Добірка наукової літератури з теми "Animals, Astrocyte"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Animals, Astrocyte".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Animals, Astrocyte"
Maysinger, Dusica, Mélanie Lalancette-Hébert, Jeff Ji, Katherine Jabbour, Jens Dernedde, Kim Silberreis, Rainer Haag, and Jasna Kriz. "Dendritic polyglycerols are modulators of microglia-astrocyte crosstalk." Future Neurology 14, no. 4 (November 2019): FNL31. http://dx.doi.org/10.2217/fnl-2019-0008.
Повний текст джерелаLalo, Ulyana, and Yuriy Pankratov. "Astrocytes as Perspective Targets of Exercise- and Caloric Restriction‐Mimetics." Neurochemical Research 46, no. 10 (March 7, 2021): 2746–59. http://dx.doi.org/10.1007/s11064-021-03277-2.
Повний текст джерелаAllnoch, Baumgärtner, and Hansmann. "Impact of Astrocyte Depletion upon Inflammation and Demyelination in a Murine Animal Model of Multiple Sclerosis." International Journal of Molecular Sciences 20, no. 16 (August 12, 2019): 3922. http://dx.doi.org/10.3390/ijms20163922.
Повний текст джерелаChrishtop, V. V., T. A. Rumyantseva, and D. A. Pozhilov. "GFAP Expression in the Cerebral Cortex during the Development of Cerebral Hypoxia in Rats Showing Different Results in the Morris Water Maze." Journal Biomed 16, no. 1 (February 28, 2020): 89–98. http://dx.doi.org/10.33647/2074-5982-16-1-89-98.
Повний текст джерелаHofmann, Gabrielle C., Eileen M. Hasser, and David D. Kline. "Unilateral vagotomy alters astrocyte and microglial morphology in the nucleus tractus solitarii of the rat." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 320, no. 6 (June 1, 2021): R945—R959. http://dx.doi.org/10.1152/ajpregu.00019.2021.
Повний текст джерелаRamadasan-Nair, Renjini, Jessica Hui, Leslie S. Itsara, Philip G. Morgan, and Margaret M. Sedensky. "Mitochondrial Function in Astrocytes Is Essential for Normal Emergence from Anesthesia in Mice." Anesthesiology 130, no. 3 (March 1, 2019): 423–34. http://dx.doi.org/10.1097/aln.0000000000002528.
Повний текст джерелаMeldolesi, Jacopo. "Astrocytes: News about Brain Health and Diseases." Biomedicines 8, no. 10 (October 6, 2020): 394. http://dx.doi.org/10.3390/biomedicines8100394.
Повний текст джерелаBabaee, Abdolreza, Seyed Hassan Eftekhar Vaghefi, Samereh Dehghani Soltani, Majid Asadi Shekaari, Nader Shahrokhi, and Mohsen Basiri. "Hippocampal Astrocyte Response to Melatonin Following Neural Damage Induction in Rats." Basic and Clinical Neuroscience Journal 12, no. 2 (March 1, 2021): 177–86. http://dx.doi.org/10.32598/bcn.12.2.986.1.
Повний текст джерелаRutka, James T., Masaji Murakami, Peter B. Dirks, Sherri Lynn Hubbard, Laurence E. Becker, Kozo Fukuyama, Shin Jung, and Kazuhito Matsuzawa. "Role of glial filaments in cells and tumors of glial origin: a review." Neurosurgical Focus 3, no. 1 (July 1997): E2. http://dx.doi.org/10.3171/foc.1997.3.1.2.
Повний текст джерелаRutka, James T., Masaji Murakami, Peter B. Dirks, Sherri Lynn Hubbard, Laurence E. Becker, Kozo Fukuyama, Shin Jung, Atsushi Tsugu, and Kazuhito Matsuzawa. "Role of glial filaments in cells and tumors of glial origin: a review." Journal of Neurosurgery 87, no. 3 (September 1997): 420–30. http://dx.doi.org/10.3171/jns.1997.87.3.0420.
Повний текст джерелаДисертації з теми "Animals, Astrocyte"
Featherstone, Robert Earle. "Plasticity in the maternal circuit, effects of pup exposure and retention interval on astrocyte numbers in primiparous and multiparous animals." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0011/MQ29187.pdf.
Повний текст джерелаDutuit, Magali. "Régulations physiologiques et pathologiques des fonctions astrocytaires impliquées dans l'homéostasie du GABA et du glutamate." Lyon 1, 2000. http://www.theses.fr/2000LYO1T222.
Повний текст джерелаBasu, Shubhayu. "Effects of three dimensional structure of tissue scaffolds on animal cell culture." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1092689986.
