by extended polymers play a key role in the mechanism of drag reduction by polymer additives.
8

Cambon, Claude, and Julian F. Scott. "LINEAR AND NONLINEAR MODELS OF ANISOTROPIC TURBULENCE." Annual Review of Fluid Mechanics 31, no. 1 (January 1999): 1–53. http://dx.doi.org/10.1146/annurev.fluid.31.1.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hocking, W. K., and J. Röttger. "The structure of turbulence in the middle and lower atmosphere seen by and deduced from MF, HF and VHF radar, with special emphasis on small-scale features and anisotropy." Annales Geophysicae 19, no. 8 (August 31, 2001): 933–44. http://dx.doi.org/10.5194/angeo-19-933-2001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. An overview of the turbulent structures seen by MF, HF and VHF radars in the troposphere, stratosphere and mesosphere is presented, drawing on evidence from previous radar measurements, in situ studies, laboratory observations, observations at frequencies other than those under focus, and modelling studies. We are particularly interested in structures at scales less than one radar pulse length, and smaller than the beam width, and especially the degree of anisotropy of turbulence at these scales. Previous radar observations are especially important in regard to the degree of anisotropy, and we highlight the role that these studies have had in furthering our understanding in this area. The contrasts and similarities between the models of anisotropic turbulence and specular reflection are considered. The need for more intense studies of anisotropy at MF, HF and VHF is especially highlighted, since this is an area in which these radars can make important contributions to the understanding of atmospheric turbulence.Key words. Meteorology and atmospheric dynamics (turbulence) – Atmospheric composition and structure (instruments and techniques) – History of geophysics (atmospheric sciences)
10

Myong, Hyon Kook, та Toshio Kobayashi. "Prediction of Three-Dimensional Developing Turbulent Flow in a Square Duct With an Anisotropic Low-Reynolds-Number k-ε Model". Journal of Fluids Engineering 113, № 4 (1 грудня 1991): 608–15. http://dx.doi.org/10.1115/1.2926523.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Three-dimensional developing turbulent flow in a square duct involving turbulence-driven secondary motion is numerically predicted with an anisotropic low-Reynolds-number k-ε turbulence model. Special attention has been given to both regions close to the wall and the corner, which are known to influence the characteristics of secondary flow a great deal. Hence, the no-slip boundary condition at the wall is directly used in place of the common wall function approach. The resulting set of equations simplified only by the boundary layer assumption are first compared with previous algebraic stress models, and solved with a forward marching numerical procedure for three-dimensional shear layers. Typical predicted quantities such as mean axial and secondary velocities, friction coefficients, turbulent kinetic energy, and Reynolds shear stress are compared with available experimental data. These results indicate that the present anisotropic k-ε turbulence model performs quite well for this complex flow field.

Дисертації з теми "Anisotropic turbulence models":

1

Wall, Dylan Joseph. "Anisotropic Turbulence Models for Wakes in an Active Ocean Environment." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/104162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A set of second-moment closure turbulence models are implemented for the study of wake evolution in an oceanic environment. The effects of density stratification are considered, and the models are validated against laboratory experiments mimicking the stratified ocean environment, and against previous experimental study of wakes subjected to a density stratification. The turbulence models are found to reproduce a number of important behaviors which differentiate stratified wakes from those in a homogeneous environment, including the appropriate decay rates in turbulence quantities, buoyant suppression of turbulence length scales, and canonical stages in wake evolution. The existence of background turbulence is considered both through the introduction of production terms to the turbulence model equations and the replication of scale-resolved simulations of wakes embedded in turbulence. It is found that the freestream turbulence causes accelerated wake growth and faster decay of wake momentum. Wakes are then simulated at a variety of Re and Fr representative of full-scale vehicles operating in an ocean environment, to downstream distances several orders of magnitude greater than existing RANS studies. The models are used to make some general predictions concerning the dependence of late-wake behavior on these parameters, and specific insights into expected behavior are gained. The wake turbulence is classified using "fossil turbulence" and stratification strength criteria from the literature. In keeping with experimentally observed behavior, the stratification is predicted to increase wake persistence. It is also predicted that, regardless of initial Re or F r, the wake turbulence quickly becomes a mixture of overturning eddies and internal waves. It is found that the high Re wakes eventually become strongly affected by the stratification, and enter the strongly-stratified or LAST regime. Additional model improvements are proposed based on the predicted late wake behavior.
Doctor of Philosophy
A set of advanced turbulence models are implemented and used to study ship wakes in an oceanic environment. The flows in the ocean are subject to a density stratification due to changes in temperature and salinity; the associated effects are included in the turbulence models. The models are validated against laboratory experiments mimicking the stratified ocean environment, and against previous experimental study of wakes subjected to a density stratification. The turbulence models are found to reproduce a number of important behaviors expected under such conditions based on experimental study. Additional modifications are made to the models to include the effect of pre-existing freestream turbulence. Wakes are then simulated under conditions representative of full-scale vehicles operating in an ocean environment. The models are used to make some general predictions concerning late-wake behavior. Specific insights into expected behavior are gained. The wake turbulence is classified using ``fossil turbulence'' and stratification strength criteria from the literature. In keeping with experimentally observed behavior, the stratification is predicted to increase wake persistence. Additional model improvements are proposed based on the predicted late wake behavior.
2

