Дисертації з теми "Anion exchange polymer membrane"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Anion exchange polymer membrane".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Panda, Ronit Kumar. "Développement d'un simulateur d'électrolyse alcalin avec membrane polymère échangeuse d'anions." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALI041.
Повний текст джерелаThis report describes the modelling AEMWE performances (chap 1) and degradations (chap 2). The models are developed in the MePHYSTO code developed at CEA in the Matlab/Simulink platform. The performance model has been developed thanks to the electrochemical characterization performed at CEA during the project. The essential electrochemical phenomena are captured including KOH concentration effect and bubble coverage effect and the IV curves are correctly simulated.Regarding the degradation, the work is based on the experimental results obtained at CEA during the project. The experimental results provided several ideas: the degradations include both reversible and irreversible parts that evolve differently. Indeed, the reversible degradations increases with time while irreversible parts decreases. We assumed the reversible part comes from the anode bubble coverage. Regarding the irreversible part, several phenomena are involved. We quantified the different contributions of these degradations thanks to the electrochemical model we developed, and the IV curves provided. First, the catalyst degradation is quantified via the estimation of the roughness factor at the beginning of the IV curves. Secondly, the ion-exchange over-potential evolution is quantified by fitting the model using the IV curves. Then, the degradations associated to the mass transport are analyzed in detail. We assumed that they are induced by the loss of wettability that increases the anode bubble coverage and thus, reduces the performances. This is coherent with the increase of the reversible degradations we associate to the bubble coverage. The evolution of the sinter contact angle that characterized this loss of wettability is calculated using an original approach. We develop a method based on simulations of the flow in the real geometry of the sinter using tomographic 3D picture and the GeoDict code. The flow properties (permeability and capillary pressure) and the contact angle are extracted from these simulations and are used in the MePHYSTO code to calculate the performances at different aged times with a good accuracy
García, Cruz Leticia. "Electroorganic synthesis using a Polymer Electrolyte Membrane Electrochemical Reactor: electrooxidation of primary alcohols in alkaline medium." Doctoral thesis, Universidad de Alicante, 2016. http://hdl.handle.net/10045/61507.
Повний текст джерелаThieu, Lam Mai. "Multiscale Tortuous Diffusion in Anion- and Cation-Exchange Membranes: Exploration of Counterions, Water Content, and Polymer Functionality." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/88849.
Повний текст джерелаMS
Bertolotti, Bruno. "Élaboration de membranes échangeuses d’anions à architecture réseaux interpénétrés de polymères pour des batteries lithium-air." Thesis, Cergy-Pontoise, 2013. http://www.theses.fr/2013CERG0676/document.
Повний текст джерелаThis work focuses on the synthesis and characterization of polymer membranes to be used as anion exchange membranes for protection on an air electrode in a new lithium–air battery for electric vehicle. In these materials showing interpenetrating polymer networks (IPN) architecture, a hydrogenated cationic polyelectrolyte network, the poly(epichlorohydrin) (PECH), is associated with a neutral network, which can be either hydrogenated or fluorinated. First, the synthesis of the polyelectrolyte network and the membrane/electrode assembly were optimized. Second, a first IPN series associating the PECH network with a poly(hydroxyethyl methacrylate) network was synthesized. Third, the same PECH network was associated with a fluorinated polymer network. All the materials were characterized, and optimal synthesis methods as well as an optimal composition were determined for each association. The IPNs show improved properties compared with the single PECH network. The air electrode protected by these new anion exchange membranes shows improved stability in the working conditions of the lithium-air battery. Specifically, a lifetime of 1000 h was obtained when the electrode was modified with a fluorinated IPN, a 20-fold increase in the lifetime of the non-modified electrode
Xu, Shaoyi. "SYNTHESIS OF PERFLUOROHETEROAROMATIC POLYMERS FOR ION-CONDUCTING MEMBRANE FUEL CELLS VIA FREE RADICAL-BASED REACTIONS AND SYNTHESIS OF DI-CATIONIC IONIC LIQUIDS AS EFFICIENT SO2 ABSORBENTS." OpenSIUC, 2016. https://opensiuc.lib.siu.edu/dissertations/1160.
Повний текст джерелаPasquini, Luca. "Ion - conducting polymeric membranes for electrochemical energy devices." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4750.
Повний текст джерелаThe research aims to propose membranes for electrochemical devices alternative to the commercial ones able to reach the right compromise in term of good ionic conduction, stability and long life time for an high efficiency. We realized proton exchange, anion exchange and amphoteric membranes based on stable functionalized aromatic polymers (PEEK, PSU). We thus introduced sulfonic groups on a PEEK backbone to exchange protons or ammonium groups on PEEK and PSU to exchange anions. We also realized amphoteric membranes able to exchange at the same time both kinds of ions. The continuous optimization of synthesis parameters, the choice of different polymers and/or functionalization groups and the improvement of casting procedures and treatments of membranes, led to good results in terms of ionic conductivity, selectivity and stability.The study of the main parameters of the synthesized membranes demonstrates a thermal stability between 140 and 200°C depending on the selected membrane, a mechanical behavior characterized by a high elastic modulus and tensile strength and a relatively low ductility strongly influenced on the degree of hydration of the membrane as well as the eventual presence of cross-linking. Working on the degree of functionalization and the type of functionalizing groups, we obtained a tunable water uptake, an elevated ionic conductivity for different ions (up to ≃ 3 mS/cm for anionic conducting polymers) and a very low ion permeability (vanadium ions for RFB applications) down to ≃ 10-10 cm2/min, which is much below typical literature data for cation- and anion separation membranes and a challenge parameters for technological applications
Catonné, Jean-Claude. "Contribution à l'étude du défaut de sélectivité présenté par les membranes échangeuses d'anions, dans le cadre de leurs applications au traitement électrochimique de régénération des solutions aqueuses d'acides minéraux." Paris 6, 1986. http://www.theses.fr/1986PA066030.
Повний текст джерелаWang, Lianqin. "Nanostructured Electrocatalysts for Anion Exchange Membrane Fuel Cells." Doctoral thesis, Università degli studi di Trieste, 2015. http://hdl.handle.net/10077/11107.