Повний текст джерелаTitle from first page of PDF file. Document formatted into pages; contains xviii, 236 p.; also includes graphics (some col.). Includes bibliographical references (p. 194-211). Available online via OhioLINK's ETD Center
Clavreul, Solène. "Développement du réseau astroglial dans le cortex cérébral murin." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS540.
Повний текст джерелаAstrocytes are one of the most numerous cell types in the brain. They consist in ramified glial cells that play essential roles in neural tissue where they form an uninterrupted tridimensional network, while displaying important local heterogeneity in terms of morphology and molecular marker expression. To determine how this network is established during development, multiclonal lineage tracing was performed to analyzed large numbers of astrocyte clones issued from nearby mouse cortical progenitors. Results show that cortical astrocyte clones intermix with their neighbors, display extensive variability in terms of spatial organization, numbers and subtypes of generated cells, and increase in size towards the upper part of the cortex. Furthermore, this organization develops through two stages that comprise a dynamic phase of proliferation accompanied by spatial dispersion, and a maturation phase where morphological complexity and volume increase at the single cell level. Moreover a significant contribution of subependymal postnatal progenitors to the generation of astrocytes, independent of their subtype and location, was uncovered in addition to prenatal delaminating apical progenitors. Thus cortical astrocyte network development appears unstereotyped at the clonal level. This suggests that the construction of this network relies on plastic clonal units issued from non-specified astrocyte progenitors that differentially expand and mature, and whose descendants probably acquire their final characteristics through interactions with their neuronal environment through molecular mechanisms that still need to be defined
Marques, Karina de Brito. "Plasticidade sinaptica em motoneuronios alfa medulares de animais submetidos a encefalomielite autoimune experimental." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/316501.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-09T22:49:48Z (GMT). No. of bitstreams: 1 Marques_KarinadeBrito_D.pdf: 8050913 bytes, checksum: f9c7d621391d6f3f99413a9c27749530 (MD5) Previous issue date: 2007
Resumo: Durante o curso da encefalomielite autoimmune experimental ocorre uma grave redução das funções motoras e sensitivas. Esses eventos têm sido classicamente atribuídos ao processo desmielinizante da doença. Em ratos, os sinais clínicos da doença desaparecem 5 dias após completa tetraplegia, indicando que o processo desmielinizante não é a única causa da rápida evolução da doença. Assim sendo, investigamos as alterações sinaptológicas e o processo inflamatório induzidos pela encefalomielite autoimune experimental (EAE) em motoneurônios medulares e sua relação com o surto e remissão da doença. Para esse estudo, foram utilizados ratos Lewis, fêmeas de 7 semanas. Os animais foram induzidos à EAE por meio de dose única de proteína básica de mielina emulsificada com adjuvante completo de Freund e sacrificados no 13º dia após indução (surto grau 3) e no 26º dia (remissão da doença). Também, para investigar a possibilidade de que o tratamento com acetato de glatirâmer, uma droga imunomoduladora baseada na estrutura de aminoácidos da proteína básica de mielina, interfira no processo de plasticidade sináptica, os animais foram induzidos à EAE, tratados com AG diariamente e sacrificados após 2 semanas. Os grupos experimentais foram divididos em: estudo da aposição sináptica durante surto e remissão da doença e tratamento dos animais induzidos à EAE com AG. Assim, os espécimes foram processados para análise através de imunohistoquímica e microscopia eletrônica de transmissão. Nossos resultados indicaram que os componentes gliais (astrócitos e microglia), estimulados pela inflamação, desempenham papel ativo no processo de retração sináptica em motoneurônios alfa. Apresentamos evidências de que a eliminação de terminais sinápticos contribui para a perda da função motora observada no curso da doença e que o imunomodulador AG não só possui efeito antiinflamatório, mas também influencia diretamente na plasticidade de elementos neurais no microambiente medular. Reforçam, também, que um processo agudo de inflamação pode colaborar diretamente para a recuperação e sobrevivência neuronal, uma vez que as células inflamatórias produzem citocinas e fatores neurotróficos no microambiente medular