Alam, Boulos. "Modélisation numérique de la turbulence et de la dispersion atmosphérique par faibles vents en milieu urbain." Electronic Thesis or Diss., université Paris-Saclay, 2023. https://www.biblio.univ-evry.fr/theses/2023/interne/2023UPAST179.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse se situe dans le contexte de la modélisation de la dispersion atmosphérique, en particulier en présence de vents faibles. Les sources de pollution atmosphérique, souvent situées près du sol et influencées par des obstacles complexes, engendrent des concentrations élevées de polluants à proximité, ce qui se traduit par des fluctuations significatives de ces concentrations. Les vents faibles, généralement associés à des conditions atmosphériques stables, posent un défi particulier en matière de modélisation de la dispersion des polluants, nécessitant une analyse approfondie des donnéesmétéorologiques et une adaptation des modèles de prédiction. Afin de relever ce défi complexe, l'utilisation de la Dynamique des Fluides Numérique (CFD) est incontournable, même si des recherches supplémentaires sont nécessaires pour valider son efficacité dans le champ proche des sources et en présence de vents faibles. Le logiciel Code_Saturne® (EDF R&D) est sélectionné en raison de sonefficacité avérée dans la simulation de la dispersion de polluants atmosphériques. Cette thèse se décompose en trois phases distinctes : la première phase se concentre sur les fondements de la dispersion atmosphérique, en explorant l'impact de différents paramètres tels que la structure de la couche limite atmosphérique, la turbulence atmosphérique et la stabilité de l'atmosphère. Ces éléments jouent un rôle crucial dans la manière dont les polluants se dispersent dans l'air. La deuxièmephase détaille la méthodologie utilisée dans Code_Saturne pour effectuer les simulations, notamment les modèles de turbulence utilisés et les critères d'évaluation de ces modèles. En plus des modèles isotropes classiques, cette recherche se penche sur l'utilisation de modèles de turbulence anisotropes pour étudier la dispersion dans divers contextes. La troisième phase de la thèse se concentre sur l'évaluation de différents modèles de turbulence et de corrélations vitesse-scalaire à l'aide d'observations effectuées en milieu urbain dans des conditions atmosphériques neutres et stables.Enfin, la dernière phase de la recherche explore les conditions de vent faible et stable, caractérisées généralement par des vitesses de vent inférieures à 2 m/s et des variations aléatoires du vent. Cette phase examine les méandres dans la dispersion des polluants et évalue les limites des modèles analytiques et CFD pour prédire la concentration dans de telles condi- tions. À cet effet, un modèle URANS est développé et évalué. Enfin, une méthode gaussienne segmentée est élaborée pour comparer les résultats aux prédictions CFD et aux observations sur le terrain
This thesis is situated in the context of atmospheric dispersion modeling, particularly in the presence of low winds. Atmospheric pollution sources, often located near the ground and influenced by complex obstacles, generate high concentrations of pollutants nearby, resulting in significant concentration fluctuations. Low winds, typically associated with stable atmospheric conditions, pose a specific challenge in modeling pollutant dispersion, requiring a thorough analysis of meteorological data and adaptation of prediction models. To address this complex challenge, the use of Computational Fluid Dynamics (CFD) is necessary, although further research is needed to validate its effectiveness in the near-field and in the presence of low winds. The Code_Saturne® software (EDF R&D) is selected due to its proven efficiency in simulating atmospheric pollutant dispersion. This thesis is divided into three distinct phases : the first phase focuses on the fundamentals of atmospheric dispersion, exploring the impact of various parameters such as the atmospheric boundary layer structure, atmospheric turbulence, and atmospheric stability. These elements play a crucial role in how pollutants disperse in the air. The second phase details the methodology used in Code_Saturne for conducting simulations, including the turbulence models employed and the criteria for evaluating these models. In addition to traditional isotropic models, this research investigates the use of anisotropic turbulence models to study dispersion in various contexts. The third phase of the thesis concentrates on the evaluation of different turbulence models and velocity-scalar correlations using observations conducted in urban environments under neutral and stable atmospheric conditions. Finally, the last phase of the research explores conditions of low and stable winds, typically characterized by wind speeds below 2 m/s and random wind variations. This phase examines the meandering patterns in pollutant dispersion and assesses the limitations of analytical and CFD models in predicting concentration in such conditions. To this end, a URANS model is developed and evaluated. Ultimately, a segmented Gaussian method is devised to compare the results with CFD predictions and field observations
3