Повний текст джерелаLo sviluppo sostenibile è una sfida prioritaria per la nostra società. La possibilità di costruire un futuro sostenibile, mantenendo al contempo alti standard nella qualità della vita e preservando risorse e ambiente, dipende dalla disponibilità di metodi per la produzione verde di energía e prodotti chimici. La produzione simultanea di prodotti chimici ed energía può essere ottenuta nelle celle a combustibile che impiegano combustibili liquidi (Direct Liquid Fuel Cells – DLFC), dispositivi in cui l’energia chimica contenuta nelle molecole di combustibile è convertita direttamente in energía elettrica. Le DLFC impiegano solitamente combustibili a base di piccole molecole organiche quali ad esempio alcoli ed acido formico. Questi combustibili sono di particolare interesse, dal momento che possono essere ottenuti a partire da biomassa, con un impatto minore sulle emissioni di gas serra rispetto ai combustibili fossili. Allo stato attuale le DLFC impiegano platino in quantità elevate. Questo per due ragioni: i) il platino è un buon catalizzatore sia per l’ossidazione di composti organici che per la riduzione dell’ossigeno e ii) il platino è stabile in ambiente acido. E’ importante sottolineare che le attuali DLFC impiegano membrane a scambio protonico come elettroliti e dunque richiedono ambienti fortemente acidi per avere un’adeguata conducibilità. Le DLFC impiegano carichi di platino maggiori di 1 mg cm-2, un fatto che ne limita molto la possibilità di diffusione commerciale. In questo lavoro, grazie alla disponibilità di membrane a scambio anionico ad elevata conducibilità (Tokuyama A-201), abbiamo sviluppato delle DLFC alcaline (Anion Exchange Membrane Direct Liquid Fuel Cells – AEM-DLFC). Ciò e’ stato fatto con l’obiettivo di eliminare il platino dai dispositivi. E’ infatti noto che il palladio è un catalizzatore molto attivo per l’ossidazione delle piccole molecole organiche in ambiente alcalino e che la reazione di riduzione dell’ossigeno puo’ essere catalizzata da composti di ferro e cobalto (es. ftalocianine). La tecnología qui riportatata si basa sull’impiego di anodi di palladio supportati da carbon black (Vulcan XC-72), membrane a scambio anionico e ftalocianine di ferro e cobalto subbortate da carbon black con maggiore area superficiale rispetto a quello impiegato all’anodo (Ketjen Black 600). Un fatto importante è che le ftalocianine di ferro e cobalto non sono attive per l’ossidazione di molecole organiche. Ciò è particolarmente rilevante per le fuel cells perché il cross-over del combustibile attraverso la membrana non produce significative cadute di potenziale e quindi dell’efficienza energetica. La parte sperimentale della tesi inizia con un capitolo in cui si decrivono le prestazioni di AEM-DLFC esenti da platino ed alimentate ad etanolo. Questa parte del lavoro è particolarmente rilevante dal momento che è la prima e completa caratterizzazione della performance energetica di questi dispositivi. In particolare si sono determinati i seguenti parametri: i) massima densità di potenza, ii) efficienza energetica e iii) l’energia prodotta per singolo batch di combustibile. Tutti questi parametri sono stati determinati in funzione della composizione del combustibile. Abbiamo scoperto che la composizione del combustibile che massimizza uno dei parametri sopra riportati generalmente ha effetti negativi sugli altri. E’ dunque necesario definire la composizione del combustibile in funzione della particolare applicazione cui il dispositivo è destinato. Abbiamo inoltre studiato l’effetto dell’aggiunta di un ossido promotore, la ceria, al catalizatore anódico, mostrando che le prestazioni migliorano significativamente. In alcuni casi l’efficienza energetica può essere migliorata anche di più del 100% grazie alla semplice aggiunta di dell’ossido promotore. Il capitolo successivo e’ dedicato alle celle a combustile che impiegano combustibili a base di formiato (Direct Formate Fuel Cells – DFFC). In questo caso si sono impiegati catalizzatori nanostrutturati di Pd supportato da Vulcan XC-72 e ftalocianine di ferro e cobalto, rispettivamente all’anodo ed al catodo, ottenendo un potenziale di circuito aperto superiore ad 1 V. Le celle alcaline al formiato hanno prodotto una densità massima di potenza superiore alle celle alcaline che impiegano metanolo ed etanolo, ed anche alle celle acide che impiegano acido formico. In particolare l’efficienza energetica delle celle al formiato è stata superiore di un fattore 4 a quella delle migliori celle alcaline ad etanolo. Questo e’ un punto cruciale per l’applicazione pratica della tecnología proposta. Infatti l’efficienza energetica e’ uno dei cardini per il raggiungimento della sostenibilità e, senza dubbio, il vincolo principale per i sistemi che devono produrre grandi quantita’ di energía, come la generazione stazionaria di energía elettrica. Anche nel caso delle celle al formiato, abbiamo osservato che la composizione del combustibile è essenziale nel definire la performance energetica. Abbiamo mostrato che la massima densità di potenza si ottiene con un combustibile che contiene formiato 2 M e KOH 2 M, mentre l’energia per singolo batch di combustibile, la migliore conversione del combustibile e l’efficienza energetica sono migliori per il formiato 4 M e KOH 4 M. Al fine di migliorare la capacità del palladio di catalizzare l’ossidazione elettrochimica di composti organici rinnovabili, abbiamo sviluppato un metodo elettrochimico originale per il trattamento delle superfici degli elettrodi. Il trattamento consiste nell’applicazione di un potenziale ad onda quadra (Square Wave Potential – SWP) che produce un aumento della rugosità superficiale e una modifica della distribuzione delle terminazioni cristalline della superficie, incrementando la densità degli atomi di Pd superficiali a basso numero di coordinazione (< 8). Il trattamento si è rivelato efficace nel migliorare la cinetica di ossidaizione dell’etanolo, dell’etilen glicole e del glicerolo. I trattementi sviluppati hanno prodotto incrementi dell’attività fino ad un fattore 5.6. L’analisi FTIR dei processi di ossidazione ha dimostrato che anche la distribuzione dei prodotti di ossidazione e’ affetta dal trattamento. In particolate abbiamo riscontrato un incremento nella capacità dei catalizzatori ottenuti per SWP di rompere il legame C-C. Il trattamento elettrochimico con potenziale ad onda quadra è stato sviluppato anche per le superfici di platino, con l’obbiettivo di fornire uno strumento per ridurne il contenuto nelle fuel cells quando non sia possibile eliminarlo completamente. Nel caso del platino si è riscontrato che il parámetro piu’ importante per l’efficienza del trattamento è il periodo dell’onda quadra. Le superfici più attive si sono ottenute con un periodo di trattamento di 120 minuti, mentra la stabilità massima si e’ avuta per campioni trattati con onde quadre con periodo di 360 minuti. Tramite esperimenti FTIR si è inoltre concluso che nel caso del platino il trattamento inibisce la rottura del legame C-C. Questo fatto è importante perchè limita la formazione di frammenti CO che sono le principali specie che avvelenano gli elettrocatalizzatori a base di platino. Il capitolo 7 è dedicato allo studio dei meccanismi di deattivazione dei catalizzatori di palladio per l’ossidazione elettrochimica in ambente alcalino di alcoli. L’argomento è rilevante poichè la deattivazione è una delle principali cause che limita la diffusione di questi dispositivi. Abbiamo dimostrato che la formazione di ossidi è la causa che determina