Abstract: During the course of experimental autoimmune encephalomyelitis, a massive loss of motor and sensitive function occurs, which has been classically attributed to the demyelination process. In rats, the clinical signs disappear within 5 days following complete tetraplegia, indicating that demyelination might not be the only cause for the rapid evolution of the disease. The immunomodulador glatiramer acetate (GA) has been shown significantly reduce the seriousness of the symptoms during the exacerbation of the disease. However, little is known about its effects on the spinal motoneurons and on their afferents. The present work investigated the occurrence of experimental autoimmune encephalomyelitis-induced changes of the synaptic covering of spinal motoneurons during exacerbation and after remission and investigated whether GA has a direct influence on synapse plasticity and on the deafferentiation of motoneurons during the course of EAE in rats. Lewis rats were subjected to EAE associated with GA or placebo treatment. The animals were sacrificed after fifteen days of treatment. For the both cases the spinal cords was processed for immunohistochemical analysis (IH) and electron transmission microscopy. The terminals were typed with transmission electron microscopy as C-, F- and Stype. Immunohistochemical analysis of synaptophysin, glial fibrillary acidic protein and the microglia/macrophage marker F4/80 were also used in order to draw a correlation between the synaptic changes and the glial reaction. The ultrastructural analysis showed that, during exacerbation, there was a strong retraction of both F- and S-type terminals. In this sense, both the covering as well as the length of the remaining terminals suffered great reductions. However, the retracted terminals rapidly returned to apposition, although the mean length remained shorter. A certain level of sprouting may have occurred as, after remission, the number of F-terminals was greater than in the control group. The immunohistochemical analysis showed that the peak of synaptic loss was coincident with an increased macro- and microglial reaction. Interestingly, although the GA treatment preserved synaptophysin labelling, it did not significantly reduce the glial reaction, indicating that inflammatory activity was still present. Our results suggest that the major changes occurring in the spinal cord network during the time course of the disease may contribute significantly to the origin of the clinical signs as well as help to explain their rapid recovery and that the immunomodulator GA has a direct influence on the stability of nerve terminals in the spinal cord, which in turn may contribute to its neuroprotective effects during the course of multiple sclerosis
Doutorado
Anatomia
Doutor em Biologia Celular e Estrutural
Sirisi, Dolcet Sònia. "Bases moleculars de la Leucoeocefalopatia Megalencefàllca amb Quists subcorlicals. Utilització de models animals i cel·lulars." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/284761.
Повний текст джерелаMegalencefalic leukoencephalopathy with subcortical cysts, also known as MLC, is a rare type of leukodystrophy. Currently still unknown pathophysiological mechanism of the disease, and therefore there is no effective treatment possible for patients. There are two genes involved in the MLC disease. Gene was first discovered was MLC1 and this encodes for a membrane protein with the same name. The second gene is called GLIALCAM and encodes for a transmembrane protein type I that also carries the same name. In our group is has been described that GlialCAM acts as a protein ß subunit of MLC1 because it is able to direct and concentrate in the cellular junctions. Moreover, GlialCAM also act as auxiliary subunit of CLC-2 Cl channel as it is capable of modifying the activation and rectification properties of the channel. In this work we have developed two different models to study the physiopathology. The results show that GlialCAM affected by the absence of MLC1. It has been also demonstrated that ClC-2 is implicated in the disease.These results were compared with a patient brian and has been shown that MLC1 is important for the correct location of GlialCAM in the cerbellum. Have also been developed a different cellular models. The results with this models show that GlialCAM and ClC-2 could have a functional role in the process of potassium siphoning.
Cabarrocas, Julie Marie Cécile. "Etude de l'auto-réactivité dirigée contre un antigène du système nerveux au moyen de souris transgéniques." Toulouse 3, 2005. http://www.theses.fr/2005TOU30068.
Повний текст джерелаWe have studied autoimmunity targeting a nervous system-specific antigen with the use of several transgenic mouse lines, and have investigated : i) clinical and histopathological effects of autoimmune processes induced by CD8+ T-cells specific for a glial antigen expressed in astrocytes and enteric glial cells (EGC) ; ii) the role of CD8+ T-cells in the immune surveillance of the central nervous system and the induction of inflammatory lesions in this organ ; and iii) the mechanisms of tolerance affecting populations of astrocytes- and EGC-specific CD4+ T-cells
Jukkola, Peter I. "The Role of Potassium Ion and Water Channels in an Animal Model ofMultiple Sclerosis." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397656579.
Повний текст джерелаRouleau, Caroline. "Implications du pyruvate dans le métabolisme de lignées astrocytaires spinales spontanément transformées." Montpellier 1, 2006. http://www.theses.fr/2006MON1T029.
Повний текст джерелаGuérin-Eysseric, Hélène. "Expression du métabolisme cérébral de l'éthanol : production d'acétaldéhyde et de radicaux libres par les cellules astrocytaires de rat en culture." Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10249.
Повний текст джерелаКниги з теми "Animals, Astrocyte"
Takao, Kumazawa, Kruger Lawrence, and Mizumura Kazue, eds. The polymodal receptor: A gateway to pathological pain. Amsterdam: Elsevier, 1996.