Bose, Jyoti Sankar. "Modeling turbulence anisotropy using algebraic Reynolds stress models." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq22277.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Campana, Lorenzo. "Modélisation stochastique de particules non sphériques en turbulence." Thesis, Université Côte d'Azur, 2022. http://www.theses.fr/2022COAZ4019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le mouvement de petites particules non-sphériques en suspension dans un écoulement turbulent a lieu dans une grande variété d’applications naturelles et industrielles. Par exemple, ces phénomènes impactent la dynamique des aérosols dans l’atmosphère et dans les voies respiratoires, le mouvement des globules rouges dans le sang, la dynamique du plancton dans l’océan, la glace dans les nuages ou bien la combustion. Les particules anisotropes réagissent aux écoulements turbulents de manière complexe. Leur dynamique dépend ainsi d’un large éventail de para- mètres (forme, inertie, cisaillement du fluide). Les particules sans inertie, dont la taille est inférieure à la longueur de Kolmogorov, suivent le mouvement du fluide avec une orientation généralement gouvernée par le gradient local de vitesse turbulente. Cette thèse est axée sur la dynamique de tels objets en turbulence en ayant recours à des méthodes Lagrangienes stochastiques. Le développement d’un modèle qui peut être utilisé comme outil prédictif dans le cadre de la dynamique de fluides numérique (CFD) au niveau industriel est d’un grand intérêt pour les applications concrètes en ingénierie. Par ailleurs, pour progresser dans le domaine de la médecine, de l’environnement et des procédés industriels, il est nécessaire que ces modèles atteignent un compromis acceptable entre simplicité et précision. La formulation d’un modèle stochastique pour l’orientation de telles particules est tout d’abord présentée dans le cadre d’un écoulement turbulent bidimensionnel avec un cisaillement homogène. Des simulations numériques directes (DNS) sont produites pour guider et évaluer la proposition de modèle. Les questions abordés dans ce travail portent sur la représentation de formes analytiques du modèle, sur les effets des anisotropies inclues dans le modèle, et sur l’extension de la notion de dynamique rotationnelle dans le cadre de cette approche stochastique. Les résultats obtenus avec le modèle, comparés avec la DNS, produisent une réponse qualitative acceptable, même si ce modèle diffusif n’est pas conçu pour reproduire les caractéristiques non-gaussiennes des expériences numériques (DNS). L’extension au cas tridimensionnel du modèle d’orientation pose le problème de son implé- mentation numérique efficace. Dans ce travail, un schéma numérique capable de simuler la dynamique d’orientation de telles particules, à un coût de calcul raisonnable, est introduit. La convergence de ce schéma est également analysée. Pour ce faire, un schéma fondé sur la décomposition de la dynamique a été développé pour résoudre les équations différen- tielles stochastiques (EDS) de rotation de ces particules. Cette décomposition permet de surmonter les problèmes d’instabilité typiques de la méthode Euler–Maruyama; on a ainsi obtenu une convergence en norme L2 d’ordre 1/2 et une convergence faible d’ordre 1, comme classiquement attendu. Enfin, le schéma numérique a été implémenté dans un code CFD industriel (Code_Saturne). Ce modèle a ensuite été utilisé pour étudier l’orientation et la rotation de particules anisotropes sans inertie dans le cas d’un écoulement turbulent inhomogène, à savoir un écoulement de canal plan turbulent. Cette application dans un cas pratique a permis de mettre en evidence deux difficultés liées au modèle : d’abord, l’implémentation numérique dans un code industriel, ensuite la capacité du modèle à reproduire les expériences numériques obtenues par DNS. Ainsi, le modèle stochastique Lagrangien pour l’orientation de sphéroïdes implémenté dans Code_Saturne permet de reproduire, avec certaines limites, les statistiques d’orientation et de rotation de sphéroïdes mesurées dans la DNS
The motion of small non- spherical particles suspended in a turbulent flow is relevant for a large variety of natural and industrial applications such as aerosol dynamics in respiration, red blood cells motion, plankton dynamics, ice in clouds, combustion, to name a few. Anisotropic particles react on turbulent flows in complex ways, which depend on a wide range of parameters (shape, inertia, fluid shear). Inertia-free particles, with size smaller than the Kolmogorov length, follow the fluid motion with an orientation generally defined by the local turbulent velocity gradient. Therefore, this thesis is focused on the dynamics of these objects in turbulence exploiting stochastic Lagrangian methods. The development of a model that can be used as predictive tool in industrial computational fluid dynamics (CFD) is highly valuable for practical applications in engineering. Models that reach an acceptable compromise between simplicity and accuracy are needed for progressing in the field of medical, environmental and industrial processes. The formulation of a stochastic orientation model is studied in two-dimensional turbulent flow with homogeneous shear, where results are compared with direct numerical simulations (DNS). Finding analytical results, scrutinising the effect of the anisotropies when they are included in the model, and extending the notion of rotational dynamics in the stochastic framework, are subjects addressed in our work. Analytical results give a reasonable qualitative response, even if the diffusion model is not designed to reproduce the non-Gaussian features of the DNS experiments. The extension to the three-dimensional case showed that the implementation of efficient numerical schemes in 3D models is far from straightforward. The introduction of a numerical scheme with the capability to preserve the dynamics at reasonable computational costs has been devised and the convergence analysed. A scheme of splitting decomposition of the stochastic differential equations (SDE) has been developed to overcome the typical instability problems of the Euler–Maruyama method, obtaining a mean-square convergence of order 1/2 and a weakly convergence of order 1, as expected. Finally, model and numerical scheme have been implemented in an industrial CFD code (Code_Saturne) and used to study the orientational and rotational behaviour of anisotropic inertia-free particles in an applicative prototype of inhomogeneous turbulence, i.e. a turbulent channel flow. This real application has faced two issues of the modelling: the numerical implementation in an industrial code, and whether and to which extent the model is able to reproduce the DNS experiments. The stochastic Lagrangian model for the orientation in the CFD code reproduces with some limits the orientation and rotation statistics of the DNS. The results of this study allows to predict the orientation and rotation of aspherical particles, giving new insight into the prediction of large scale motions both, in two-dimensional space, of interest for geophysical flows, and in three-dimensional industrial applications
5