maggiormente la degradazione della performance catalítica. Siamo giunti a questa conclusione combinando le informazioni proveniente da indagini elettrochimiche ed esperimenti che impiegano la radiazione di sincrotrone. L’analisi degli spettri XANES (Near Edge X-ray Absorption Spectroscopy) ha mostrato che il palladio è presente nella sua forma metallica nei catalizzatori freschi, mentre è completamente ossidato dopo l’impiego in fuel cells. Nello studio si conclude che per allungare la vita degli anodi a base di palladio è necesario che il catalizzatore anodico non sia esposto a potenziali superiori a 0.7 V. Ciò è possibile in pratica con una semplice elettronica di controllo da abbinare alla cella. Al fine di aumentare la cinetica di ossidazione abbiamo provveduto ad effettuare esperimenti di ossidazione dell’etanolo a temperatura intermedie (> 100 °C) in autoclave. Abbiamo osservato che l’incremento della temperatura aumenta in misura significativa la capacità dei catalizzatori di ossidare l’etanolo in ambiente alcalino. Questo fatto è stato ascritto prevalentemente al miglioramento della capacità di adsorbire specie idrossido alla superficie del palladio. Lo stesso miglioramento non è stato osservato per esperimenti condotti in ambiente acido. Si sono inoltre realizzati esperimenti di ossidazione dell’etanolo su superfici di carburo di tungsteno in matrice di cobalto. Si è provato che questo materiale non mostra un’attività significativa per l’ossidazione di etanolo in ambiente alcalino. In ogni caso si è osservato che il materiale è stabile in ambienti alcalini, in un range di temperatura compreso tra 100 e 200 °C. Questo fatto unitamente all’elevata conducibilità suggerisce che il carburo di tungsteno in matrice di cobalto possa essere impiegato come supporto per la fase attiva dei catalizzatori, quali appunto il palladio. Lo stesso materiale ha mostrato una debole attività nell’ossidazione dell’etanolo ad una temperatura di 50 °C in ambiente acido. La stabilità non era però suficiente per permettere la caratterizzatione delle proprietà catalitiche in soluzioni acide a temperatura superiori.
Amongst current societal challenges sustainability is certainly a priority. The possibility of building a sustainable future, while maintaining high standards in the quality of life and preserving environment and resources, strongly relies on the availability of methods for the green production of energy and chemicals. The production of chemicals together with the on-demand power generation can be achieved in Direct Liquid Fuel Cells (DLFCs), devices in which the chemical energy of a liquid fuel is converted into electrical energy. DLFCs usually employ Small Organic Molecules (SOMs), such as alcohols or formic acid, as fuels. These fuels can be obtained from biomass feedstock. Consequently their use generates a significantly lower atmospheric CO2 with respect to the use of fossil fuels, resulting in a potential mitigation of the “greenhouse effect”. At the present stage, DLFCs rely on the use of the rare and costly platinum. This is for two reasons: i) platinum is a good catalyst for both SOMs oxidation and Oxygen Reduction Reaction (ORR); ii) platinum is stable in acidic environment. It is worth mentioning that most of DLFCs employ proton exchange membranes as electrolytes and need strongly acidic conditions for achieving low resistivity. In these systems also the water management can be a problem, as it is attracted to the cathode side for polarization and water is frequently introduced in the feed stream to the fuel cell. At present acidic DLFCs operate with a platinum content largely exceeding 1 mg cm-2, a fact that severely hampers the diffusion of such devices. In this investigation, thanks to a low resistivity Anion Exchange Membranes (AEM), the Tokuyama A-201, we have developed efficient alkaline direct liquid fuel cells (AEM-DLFCs). This has been done with the purpose of eliminating platinum from the devices. Indeed it is known that palladium effectively catalyzes SOMs oxidation in alkali; besides, oxygen reduction reaction can also be effectively achieved by using iron and cobalt phtalocyanines (Pc). Consequently the membrane electrode assembly (MEA) of a AEM-DLFC can be assembled using: i) a palladium based anode, ii) a Tokuyama A-201 membrane and iii) a cathode containing FePc-CoPc/C as electrocatalyst obtained from the high temperature pyrolysis of FePc-CoPc. An important fact is that FePc-CoPc/C is not active at all for the oxidation of SOMs. This has the major implication that fuel crossover through the membrane does not result in significant potential (and so energy efficiency) drop in fuel cells. The experimental part of this thesis starts with a chapter devoted to the analysis of the energy performance of platinum-free AEM-DLFCs fueled with ethanol (Chapter 3). This work is the first exhaustive analysis of the energy performance of such devices. Particularly we have determined the major parameters that characterize the fuel cell operations: i) maximum power density, ii) energy efficiency and iii) energy delivered per single fuel batch. All these parameters have been determined as a function of the fuel composition. We have discovered that the fuel concentration that maximizes one of the parameters can be detrimental to the others with the fundamental consequence that fuel composition must be selected according to the selected application. The effect of adding a promoting oxide, CeO2, to the anode catalyst has also been investigated. In some cases efficiency can be improved up to the 100% by simply adding cerium oxide to the anode catalyst. We have also proved that DEFCs are suitable candidates for the µ-fuel cells technology as we have shown their ability to operate with no or little performance degradation for 3 months at low power density (< 1 mW cm-2). Chapter 4 is dedicated to the Direct Formate Fuel Cells (DFFCs). Nanostructured Pd/C and FePc-CoPc/C have been employed at the anode and cathode side respectively. A large open circuit voltage (≥1.0 V) was obtained. This has been attributed to the larger (as compared with DEFCs) Nernst potential of the DFFCs and the use of FePc-CoPc/C as cathode electrocatalyst to restrain the reduction of cell voltage by fuel crossover. Our DFFCs have shown maximum power density larger than state of the art AEM-DLFCs and also Direct Formic Acid Fuel Cells (DFAFCs). AEM-DFFCs are also very effective in exploiting the energy content of the fuel. Indeed we have shown that DFFCs energy efficiency is four times the energy efficiency of analogous DEFCs. This point is very important to exploit the technology as the energy efficiency is the key issue for achieving sustainability and the major constraints for systems devoted to massive energy production. Again we have found that fuel composition is essential for the performance. The best power density was obtained by the cell fuelled with 2 M formate plus 2 M KOH, while best delivered energy, fuel utilization and energy efficiency were delivered by cell equipped with 4 M formate plus 4 M KOH. To enhance the ability of palladium to catalyze SOMs oxidation in alkaline environment, we have developed an original electrochemical treatment (Chapter 5). The treatment consisted of the application of a Square-Wave Potential (SWP) to the electrode and resulted in surface roughening and change in the distribution of the crystal surface terminations. Particularly we have found that after SWP an increase of the density of low coordination (Coordination Number < 8) Pd surface atoms occurs. We