Знайти повний текст джерелаPlasticity in the maternal circuit: Effects of pup exposure and retention interval on astrocyte numbers in primiparous and multiparous animals. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.
Знайти повний текст джерела(Editor), T. Kumazawa, L. Kruger (Editor), and K. Mizumura (Editor), eds. The Polymodal Receptor - A Gateway to Pathological Pain (Progress in Brain Research). Elsevier Science, 1996.
Знайти повний текст джерелаЧастини книг з теми "Animals, Astrocyte"
Ahmed, Saifuddin, Toshie Tsuchiya, and Rumi Sawada. "In Vitro Cytotoxic Effects of Tin Compounds on Normal Human Astrocytes." In Animal Cell Technology: Basic & Applied Aspects, 175–80. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-9646-4_28.
Повний текст джерелаNakamura, Naohito, and Toshie Tsuchiya. "Effect of biodegradable polymer poly (L-lactic acid) on the cellular function of human astrocytes." In Animal Cell Technology: Basic & Applied Aspects, 331–37. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4457-7_45.
Повний текст джерелаHallof-Büstrich, Heike, and Barbara Di Benedetto. "Examining the Coverage of Blood Vessels by Astrocyte Endfeet in an Animal Model of Major Depressive Disorder." In Methods in Molecular Biology, 255–63. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9068-9_18.
Повний текст джерелаMersel, M., L. Vitkovic, G. Vincendon, and A. N. Malviya. "Modification of Plasma Membrane DT-Diaphorase Activity Upon Transformation: A Comparison between Astrocytes in Primary Culture and C6 Glioblastoma Cells." In Plasma Membrane Oxidoreductases in Control of Animal and Plant Growth, 402. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-8029-0_48.
Повний текст джерелаV. Pushchina, Evgeniya, Anatoly A. Varaksin, and Dmitry K. Obukhov. "Hydrogen Sulfide as a Factor of Neuroprotection during the Constitutive and Reparative Neurogenesis in Fish Brain." In Neuroprotection - New Approaches and Prospects. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.90547.
Повний текст джерела"Astrocytes as Target Site for Neurotoxicity." In Advances In Animal Alternatives For Safety And Efficacy Testing, 229–42. CRC Press, 1997. http://dx.doi.org/10.1201/9781439805817-30.
Повний текст джерелаKuter, Katarzyna. "Astrocytes and microglia in Parkinson's disease and animal models." In Genetics, Neurology, Behavior, and Diet in Parkinson's Disease, 83–99. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-815950-7.00006-0.
Повний текст джерелаKoepsell, Hermann. "General Overview of Organic Cation Transporters in Brain." In Handbook of Experimental Pharmacology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/164_2021_449.
Повний текст джерелаHryntsova, Nataliia. "STATE OF RAT PINEAL GLAND STRUCTURAL COMPONENTS IN THE CONDITIONS OF DIFFERENT EXTRACELLULAR DEHYDATION TERMS." In Integration of traditional and innovation processes of development of modern science. Publishing House “Baltija Publishing”, 2020. http://dx.doi.org/10.30525/978-9934-26-021-6-30.
Повний текст джерелаPeta, Charoula, Emmanouella Tsirimonaki, Constantinos Fedonidis, Xeni Koliou, Nikos Sakellaridis, and Dimitra Mangoura. "Two Tails for Neurofibromin: A Tale of Two Microtubule-Associated Proteins." In Neurofibromatosis [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97574.
Повний текст джерелаТези доповідей конференцій з теми "Animals, Astrocyte"
Rocha, Andreia, Bruna Bellaver, Luiza Machado, Carolina Soares, Pâmela C. L. Ferreira, Samuel Greggio Gianina T. Venturin, Jaderson C. da Costa, Diogo O. Souza, and Eduardo R. Zimmer. "TEMPORAL CHANGES IN ASTROCYTES ON A TRANSGENIC RAT MODEL OF AD." In XIII Meeting of Researchers on Alzheimer's Disease and Related Disorders. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1980-5764.rpda023.
Повний текст джерелаPak, Rebecca W., Eric Hsu, Gian Molina-Castro, Dwight E. Bergles, and Jin U. Kang. "Fluorescence dual-color fiberscope for monitoring neuron and astrocyte concurrent activities in freely-behaving animals." In Neural Imaging and Sensing 2021, edited by Qingming Luo, Jun Ding, and Ling Fu. SPIE, 2021. http://dx.doi.org/10.1117/12.2578947.
Повний текст джерела