Terentiev, Leonid. "The turbulence closure model based on linear anisotropy invariant analysis." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=979794781.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lamriben, Cyril. "Transferts anisotropes d'énergie en turbulence en rotation et excitation de modes d'inertie." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00734192.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nous présentons une étude expérimentale de l'influence d'une rotation d'ensemble sur le déclin d'un écoulement turbulent dans une géométrie confinée. L'écoulement est généré en translatant rapidement une grille dans un récipient parallélépipédique, et nous mesurons les champs de vitesse dans un plan vertical (parallèle à l'axe de rotation) grâce à un dispositif de PIV embarqué. Nous montrons dans un premier temps qu'une partie significative de l'énergie est contenue dans un écoulement moyen reproductible, qui s'identifie à une superposition de modes d'inertie résonnants de la cuve. Le couplage possible entre cet écoulement et la turbulence suggère que la turbulence ainsi créée n'est pas en déclin libre. Nous montrons cependant qu'il est possible d'inhiber l'apparition de ces modes d'inertie en modifiant les caractéristiques géométriques de la grille. Cette nouvelle configuration permet alors de caractériser dans l'espace physique les transferts d'énergie pour une turbulence en déclin libre. L'énergie associée aux incréments de vitesse et la densité de flux d'énergie sont calculées à partir d'un grand nombre de réalisations indépendantes. Nous montrons que la rotation provoque une forte bidimensionalisation de la distribution d'énergie, et que celle-ci est contrôlée par une densité de flux d'énergie qui reste quasi-radiale, mais qui fait apparaître une dépendance angulaire marquée. Enfin, nous étudions également l'écoulement dans un cube, que nous soumettons à une libration longitudinale afin d'exciter les modes observés initialement avec le dispositif de turbulence de grille. En comparant les champs de vitesse expérimentaux aux prédictions numériques des modes inviscides, nous montrons que seul un certain nombre de modes, compatibles avec les symétries du forçage, peuvent être excités par libration. Nous caractérisons en particulier la résonance du mode de plus bas ordre compatible avec les symétries du forçage, et discutons du rôle de la viscosité.
7

Jeong, Eun-Hwan. "Selected problems in turbulence theory and modeling." Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/523.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Three different topics of turbulence research that cover modeling, theory and model computation categories are selected and studied in depth. In the first topic, "velocity gradient dynamics in turbulence" (modeling), the Lagrangian linear diffusion model that accounts for the viscous-effect is proposed to make the existing restricted-Euler velocity gradient dynamics model quantitatively useful. Results show good agreement with DNS data. In the second topic, "pressure-strain correlation in homogeneous anisotropic turbulence subject to rapid strain-dominated distortion" (theory), extensive rapid distortion calculation is performed for various anisotropic initial turbulence conditions in strain-dominated mean flows. The behavior of the rapid pressure-strain correlation is investigated and constraining criteria for the rapid pressure-strain correlation models are developed. In the last topic, "unsteady computation of turbulent flow past a square cylinder using partially-averaged Navier-Stokes method" (model computation), the basic philosophy of the PANS method is reviewed and a practical problem of flow past a square cylinder is computed for various levels of physical resolution. It is revealed that the PANS method can capture many important unsteady flow features at an affordable computational effort.
8

Hamilton, Nicholas Michael. "Anisotropy of the Reynolds Stress Tensor in the Wakes of Counter-Rotating Wind Turbine Arrays." PDXScholar, 2014. https://pdxscholar.library.pdx.edu/open_access_etds/1848.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A wind turbine array was constructed in the wind tunnel at Portland State University in a standard Cartesian arrangement. Configurations of the turbine array were tested with rotor blades set to rotate in either a clockwise or counter-clockwise sense. Measurements of velocity were made with stereo particle-image velocimetry. Mean statistics of velocities and Reynolds stresses clearly show the effect of direction of rotation of rotor blades for both entrance and exit row turbines. Rotational sense of the turbine blades is visible in the mean spanwise velocity W and the Reynolds shear stress -[macron over vw]. The normalized anisotropy tensor was decomposed yielding invariants [lowercase eta] and [lowercase xi], which are plotted onto the Lumley triangle. Invariants of the normalized Reynolds stress anisotropy tensor indicate that distinct characters of turbulence exist in regions of the wake following the nacelle and the rotor blade tips. Eigendecomposition of the tensor yields principle components and corresponding coordinate system transformations. Characteristic spheroids are composed with the eigenvalues from the decomposition yielding shapes predicted by the Lumley triangle. Rotation of the coordinate system defined by the eigenvectors demonstrates streamwise trends, especially trailing the top rotor tip and below the hub of the rotors. Direction of rotation of rotor blades is evidenced in the orientation of characteristic spheroids according to principle axes. The characteristic spheroids of the anisotropy tensor and their relate alignments varies between cases clearly seen in the inflows to exit row turbines. There the normalized Reynolds stress anisotropy tensor shows cumulative effects of the rotational sense of upstream turbines. Comparison between the invariants of the Reynolds stress anisotropy tensor and terms from the mean mechanical energy equation indicate a correlation between the degree of anisotropy and the regions of the wind turbine wakes where turbulence kinetic energy is produced. The flux of kinetic energy into the momentum-deficit area of the wake from above the canopy is associated with prolate characteristic spheroids. Flux upward into the wake from below the rotor area is associate with oblate characteristic spheroids. Turbulence in the region of the flow directly following the nacelle of the wind turbines demonstrates more isotropy compared to the regions following the rotor blades. The power and power coefficients for wind turbines indicate that flow structures on the order of magnitude of the spanwise turbine spacing that increase turbine efficiency depending on particular array configuration.
9