have found significant activity enhancement (from 4 to 5.6 times as compared to untreated surface) for the oxidation of all the investigated alcohols. Furthermore, FTIR spectra have shown that the reaction products distribution was also affected. Particularly we determined an increased tendency of the SWP treated Pd surface to cleave the C-C bond as compared to the untreated ones. A tailored SWP treatment for enhancing the catalytic activity of platinum was also developed (Chapter 6). The essential reason behind the study is to provide a tool for reducing Pt content in fuel cells when it cannot be completely eliminated. For platinum, it has turned out that the period of the square wave is the most important parameter. The most active platinum surface for Ethanol Oxidation Reaction (EOR) in alkali has been produced with a square wave period of 120 min, while the maximum stability of the catalytic performance has been obtained with the sample produced with a period of 360 min. Via in situ FTIR we have also found that the treated samples limit C-C cleavage as compared to the untreated ones. This suggests that SWP on Pt could provide an effective strategy to minimize the formation of CO, a major poisoning agent for platinum based catalysts. Chapter 7 is devoted to the investigation of the degradation mechanism of palladium electrocatalysts in platinum-free AEM-DLFCs. This is among the main issues still preventing the full exploitation of palladium in DLFCs. We have demonstrated that palladium oxide formation is the major cause for the catalytic performance degradation. We came to this conclusion by combining the information derived from electrochemical measurements and synchrotron light experiments (X-ray Absorption Spectroscopy). X-ray Absorption Near Edge Structure (XANES) spectra of the Pd Kα edge before and after DEFC run have shown that Pd is present in its metallic form in the pristine catalyst, while it is almost completely oxidized after work in an ethanol fed fuel cell. This has enabled us to conclude that to extend the service life of palladium electro-catalysts in alkali, the anode potential has not to exceed 0.7 V. In practice this can be achieved with a simple electronic control of the device. Increasing the operating temperature of fuel cells is an alternative strategy to improve the performance of fuel cells fed with SOMs containing fuels. In chapter 8, palladium has been investigated as a catalyst for ethanol oxidation at intermediate temperatures (> 100 °C) in a pressurized vessel. We have found that the increase of the temperature dramatically enhances the ability of catalyzing EOR in alkali. This fact has been ascribed to the improved adsorption of the hydroxyl species on the palladium surface. The same enhancement has not been observed in acidic environment. A few experiments on the use of tungsten carbide in a cobalt matrix (WC-Co) have also been performed. We have proved that WC-Co does not catalyze significantly the ethanol oxidation reaction in alkaline media, while it does in acidic electrolyte at medium temperature (~50 °C). At larger temperature the stability in acidic environment is not enough to allow a reliable assessment of the catalytic performance. Larger stability has been achieved in alkali where tungsten carbide is a potential candidate for supporting other active phases such as noble metals.
XXVII Ciclo
1987
Santori, Pietro Giovanni. "Investigation of electrocatalysts for anion-exchange membrane fuel cells." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS129.
Повний текст джерелаThis PhD thesis investigates the synthesis, structural characterization and oxygen reduction reaction (ORR) activity of Fe-N-C catalysts and composites of Fe-N-C and manganese oxides, and their application at the cathode of anion exchange membrane fuel cells (AEMFCs). Compared to proton exchange membrane fuel cells (PEMFCs), where platinum is today needed to reach high performance, AEMFCs hold the promise to reach high performance without precious metals in their catalysts. While Fe-N-C catalysts are currently investigated as an alternative to Pt/C for PEMFC cathodes, they suffer from lower activity and lower durability in the acidic medium of PEMFCs. In contrast, both the ORR activity and stability of Fe-N-C catalysts can be expected to be significantly improved in AEMFC.This PhD work demonstrates the high activity, stability and durability in alkaline medium of Fe-N-C catalysts with atomically-dispersed FeNx sites. They were prepared from a mix of ZIF-8 and iron salt, pyrolyzed in argon (Fe0.5-Ar) and then ammonia (Fe0.5-NH3). The activity was measured in a rotating disk electrode (RDE) and in AEMFC, while the stability was measured in RDE and in operando with mass spectroscopy (ICP-MS) coupled with a scanning flow cell, in both acid and alkaline media. The latter setup was used to measure Fe dissolution in operando. It was evidenced that, in oxygenated acid electrolyte, the iron leaching rate of the most active Fe-N-C catalyst (Fe0.5-NH3) is 10 times faster compared to the less active Fe0.5-Ar. This explains the reduced stability of ammonia-treated Fe-N-C catalysts in operating PEMFC. In contrast, in alkaline medium, very little demetallation was observed even for Fe0.5-NH3. This was correlated with almost unchanged activity after load cycling in RDE. The nature of the active sites was investigated with X-ray absorption spectroscopy, including in operando measurements.Then, to minimize the amount of peroxide species during ORR on Fe-N-C, different manganese oxides were synthesized and their activity for ORR and hydrogen peroxide reduction reaction (HPRR) were evaluated, while operando manganese dissolution was investigated with ICP-MS. It was found that even the most stable Mn-oxide, Mn2O3, leached a significant amount of Mn during ORR in alkaline medium. It was further demonstrated that the Mn leaching is associated with hydrogen peroxide produced during ORR. Composites of Fe0.5-NH3 and Mn-oxides were then investigated for ORR and HPRR. Improved selectivity during ORR was observed for all composites relative to Fe0.5-NH3 alone, but the effect was strongest for Mn2O3.Before investigating such catalysts in AEMFC, a study on the compatibility between different ORR and/or hydrogen oxidation reaction catalysts (Pt/C, Fe0.5-NH3, PtRu/C, Pd-CeO2/C) and anion exchange ionomers was performed in RDE in 0.1 M KOH. The study identified issues between the investigated ionomers and catalysts having low metal contents on the carbon support (Fe0.5-NH3, Pd-CeO2/C).The catalyst Fe0.5-NH3 and its composite with Mn2O3 were then investigated in AEMFC with an ethylene-tetrafluoroethylene ionomer. Both cathode catalysts reached a current density of ca 80 mA cm-2 at 0.9 V, with relatively low loading of 1.0-1.5 mg catalyst·cm-2. The peak power density with H2/O2 reached 1 W cm-2 at 60°C with a low density polyethylene AEM and 1.4 W cm-2 with high density polyethylene AEM at 65°C. By comparison, a current density of ca 70 mA cm-2 at 0.9 V and peak power density of 1.5 W cm-2 was reached with 0.45 mgPt cm-2 at the cathode (40 wt% Pt/C) with low density polyethylene AEM at 60°C. A durability test of 100 h at 0.6 A cm-2 in air showed good stability of the Fe0.5-NH3 catalyst.In conclusion, this work highlights the promising application of Fe-N-C catalysts at the cathode of AEMFCs for replacing precious metal catalysts
Matsuoka, Koji. "Studies on direct alcohol fuel cells using anion-exchange membrane." 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/144928.
Повний текст джерела0048
新制・課程博士
博士(工学)
甲第11583号
工博第2529号
新制||工||1344(附属図書館)
23226
UT51-2005-D332
京都大学大学院工学研究科物質エネルギー化学専攻
(主査)教授 小久見 善八, 教授 垣内 隆, 教授 田中 功
学位規則第4条第1項該当
Parker, Mark D. "Expression and anion transport studies on the human erythrocyte anion exchange protein (AE1, band 3) in the yeast Saccharomyces cerevisiae." Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310589.
Повний текст джерелаPathak, Sudhir Kumar. "Treatment of Landfill leachates using anion exchange resins." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/51812.
Повний текст джерелаMaster of Science
Spiegel, Colleen. "Mathematical modeling of polymer exchange membrane fuel cells." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002730.
Повний текст джерелаBONIZZONI, SIMONE. "Anion Conducting Polymers for Fuel Cell and Electrolyzer." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/382284.
Повний текст джерелаThe hydrogen, as energy vector, is considering one promising green, sustainable, low-cost alternative to hydrocarbon fuels. In the circular hydrogen economy, the fuel cell technologies play a crucial role of the energy conversion and, in particular, Anion Exchange Membrane Fuel Cell are retained to be very promising for the high-power delivery, the short waiting time before providing energy, the low working temperature. My PhD is focus on synthesis and characterization of anionic conducting polymer for fuel cell and electrolyzer applications. The first part of activities is focused on the study of new chemical modifications of polyfluorinated (Aquivion®), aliphatic polyketones, polystyrene polymer matrix to address the main drawbacks of the chemical and electrochemical stability and also the high cost. The synthesis methods involve the organic chemistry procedure for examples Pall-Knorr reaction, Baeyer-Villiger oxidation, methylation process. The physical-chemical characterization part is aimed to the better understand the properties of the functionalized polymer matrix. The polymer structure is investigated by spectroscopes technique for example FTIR and solid-state NMR while, the thermal properties and their stability are determined by TGA and DSC measurements. For the promising work of Aquivion® modification, I also performed accelerated ageing treatment for testing the chemical and electrochemical stability and I used them in for water Electrolyzer application. The functionalized polymers show interesting and promising properties for fuel cell and electrolyzer applications and, in particular, modified Aquivion® membranes show excellent stability in alkaline environmental and archive 130 mA cm-2 at 80°C. The results of Aquivion® modification are published on two international journals and the polyketones functionalization work is undergoing publication.
Suzuki, Shohei. "Studies on Direct Ammonia Fuel Cells Employing Anion Exchange Membranes." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215557.
Повний текст джерелаDayama, Parth Omprakash. "A Comparative Study of Electrodes and Membranes for Anion Exchange Membrane Water Electrolysis Systems." Thesis, KTH, Tillämpad elektrokemi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300182.
Повний текст джерелаHydrogen can be produced from renewable energy sources using a novel anion exchange membrane water electrolysis (AEMWE) system. AEMWE has some benefits over the currently used state-of-the-art alkaline and proton exchange membrane water electrolysis systems. For instance, there is a possibility of using alkaline electrolytes (even pure water) and low-cost platinum-group-metal free catalysts together with an ion exchange membrane. However, the main challenge is that the AEMWE system should show excellent and stable performance, depending on the stability of the membrane and the electrodes. AemionTM anion exchange membranes (AEMs) of different thickness and water uptake capacity were investigated using a 5 cm2 AEMWE system. The electrochemical behaviour of these commercial AEMs was studied using nickel (Ni) felt electrodes. Among the investigated AEMs, the AF2-HWP8-75-X showed stable performance with a high frequency resistance (HFR) of 90 mΩ•cm2 and was able to reach a current density of 0.8 A/cm2 at 2.38 V using 1 M KOH at 60 ˚C. AEMWE systems based on AF2-HWP8-75-X and different electrode combinations were examined under the same operating conditions. An electrode combination with Raney-Ni and NiFeO as cathode and anode, respectively, showed the best performance during the degradation test and provided a current density of 1.06 and 3.08 A/cm2 at 2.00 and 2.32 V, respectively. The operating temperature and concentration of the KOH solution were reduced to 45 ˚C and 0.1 M, respectively, to study the effect of operating parameters on the flow cell performance. The flow cell showed good stability under the new operating conditions, but its performance was reduced significantly. It reached a current density of 0.8 A/cm2 at 2.25 V.
Park, Doh-Yeon. "Anion-conductive multiblock aromatic copolymer membranes: structure-property relationships." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/52172.
Повний текст джерелаYu, Katayama. "Towards the realization of anion-exchange membrane fuel cell technology: potential of hydrogen-carrier utilization." Kyoto University, 2017. http://hdl.handle.net/2433/227631.
Повний текст джерелаErgun, Dilek. "High Temperature Proton Exchange Membrane Fuel Cells." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610803/index.pdf.
Повний текст джерелаthe objective is to develop a high temperature proton exchange membrane fuel cell. Phosphoric acid doped polybenzimidazole membrane was chosen as the electrolyte material. Polybenzimidazole was synthesized with different molecular weights (18700-118500) by changing the synthesis conditions such as reaction time (18-24h) and temperature (185-200oC). The formation of polybenzimidazole was confirmed by FTIR, H-NMR and elemental analysis. The synthesized polymers were used to prepare homogeneous membranes which have good mechanical strength and high thermal stability. Phosphoric acid doped membranes were used to prepare membrane electrode assemblies. Dry hydrogen and oxygen gases were fed to the anode and cathode sides of the cell respectively, at a flow rate of 0.1 slpm for fuel cell tests. It was achieved to operate the single cell up to 160oC. The observed maximum power output was increased considerably from 0.015 W/cm2 to 0.061 W/cm2 at 150oC when the binder of the catalyst was changed from polybenzimidazole to polybenzimidazole and polyvinylidene fluoride mixture. The power outputs of 0.032 W/cm2 and 0.063 W/cm2 were obtained when the fuel cell operating temperatures changed as 125oC and 160oC respectively. The single cell test presents 0.035 W/cm2 and 0.070 W/cm2 with membrane thicknesses of 100 µ
m and 70 µ
m respectively. So it can be concluded that thinner membranes give better performances at higher temperatures.