Rasam, Amin. "Anisotropy-resolving subgrid-scale modelling using explicit algebraic closures for large eddy simulation." Doctoral thesis, KTH, Turbulens, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-142401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The present thesis deals with the development and performance analysis ofanisotropy-resolving models for the small, unresolved scales (”sub-grid scales”,SGS) in large eddy simulation (LES). The models are characterised by a descriptionof anisotropy by use of explicit algebraic models for both the subgridscale(SGS) stress tensor (EASSM) and SGS scalar flux vector (EASSFM). Extensiveanalysis of the performance of the explicit algebraic SGS stress model(EASSM) has been performed and comparisons made with the conventionalisotropic dynamic eddy viscosity model (DEVM). The studies include LES ofplane channel flow at relatively high Reynolds numbers and a wide range ofresolutions and LES of separated flow in a channel with streamwise periodichill-shaped constrictions (periodic hill flow) at coarse resolutions. The formersimulations were carried out with a pseudo-spectral Navier–Stokes solver, whilethe latter simulations were computed with a second-order, finite-volume basedsolver for unstructured grids. The LESs of channel flow demonstrate that theEASSM gives a good description of the SGS anisotropy, which in turn gives ahigh degree of resolution independence, contrary to the behaviour of LES predictionsusing the DEVM. LESs of periodic hill flow showed that the EASSMalso for this case gives significantly better flow predictions than the DEVM.In particular, the reattachment point was much better predicted with the EASSMand reasonably well predicted even at very coarse resolutions, where theDEVM is unable to predict a proper flow separation.The explicit algebraic SGS scalar flux model (EASSFM) is developed toimprove LES predictions of complex anisotropic flows with turbulent heat ormass transfer, and can be described as a nonlinear tensor eddy diffusivity model.It was tested in combination with the EASSM for the SGS stresses, and itsperformance was compared to the conventional dynamic eddy diffusivity model(DEDM) in channel flow with and without system rotation in the wall-normaldirection. EASSM and EASSFM gave predictions of high accuracy for meanvelocity and mean scalar fields, as well as stresses and scalar flux components.An extension of the EASSM and EASSFM, based on stochastic differentialequations of Langevin type, gave further improvements. In contrast to conventionalmodels, these extended models are able to describe intermittent transferof energy from the small, unresolved scales, to the resolved large ones.The present study shows that the EASSM/EASSFM gives a clear improvementof LES of wall-bounded flows in simple, as well as in complex geometriesin comparison with simpler SGS models. This is also shown to hold for a widerange of resolutions and is particularly accentuated for coarse resolution. The advantages are also demonstrated both for high-order numerical schemes andfor solvers using low-order finite volume methods. The models therefore havea clear potential for more applied computational fluid mechanics.

QC 20140304


Explicit algebraic sub-grid scale modelling for large-eddy simulations
10

Hamilton, Nicholas Michael. "Wake Character in the Wind Turbine Array: (Dis-)Organization, Spatial and Dynamic Evolution and Low-dimensional Modeling." PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/3084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
To maximize the effectiveness of the rapidly increasing capacity of installed wind energy resources, new models must be developed that are capable of more nuanced control of each wind turbine so that each device is more responsive to inflow events. Models used to plan wind turbine arrays and control behavior of devices within the farm currently make questionable estimates of the incoming atmospheric flow and update turbine configurations infrequently. As a result, wind turbines often operate at diminished capacities, especially in arrays where wind turbine wakes interact and inflow conditions are far from ideal. New turbine control and wake prediction models must be developed to tune individual devices and make accurate power predictions. To that end, wind tunnel experiments are conducted detailing the turbulent flow in the wake of a wind turbine in a model-scale array. The proper orthogonal decomposition (POD) is applied to characterize the spatial evolution of structures in the wake. Mode bases from distinct downstream locations are reconciled through a secondary decomposition, called double proper orthogonal decomposition (DPOD), indicating that modes of common rank in the wake share an ordered set of sub-modal projections whose organization delineates underlying wake structures and spatial evolution. The doubly truncated basis of sub-modal structures represents a reduction to 0.015% of the total degrees of freedom of the wind turbine wake. Low-order representations of the Reynolds stress tensor are made using only the most dominant DPOD modes, corrected to account for energy excluded from the truncated basis with a tensor of constant coefficients defined to rescale the low-order representation of the stresses to match the original statistics. Data from the wind turbine wake are contrasted against simulation data from a fully-developed channel flow, illuminating a range of anisotropic states of turbulence. Complexity of flow descriptions resulting from truncated POD bases is suppressed in severe basis truncations, exaggerating anisotropy of the modeled flow and, in extreme cases, can lead to the loss of three dimensionality. Constant corrections to the low-order descriptions of the Reynolds stress tensor reduce the root-mean-square error between low-order descriptions of the flow and the full statistics as much as 40% and, in some cases, reintroduce three-dimensionality to severe truncations of POD bases. Low-dimensional models are constructed by coupling the evolution of the dynamic mode coefficients through their respective time derivatives and successfully account for non-linear mode interaction. Deviation between time derivatives of mode coefficients and their least-squares fit is amplified in numerical integration of the system, leading to unstable long-time solutions. Periodic recalibration of the dynamical system is undertaken by limiting the integration time and using a virtual sensor upstream of the wind turbine actuator disk in to read the effective inflow velocity. A series of open-loop transfer functions are designed to inform the low-order dynamical system of the flow incident to the wind turbine rotor. Validation data shows that the model tuned to the inflow reproduces dynamic mode coefficients with little to no error given a sufficiently small interval between instances of recalibration. The reduced-order model makes accurate predictions of the wake when informed of turbulent inflow events. The modeling scheme represents a viable path for continuous time feedback and control that may be used to selectively tune a wind turbine in the effort to maximize power output of large wind farms.