Kim, Dohyun. "Micromachined chronocoulometric nitrate sensor and parallel-plate Donnan-dialytic sample-preparation system using anion-exchange membrane." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1785254321&sid=2&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Повний текст джерелаHill, Melinda Lou. "Polymeric and Polymer/Inorganic Composite Membranes for Proton Exchange Membrane Fuel Cells." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/37597.
Повний текст джерелаPh. D.
DE, BONIS CATIA. "Hybrid polymer electrolytes for proton exchange membrane fuel cells: synthesis and applications." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2009. http://hdl.handle.net/2108/1129.
Повний текст джерелаProton exchange membrane fuel cells (PEMFCs) are promising power sources emerging among alternative energy conversion systems, because they can operate at relatively low temperature and offer numerous benefits, such as high efficiency, high power density and low polluting emissions. The present dissertation deals with the development of new proton conducting membranes having good conductivity, chemical and thermal stability, low methanol permeability and low cost. The main strategy used in this work was the preparation of sulfonated and silylated polyetheretherketone (PEEK) and polyphenylsulfone (PPSU) as membrane materials, because this synthetic approach represents a powerful tool to modulate the proton conductivity and hydrolytic stability of the electrolyte by the dosage of sulfonic acid groups and inorganic moieties covalently bound to the aromatic chains. Several types of proton exchange membranes were studied. Sulfonated and silylated PEEK and/or PPSU were used to prepare systems where two components resulted crosslinked by physical interactions or covalent bonds, obtaining the synergic effect of polymers having different conductivity and mechanical properties. • Sulfonated and silylated polyetheretherketone PhSi0.1S0.9PEEK (degree of sulfonation DS=0.9, and degree of silylation DSi=0.1) was synthesized via (i) sulfonation of PEEK, (ii) conversion of sulfonated polyetheretherketone (S0.9PEEK) into sulfonyl chlorinated derivative (PEEKSO2Cl), (iii) lithiation of PEEKSO2Cl and subsequent addition of PhSiCl3, followed by hydrolysis. The solubility of PEEKSO2Cl in organic solvent allows the silylation reaction to be carried out in homogeneous conditions. The structural characterization of the products by 1H and 13C NMR and ATR/FTIR spectroscopies highlighted the success of the synthetic pathway. The thermogravimetric analysis of PEEK derivatives indicated that the presence of the inorganic moieties stabilizes the aromatic matrix of the sulfonated polyetheretherketone. Blends of PhSi0.1S0.9PEEK and S0.5PEEK (DS=0.5) were prepared using different weight ratios of the two polymers. The membranes were characterized by water uptake measurements and electrochemical impedance spectroscopy (EIS). The results converge to indicate that the developed materials are promising electrolytes for PEMFC application. • Silylated and sulfonated polyphenylsulfone PhSi0.2S2PPSU (DS=2.0 and DSi=0.2) was synthesized via (i) lithiation of PPSU and subsequent addition of PhSiCl3, followed by hydrolysis, (ii) sulfonation by reaction with concentrated sulphuric acid. The chemical structure of polymers was investigated by 1H and 13C NMR, and ATR/FTIR, verifying the success of the developed synthetic route. Blends of PhSi0.2S2PPSU and S0.5PEEK were prepared, obtaining electrolytes with higher hydrolytic stability and increased proton conductivity with respect to those of pure S0.5PEEK membrane. Blend membranes showed also better performance in DMFC, where a reduced methanol permeability and adequately high power density values were observed, at temperature values as high as 100°C. All these features identify the prepared blend membranes as promising electrolytes for DMFC operating at intermediate temperatures. • Two silylated and sulfonated PPSU derivatives: Si0.2S2PPSU (DS=2.0 and DSi=0.2) and Si0.03S0.05PPSU (DS=0.05 and DSi=0.03) were synthesized following two different routes. In the first one, PPSU was silylated by reaction with SiCl4, then sulfonated by reaction with concentrated sulphuric acid, and Si0.2S2PPSU was obtained. In the second route, the use of the mild sulfonating agent ClSO3Si(CH3)3 allowed a careful control of the degree of sulfonation, and PPSU with a lower DS was obtained. Subsequent silylation by reaction with SiCl4 led to the final product Si0.03S0.05PPSU. An organic-inorganic hybrid polymer HSiSPPSU was synthesized by non-hydrolytic sol–gel reaction of Si0.2S2PPSU and Si0.03S0.05PPSU. The condensation between the silanol groups of the two polymers led to the formation of Si-O-Si bonds, as highlighted by analysis of ATR/FTIR spectra. The electrochemical characterization of HSiSPPSU membranes by EIS showed adequately high conductivity values to make the hybrid polymer a suitable candidate for application in PEMFCs operating at T > 100°C. The strategies followed in this work seems to be an effective way to overcome some drawbacks related to conventional polymer membranes currently used, demonstrating the relevant role played by synthesis in the preparation of electrolytes for PEMFCs.
Sombatmankhong, Korakot. "The development and characterisation of microfabricated polymer electrolyte membrane fuel cells." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610026.
Повний текст джерелаEspiritu, Richard. "Polyethylene-based anion exchange membrane for alkaline fuel cell and electrolyser application : synthesis, characterisation and degradation studies." Thesis, University of Newcastle upon Tyne, 2017. http://hdl.handle.net/10443/3702.
Повний текст джерелаGcilitshana, Oko Unathi. "Electrochemical Characterization of Platinum based anode catalysts for Polymer Exchange Membrane Fuel Cell." Thesis, University of the Western Cape, 2008. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_5972_1266961431.
Повний текст джерелаIn this study, the main objective was to investigate the tolerance of platinum based binary anode catalysts for CO poisoning from 10ppm up to1000ppm and to identify the
best anode catalysts for PEMFCs that tolerates the CO fed with reformed hydrogen.
Linares, Moya Douglas De Jesus. "Fundamental and applied studies on the development of an alkaline anion exchange membrane-based direct alcohol fuel cell." Thesis, University of Newcastle upon Tyne, 2012. http://hdl.handle.net/10443/1367.
Повний текст джерелаShan, Yuyao Choe Song-Yul. "Dynamic modeling of polymer electrolyte membrane fuel cell stack with 1D and 2D CFD techniques." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Summer/Theses/SHAN_YUYAO_58.pdf.
Повний текст джерелаKannan, R. "Functionalized carbon nanotube based polymer composites as electrolytes in proton exchange membrane fuel cells." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2010. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/3752.
Повний текст джерелаChen, Yuanxin. "POLYMER MEMBRANES FOR FLUE GAS CARBON CAPTURE AND FUEL CELL APPLICATION." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1440069742.
Повний текст джерелаEaton, Brandon Michael. "One Dimensional, Transient Model of Heat, Mass, and Charge Transfer in a Proton Exchange Membrane." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/32788.