Книги з теми "Anisotropic turbulence models":

1

L, Machiels, Gatski T. B, and Langley Research Center, eds. Predicting nonInertial effects with algebraic stress models which account for dissipation rate anisotropies. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

L, Machiels, Gatski T. B, and Langley Research Center, eds. Predicting nonInertial effects with algebraic stress models which account for dissipation rate anisotropies. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sagaut, Pierre. Homogeneous turbulence dynamics. Cambridge: Cambridge University Press, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Trevino, G. Structure of wind-shear turbulence. Hampton, Va: Langley Research Center, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

R, Laituri Tony, and United States. National Aeronautics and Space Administration., eds. Structure of wind-shear turbulence. [Washington, DC]: [National Aeronautics and Space Administration, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

R, Laituri Tony, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Structure of wind-shear turbulence. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

R, Laituri Tony, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., eds. Structure of wind-shear turbulence. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Division, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

R, Laituri Tony, and United States. National Aeronautics and Space Administration., eds. Structure of wind-shear turbulence. [Washington, DC]: [National Aeronautics and Space Administration, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chu, Chiang. Calculations of diffuser flows with an anisotropic K-[epsilon] model. [Washington, DC]: National Aeronautics and Space Administration, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhu, Jiang. Calculations of diffuser flows with an anisotropic K-[epsilon] model. [Washington, DC]: National Aeronautics and Space Administration, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Anisotropic turbulence models":

1

Hallbäck, M., J. Groth, and A. V. Johansson. "Anisotropic Dissipation Rate — Implications for Reynolds Stress Models." In Advances in Turbulence 3, 414–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84399-0_45.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Aupoix, B. "Subgrid Scale Models for Homogeneous Anisotropic Turbulence." In Direct and Large Eddy Simulation of Turbulence, 37–66. Wiesbaden: Vieweg+Teubner Verlag, 1986. http://dx.doi.org/10.1007/978-3-663-00197-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Deville, Michel O. "Turbulence." In An Introduction to the Mechanics of Incompressible Fluids, 211–56. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04683-4_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe Reynolds decomposition and statistical averaging of velocity and pressure generate the Reynolds averaged Navier–Stokes (RANS) equations. The closure problem is solved by the introduction of a turbulence constitutive equation. Several linear turbulence models are presented in the RANS framework: $$K-\varepsilon , K-\omega $$ K - ε , K - ω . The solution of the RANS equations for the turbulent channel flow is elaborated giving the celebrated logarithmic profile. Non-linear models are built on the anisotropy tensor and the incorporation of the concept of integrity bases. The chapter ends with the theory of large eddy simulations with a few up-to-date models: dynamic model, approximate deconvolution method.
4

Godeferd, Fabien S., Alexandre Delache, and Claude Cambon. "Toroidal/Poloidal Modes Dynamics in Anisotropic Turbulence." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 151–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14139-3_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Könözsy, László. "The Anisotropic Hybrid k-$$\omega $$ SST/Stochastic Turbulence Model." In A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows, 115–40. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60603-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Godeferd, Fabien, Lukas Liechtenstein, Claude Cambon, Julian Scott, and Benjamin Favier. "A Model for the Far-Field Anisotropic Acoustic Emission of Rotating Turbulence." In IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, 297–302. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6472-2_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Könözsy, László. "The k- $$\omega $$ ω Shear-Stress Transport (SST) Turbulence Model." In A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows, 57–66. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13543-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Könözsy, László. "Implementation of the Anisotropic Hybrid k-$$\omega$$ SST/STM Closure Model." In A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows, 141–214. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60603-9_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Erbig, Lars, and Sylvain Lardeau. "Hybrid RANS/LES of an Adverse Pressure Gradient Turbulent Boundary Layer Using an Elliptic Blending Reynolds Stress Model and Anisotropic Linear Forcing." In Progress in Hybrid RANS-LES Modelling, 73–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27607-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Speziale, Charles G. "Modeling Of Turbulent Transport Equations." In Simulation and Modeling of Turbulent Flows. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195106435.003.0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The high-Reynolds-number turbulent flows of technological importance contain such a wide range of excited length and time scales that the application of direct or large-eddy simulations is all but impossible for the foreseeable future. Reynolds stress models remain the only viable means for the solution of these complex turbulent flows. It is widely believed that Reynolds stress models are completely ad hoc, having no formal connection with solutions of the full Navier-Stokes equations for turbulent flows. While this belief is largely warranted for the older eddy viscosity models of turbulence, it constitutes a far too pessimistic assessment of the current generation of Reynolds stress closures. It will be shown how secondorder closure models and two-equation models with an anisotropic eddy viscosity can be systematically derived from the Navier-Stokes equations when one overriding assumption is made: the turbulence is locally homogeneous and in equilibrium. A brief review of zero equation models and one equation models based on the Boussinesq eddy viscosity hypothesis will first be provided in order to gain a perspective on the earlier approaches to Reynolds stress modeling. It will, however, be argued that since turbulent flows contain length and time scales that change dramatically from one flow configuration to the next, two-equation models constitute the minimum level of closure that is physically acceptable. Typically, modeled transport equations are solved for the turbulent kinetic energy and dissipation rate from which the turbulent length and time scales are built up; this obviates the need to specify these scales in an ad hoc fashion. While two-equation models represent the minimum acceptable closure, second-order closure models constitute the most complex level of closure that is currently feasible from a computational standpoint. It will be shown how the former models follow from the latter in the equilibrium limit of homogeneous turbulence. However, the two-equation models that are formally consistent with second-order closures have an anisotropic eddy viscosity with strain-dependent coefficients - a feature that most of the commonly used models do not possess.