Повний текст джерелаMaster of Science
Du, Ling. "Highly Conductive Epoxy/Graphite Polymer Composite Bipolar Plates in Proton Exchange Membrane (PEM) Fuel Cells." University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1202345378.
Повний текст джерелаMarshall, Josiah. "Synthesis of the Diazonium Zwitterionic Polymer/Monomer for Use as the Electrolyte in Polymer Electrolyte Membrane (PEM) Fuel Cells." Digital Commons @ East Tennessee State University, 2021. https://dc.etsu.edu/etd/3968.
Повний текст джерелаPitia, Emmanuel Sokiri. "Composite Proton Exchange Membrane Based on Sulfonated Organic Nanoparticles." University of Akron / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=akron1339277956.
Повний текст джерелаBrunello, Giuseppe. "Computational modeling of materials in polymer electrolyte membrane fuel cells." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/48937.
Повний текст джерелаGilbert, Patrick Gerard. "Synthesis and evaluation of new families of polymer electrolyte membranes for fuel cell applications." Thesis, Queen Mary, University of London, 2011. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8523.
Повний текст джерелаAhn, Jong-Woo. "Design and analysis of air and coolant control for a polymer electrolyte membrane fuel cell." Auburn, Ala., 2007. http://repo.lib.auburn.edu/07M%20Theses/AHN_JONGWOO_52.pdf.
Повний текст джерелаAlayyaf, Abdulmajeed A. "Synthesis of Two Monomers for Proton Exchange Membrane Fuel Cells (PEMFCs)." Digital Commons @ East Tennessee State University, 2016. https://dc.etsu.edu/etd/3015.
Повний текст джерелаKumar, Ravi. "An investigation of the composite polymer electrolytes and electrocatalysts for the proton exchange membrane fuel cell." Thesis, University of Newcastle upon Tyne, 2014. http://hdl.handle.net/10443/2417.
Повний текст джерелаOktar, Doganay Ceren. "Separation Of Chromate And Borate Anions By Polymer Enhanced Ultrafiltration From Aqueous Solutions Employing Specifically Tailored Polymers." Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/3/12609178/index.pdf.
Повний текст джерелаIsikel, Lale. "Design and characterization of nonwoven fabrics for gas diffusion layer in polymer electrolyte membrane fuel cell." Auburn, Ala., 2007. http://repo.lib.auburn.edu/2007%20Spring%20Theses/ISIKEL_LALE_21.pdf.
Повний текст джерелаNomnqa, Myalelo Vuyisa. "Simulation and optimisation of a high temperature polymer electrolyte membrane fuel cell stack for combined heat and power." Thesis, Cape Peninsula University of Technology, 2011. http://hdl.handle.net/20.500.11838/880.
Повний текст джерелаHigh temperature polymer electrolyte membrane fuel cells (PEMFC) operating between 120-180 oC are currently of much research attention. The acid doped polybenzimidazole (PBI) membranes electrolyte are known for their tolerance to relatively high levels of carbon monoxide impurity in the feed. Most fuel cell modelling are theoretical in nature and are solved in commercial CFD platforms such as Fluent. The models require a lot of time to solve and are not simple enough to be used in complex systems such as CHP systems. This study therefore, focussed on developing a simple but yet accurate model of a high temperature PEMFC for a CHP system. A zero dimensional model for a single cell was developed and implemented in Engineering Equations Solver (EES) environment to express the cell voltage as a function of current density among others. Experimental results obtained from literature were used to validate and improve on the model. The validated models were employed for the simulation of the stack performance to investigate the effects of temperature, pressure, anode stoichiometry and the level of CO impurity in the synthesis gas, on the cell potential and overall performance. Good agreement was obtained from the simulation results and experimental data. The results showed that increasing temperature (up to 180oC) and acid doping level have positive effects on the cell performance. The results also show that the cell can operate with a reformate gas containing up to 2% CO without significant loss of cell voltage at elevated temperatures. The single cell model was extended to a 1 kWe high temperature PEMFC stack and micro-CHP system. The stacks model was validated with experimental data obtained from a test station. The model was used to investigate the performance of PEMFC and CHP system by using uncertainty propagation. The highest combined cogeneration system efficiency of 87.3% is obtained with the corresponding electrical and thermal efficiencies are 41.3% and 46 % respectively. The proposed fuel processing subsystem provides an adequate rate of CH4 conversion and acceptable CO-level, making it appropriate for integration with an HT PEMFC stack. In the steam methane reformer 97% of CH4 conversion is achieved and the water gas shift reactors achieve about 98% removal of CO.
Mishra, Bikash. "Model development of a polymer electrolyte membrane fuel cell to predict steady and unsteady behavior." Diss., Mississippi State : Mississippi State University, 2008. http://library.msstate.edu/etd/show.asp?etd=etd-08132008-103611.
Повний текст джерелаTurtayeva, Zarina. "Genesis of AEMFC (anion exchange membrane fuel cell) at the lab scale : from PEMFC’s inks composition toward fuel cell bench tests in alkaline media." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0285.
Повний текст джерелаAnion exchange membrane fuel cells (AEMFCs) have recently attracted significant attention as low-cost alternative fuel cells to traditional proton exchange membrane fuel cells as a result of the possible use of platinum-group metal-free electrocatalysts. Although AEMFC is a mimic of PEMFC but working in an alkaline medium, water management issues are more severe in AEMFC because ORR in alkaline media requires water, while at the same time water is produced at the anode side. To better understand water management in this type of fuel cell, it is necessary first to develop and gain experience with this kind of fuel cell on the laboratory scale. Since no ready-to-use materials are available at the beginning of the project, the necessity of fabricating homemade MEAs from commercially available materials becomes a reality that we must face. As MEA fabrication is a new topic to LEMTA's researchers, this is why this thesis was divided into two parts: one part dedicated to the formulation, preparation, and optimization of MEAs for PEMFC through physico-chemical and electrochemical characterizations; another part dedicated to the development of AEMFC. The results indicated that ink deposition, composition, and preparation systematically change the electrode structure and thus affect fuel cells performance. Furthermore, the study provides information on the AEMFC procedures and methods. Here, we would like to share our know-how with newcomers in the field of preparation of MEA in ion exchange membrane fuel cells
Pereira, Clotilde Coppini. "Desenvolvimento de membranas aniônicas obtidas por enxertia via irradiação para aplicação em células a combustível alcalinas." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/85/85134/tde-12062017-093623/.
Повний текст джерелаAnion Exchange Membranes (AEMs) are a promising alternative to the development of more efficient electrolytes for alkaline fuel cells. In general, the AEMs are ionomeric membranes able to conduct hydroxide ions (OH-) due to the quatermary ammonium groups, which confer high pH equivalent to the AEM. In order to develop alkaline membranes with high chemical and thermal stability, besides satisfactory ionic conductivity for alkaline fuel cells, membranes based on low density polyethylene (LDPE), ultrahigh weight molecular weight polyethylene (UHWHPE), poly(ethylene-co-tetrafluoroethylene) (PETFE) and poly(hexafluoropropylene-co-tetrafluoroethylene) (PFEP) previously irradiated by using 60Co gamma and electron beam sources, have been synthesized by styrene-grafting, and functionalized with trimethylamine to introduced quaternary ammonium groups. The resulting membranes were characterized by electron paramagnetic resonance (EPR), Raman spectroscopy, thermogravimetry (TG) and electrochemical impedance spectroscopy (EIS). The determination of the grafting degree and water uptake were conducted by gravimetry and ion exchange capacity, by titration. The membranes synthesized with PELD and PEUHMW polymers pre-irradiated at 70 kGy and stored at low temperature (-70 °C), up to 10 months, showed ionic conductivity results, in hydroxide form (OH-), of 29 mS.cm-1 and 14 mS.cm-1 at 65 °C, respectively. The PFEP polymers irradiated by the simultaneous process showed insufficient grating levels for the membrane synthesis, requiring more studies to improve the irradiation and grafting process. The styrene-grafted PETFE membranes, pre-irradiated at 70 kGy and stored at low temperature (-70 °C), up to 10 months, showed ionic conductivity results, in hydroxide form (OH-), of 90 mS.cm-1 to 165 mS.cm-1, in the temperature range 30 to 60 °C. Such results have demonstrated that LDPE, UHMWPE and PETFE based AEMs are promising electrolytes for alkaline fuel cell application.
Li, Yun. "Development of Biocompatible Polymer Monoliths for the Analysis of Proteins and Peptides." Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd3161.pdf.
Повний текст джерелаZhou, Zhen. "Development of polymer electrolyte membranes for fuel cells to be operated at high temperature and low humidity." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/22559.
Повний текст джерелаCommittee Chair: Wong, C.P.; Committee Co-Chair: Liu, Meilin; Committee Member: Barefield, Kent; Committee Member: Collard, David; Committee Member: Fahrni, Christoph.
MARANI, DEBORA. "Development of hybrid proton-conducting polymers for proton exchange membrane fuel cells." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2006. http://hdl.handle.net/2108/202679.
Повний текст джерелаThe development of new generation polymer electrolytes is an essential prerequisite for grand scale commercialisation on of polymer electrolyte membrane fuel cells. These proton conductors must show good morphological, hydrolytic and mechanical stability and an appropriate conductivity (σ ~ 0.01 Scm-1) at a temperature above 100°C at low relative humidity. In this work, diverse strategies for synthesis of hybrid organic-inorganic proton conducting polymer nanocomposites were explored, based on aromatic thermoplastic polymers. The use of hybrid materials permits exploitation of the synergy between the simultaneously present organic polymeric component and an inorganic silicon-based part. These effects can be explained by the possibility to modulate and to control the separation between hydrophilic and hydrophobic parts, which strongly modify the properties of the electrolytic polymer. Hybrid materials of class I based on sulfonated poly-ether-ether-ketone (S-PEEK) were synthesized as well as several examples of hybrid materials of class II based on SPEEK and poly-phenyl-sulfone sulfonated (S-PPSU) and containing as inorganic part diverse functionalized silicon atoms. These materials were characterized from the point of view of structure, physical and chemical properties and electrochemical behaviour. Very positive results were obtained mainly for two investigated systems: a mixture of S-PEEK and S-PPSU silylated polymer and a cross-linked polymer, through -SO2- bridges (SOPEEK) and silylated (SOSiPEEK).
Lindegren, Klara. "Evaluation of the Removal Efficiency of Per- and Polyfluoroalkyl Substances in Drinking Water using Nanofiltration Membranes, Active Carbon and Anion Exchange." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-268448.
Повний текст джерелаPer- och polyfluorerade alkylsubstanser (PFAS) är en grupp syntetiska, ytterst persistenta kemikalier. På grund av deras ytaktiva egenskaper är de lämpliga för användning i många produkter och tillverkningsprocesser, och är således viktiga för en ekonomiskt betydande industri. Under det senaste årtiondet har PFAS påträffats i miljön, levande organismer och kranvatten världen över. Kombinationen av toxiska egenskaper, en hög bioackumuleringspotential och upptäckten att konventionella reningsmetoder inte avlägsnar substanserna från vatten, gör att vidare forskning av reningsmetoder för PFAS är mycket angelägen. Tre reningsteknikers förmåga att rena vatten från PFAS undersöktes. Nanofiltrering (NF) är en membranfiltreringsteknik som utöver den renade produkten, permeatet, även framställer en biprodukt av hög föroreningsgrad, rententatet. För att rena rententatet har adsorption till granulärt aktivt kol (GAC) eller jonbytarmassa (AE) föreslagits. Teknikerna utvärderades på Bäcklösa Vattenverk i Uppsala. Nanofiltreringen undersöktes i en pilotanläggning där två 270NF (Dow Filmtech™) membran var seriekopplade. En hög reningsgrad (>90%) konstaterades för alla typer av PFAS. Vidare visades PFAS-koncentrationen i permeatet vara en funktion av PFAS-koncentrationen i råvattnet; en ökad råvattenkoncentration gav en ökad permeatkoncentration. Storleksseparation och elektrostatisk repulsion befanns vara viktiga mekanismer som påverkade reningsgraden. För att undersöka de mekanismer som påverkar PFAS-adsorption jämfördes GAC (Filtrasorb 400®) och AE (Purolite® A-600) i ett kolonnexperiment. Reningsgraden för GAC och AE av perfluorerade sulfonsyror (PFSA) och perfluorooktan sulfonamider (FOSA) var lika hög och reningseffektiviteten ökade med ökande kolkedjelängd. AE återfanns ha en högre genomsnittlig reningsgrad av perfluorkarboxylsyror (PFCA) (62-95%) än GAC (49-81%). Sammanfattningsvis avlägsnades PFAS av längre kolkedjelängd mer effektivt än kortare kolkedjor, och PFAS med sulfonsyror och sulfonamider som funktionella grupper uppvisade en högre reningsgrad än karboxylsyrorna. Vidare renades linjära isomerer mer effektivt än grenade både genom GAC och AE. Däremot konstaterades det motsatta för NF-membranen, där grenade isomerer renades mer effektivt.
SafeDrink
Caston, Terry Brett. "Design of a gas diffusion layer for a polymer electrolyte membrane fuel cell with a graduated resistance to flow." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34790.
Повний текст джерелаOuahid, Soumia. "Transport facilité du glucose à travers une membrane échangeuse d'anions avec l'ion borate comme transporteur." Rouen, 1994. http://www.theses.fr/1994ROUES029.
Повний текст джерела