Тези доповідей конференцій з теми "Anisotropic turbulence models":

1

Li, Xueying, Jing Ren, and Hongde Jiang. "Film Cooling Modeling of Turbine Blades Using Algebraic Anisotropic Turbulence Models." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The complex structures in the flow field of gas turbine film cooling increase the anisotropy of turbulence making it difficult to accurately compute turbulent eddy viscosity and scalar diffusivity. An algebraic anisotropic turbulence model is developed while aiming at a more accurate modeling of the Reynolds stress and turbulent scalar flux. In this study the algebraic anisotropic model is validated by two in-house experiments. One is a leading edge with showerhead film cooling and the other is a vane with full coverage film cooling. Adiabatic film cooling effectiveness under different blowing ratios, density ratios and film cooling arrangements were measured using PSP technique. Four different turbulence models are tested and detailed analyses of computational simulations are performed. Among all the turbulence models investigated, the algebraic anisotropic model shows better agreement with the experimental data qualitatively and quantitatively. The algebraic anisotropic model gives a good prediction of the vortex strength and turbulence mixing of the jet, therefore improves the prediction of the scalar field.
2

Zhou, Prof Lixing, Yu Y., Cai F. P., and Zeng Zh. X. "Anisotropic Two-Phase Turbulence Models for Two-Fluid Modeling of Turbulent Dense Gas-Particle Flows." In 5th Asian Particle Technology Symposium. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2518-1_086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Casartelli, Ernesto, Luca Mangani, David Roos, and Armando Del Rio. "On the Application of the Full Reynolds Stress Model for Unsteady CFD in Hydraulic Turbomachines." In ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20398.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The computation of the characteristic of hydraulic machines, both in pump and turbine mode, needs, when performed over a wide operating range, to take into account turbulence anisotropy. This because highly separated flows largely deviate from isotropic turbulence structures as assumed in RANS eddy viscosity models with the Boussinesq approximation. In this paper CFD computations were performed with anisotropic turbulence models in order to capture the characteristic and investigate flow structures phenomena. Experimental results are compared against the CFD simulations in order to validate the results. Specific occurring phenomena are highlighted and more complex flow structures are evident compared to those computed with standard eddy viscosity models. A in-house pressure based coupled solver was used for the CFD simulations. The code is a finite volume polyhedral CFD solver implemented in a C++ framework with the possibility to implement implicit and coupled algorithms. Second moment closure turbulence model have been successfully implemented with a standard and novel fully coupled algorithm. In the paper the advantage of the novel algorithm is presented for industrial applications. The fully coupled approach for the Reynolds Stress model allows stable simulations of transient and steady state hydraulic machines at any operating point, opening also new opportunities in obtaining high accurate results for anisotropic turbulent flows without the usage of hybrid LES/RANS models and without the model limitation of standard eddy viscosity models.
4

Zaichik, Leonid I., V. M. Alipchenkov, and A. R. Avetissian. "Transport and Algebraic Models of Particle Kinetic Stresses and Heat Fluxes in Anisotropic Turbulent Flows." In Turbulence, Heat and Mass Transfer 5. Proceedings of the International Symposium on Turbulence, Heat and Mass Transfer. New York: Begellhouse, 2006. http://dx.doi.org/10.1615/ichmt.2006.turbulheatmasstransf.1520.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, Xueying, Jing Ren, and Hongde Jiang. "Full Field Algebraic Anisotropic Eddy Viscosity Model for the Film Cooling Flows." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-68667.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The algebraic anisotropic eddy viscosity model proposed by the authors is further developed to make it suitable to the full flow field in order to focus not only in the near wall region but also in the main flow field. The three anisotropic eddy viscosity ratios for u′v′, u′w′, v′w′ are determined from the eddy viscosity hypothesis and algebraic Reynolds stress transport equations and expressed in Cartesian coordinate system. This model is applied to four isotropic two-equation turbulence models to make them anisotropic. These anisotropic models are validated with the experiment data from Sinha et al.[1]. Thorough tests are performed with all these isotropic and anisotropic turbulence models for film cooling on a flatplate with different blowing ratios. Detailed analyses of computational simulations are presented. The predicted adiabatic film cooling effectiveness and mean flow field show that the algebraic anisotropic eddy-viscosity turbulence models agree better with the experiment data. Among the four anisotropic models, the anisotropic models based on the realizable k-ε and RNG k-ε models stand out as the most promising models for flatplate film cooling predictions. It’s a big advantage of this model that it deals with the whole flow field and can be combined with different turbulence models.
6

Antonello, Marco, Massimo Masi, and Giampaolo Navarro. "An anisotropic modification of the Reynolds stresses for algebraic models of turbulence." In 15th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-2840.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

MacDonald, James R., and Claudia M. Fajardo. "Turbulence Anisotropy Investigations in an Internal Combustion Engine." In ASME 2020 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icef2020-3029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The assumption of isotropic turbulence is commonly incorporated into models of internal combustion engine (ICE) in-cylinder flows. While preliminary analysis with two-dimensional velocity data indicates that the turbulence may tend to isotropy as the piston approaches TDC, the validity of this assumption has not been fully investigated, partially due to lack of three-component velocity data in ICEs. In this work, the velocity was measured using two-dimensional, three-component (2D-3C) particle image velocimetry in a single-cylinder, motored, research engine to investigate the evolution of turbulence anisotropy throughout the compression stroke. Invariants of the Reynolds stress anisotropy tensor were calculated and visualized, through the Lumley triangle, to investigate turbulence states. Results showed the turbulence to be mostly anisotropic, with preferential tendency toward 2D axisymmetry at the beginning of the compression stroke and approaching isotropy near top-dead-center. Findings provide new insights into turbulence in dynamic, bounded flows to assist with the development of physics-based, quantitative models.
8

MacIsaac, G. D., and S. A. Sjolander. "Anisotropic Eddy Viscosity in the Secondary Flow of a Low-Speed Linear Turbine Cascade." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45578.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The final losses within a turbulent flow are realized when eddies completely dissipate to internal energy through viscous interactions. The accurate prediction of the turbulence dissipation, and therefore the losses, requires turbulence models which represent, as accurately as possible, the true flow physics. Eddy viscosity turbulence models, commonly used for design level computations, are based on the Boussinesq approximation and inherently assume the eddy viscosity field is isotropic. The current paper compares the computational predictions of the flow downstream of a low-speed linear turbine cascade to the experimentally measured results. Steady-state computational simulations were performed using ANSYS CFX v12.0 and employed the shear stress transport (SST) turbulence model with the γ-Reθ transition model. The experimental data includes measurements of the mean and turbulent flow quantities. Steady pressure measurements were collected using a seven-hole pressure probe and the turbulent flow quantities were measured using a rotatable x-type hotwire probe. Data is presented for two axial locations: 120% and 140% of the axial chord (Cx) downstream of the leading edge. The computed loss distribution and total bladerow losses are compared to the experimental measurements. Differences are noted and a discussion of the flow structures provides insights into the origin of the differences. Contours of the shear eddy viscosity are presented for each axial plane. The secondary flow appears highly anisotropic, demonstrating a fundamental difference between the computed and measured results. This raises questions as to the validity of using two-equation turbulence models, which are based on the Boussinesq approximation, for secondary flow predictions.
9

Xi, Jinxiang, and P. Worth Longest. "Effects of Improved Near-Wall Modeling on Micro-Particle Deposition in Oral Airway Geometries." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Direct Lagrangian particle tracking provides an effective method for simulating micro-aerosol deposition in the upper respiratory airways. However, Xi and Longest [1] have shown that errors occurred in the predicted deposition rates of smaller particles in comparison to measurements. Matida et al. [2] attributed a similar discrepancy to the assumption of isotropic turbulent fluctuations near the wall. Matida et al. [2] implemented a near-wall anisotropic turbulence model and reported significantly improved agreement with experimental data. Longest and Xi [3] investigated nanoparticle deposition in oral airway models and showed that a Lagrangian transport model with a user-defined near-wall interpolation (NWI) algorithm provided an effective approach to accurately predict deposition in comparison to available experimental results. It is proposed that implementing both an anisotropic turbulence model with a NWI routine may further improve agreement between numerical and experimental results. The objective of this study is to evaluate the effect both near-wall anisotropic and interpolation models on regional deposition values in the oral airway geometry. Comparisons will be made to available in vitro test results. Models considered will include (1) the anisotropic correction only, and (2) anisotropic and NWI routines.
10

Li, Xueying, Jing Ren, and Hongde Jiang. "On the Reliability of RANS Turbulence Models for Endwall Cooling Prediction." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-65207.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The large scale coherent structures in the flow field of film cooling makes it difficult for the modeling of film cooling flow and heat transfer. The interaction between the complex secondary flows near the endwall and the film cooling jets makes it even worse. A typical flat vane endwall with/without film cooling is investigated experimentally and numerically. The aerodynamic and heat transfer of the endwall is measured. Adiabatic film cooling effectiveness is measured using PSP technique and conjugate overall cooling effectiveness is measured by TSP technique for different conditions. The coolant to mainstream massflow ratio (MFR) is varied from 0.5% to 1.5% in the experiment. Several RANS turbulence models are tested in the prediction of endwall aerodynamics, heat transfer, film cooling and conjugate heat transfer. Detailed analyses of the computational results are performed. The algebraic anisotropic turbulence model proposed previously aiming at a more accurate modeling of the Reynolds stress and turbulent scalar flux is employed in the study. The SST with transition model shows advantage in the prediction of endwall flow field and film cooling with high blowing ratios which is detached from the surface. The Realizable k-epsilon model is more suitable for predicting attached film cooling and conjugate heat transfer of the endwall. The algebraic anisotropic models show better agreement with the experimental data qualitatively and quantitatively for both adiabatic and conjugate situations.

Звіти організацій з теми "Anisotropic turbulence models":

1

Wilson, David K. Anisotropic Turbulence Models for Acoustic Propagation Through the Neutral Atmospheric Surface Layer. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada339329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hart, Carl, and Gregory Lyons. A tutorial on the rapid distortion theory model for unidirectional, plane shearing of homogeneous turbulence. Engineer Research and Development Center (U.S.), July 2022. http://dx.doi.org/10.21079/11681/44766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The theory of near-surface atmospheric wind noise is largely predicated on assuming turbulence is homogeneous and isotropic. For high turbulent wavenumbers, this is a fairly reasonable approximation, though it can introduce non-negligible errors in shear flows. Recent near-surface measurements of atmospheric turbulence suggest that anisotropic turbulence can be adequately modeled by rapid-distortion theory (RDT), which can serve as a natural extension of wind noise theory. Here, a solution for the RDT equations of unidirectional plane shearing of homogeneous turbulence is reproduced. It is assumed that the time-varying velocity spectral tensor can be made stationary by substituting an eddy-lifetime parameter in place of time. General and particular RDT evolution equations for stochastic increments are derived in detail. Analytical solutions for the RDT evolution equation, with and without an effective eddy viscosity, are given. An alternative expression for the eddy-lifetime parameter is shown. The turbulence kinetic energy budget is examined for RDT. Predictions by RDT are shown for velocity (co)variances, one-dimensional streamwise spectra, length scales, and the second invariant of the anisotropy tensor of the moments of velocity. The RDT prediction of the second invariant for the velocity anisotropy tensor is shown to agree better with direct numerical simulations than previously reported.
3

Galperin, Boris. Modeling the Effects of Anisotropic Turbulence and Dispersive Waves on Oceanic Circulation and their Incorporation in Navy Ocean Models. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada542675.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії