Статті в журналах з теми "Analyte"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Analyte.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Analyte".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Jain, Bharti, J. Kumarasamy, C. Gholve, Savita Kulkarni, and M. G. R. Rajan. "A multi-analyte immunoassay for thyroid related analytes." Journal of Immunoassay and Immunochemistry 38, no. 3 (November 2016): 271–84. http://dx.doi.org/10.1080/15321819.2016.1250771.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kelley, Shana. "Analyte Acumen." ACS Sensors 3, no. 10 (October 26, 2018): 1892. http://dx.doi.org/10.1021/acssensors.8b01180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ekins, Roger P. "Multi-analyte immunoassay." Journal of Pharmaceutical and Biomedical Analysis 7, no. 2 (January 1989): 155–68. http://dx.doi.org/10.1016/0731-7085(89)80079-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kaczmarski, K., W. Prus, C. Dobosz, P. Bojda, and T. Kowalska. "THE ROLE OF LATERAL ANALYTE–ANALYTE INTERACTIONS IN THE PROCESS OF TLC BAND FORMATION. II. DICARBOXYLIC ACIDS AS THE TEST ANALYTES." Journal of Liquid Chromatography & Related Technologies 25, no. 10-11 (July 31, 2002): 1469–82. http://dx.doi.org/10.1081/jlc-120005698.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Metz, Michael P. "Ammonia, a troublesome analyte." Clinical Biochemistry 47, no. 9 (June 2014): 753. http://dx.doi.org/10.1016/j.clinbiochem.2014.05.044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yon Hin, B. F. Y., R. S. Sethi, and C. R. Lowe. "Multi-analyte microelectronic biosensors." Sensors and Actuators B: Chemical 1, no. 1-6 (January 1990): 550–54. http://dx.doi.org/10.1016/0925-4005(90)80271-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Müller, Karl-Heinz, Nereus Patel, Lee J. Hubble, James S. Cooper, and Edith Chow. "Strong enhancement of gold nanoparticle chemiresistor response to low-partitioning organic analytes induced by pre-exposure to high partitioning organics." Physical Chemistry Chemical Physics 22, no. 16 (2020): 9117–23. http://dx.doi.org/10.1039/c9cp06849j.

Повний текст джерела
Анотація:
A method to enhance the gold nanoparticle sensor response to weak analytes is demonstrated by pre-exposing the sensor to an analyte which elicits a strong response. This weak analyte effectively reduces the strong analyte interaction with the sensor.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Scholz, C., T. Kraemer, and M. R. Baumgartner. "A multi-analyte approach for the quantification of 116 analytes in hair." Toxicologie Analytique et Clinique 31, no. 2 (May 2019): S22—S23. http://dx.doi.org/10.1016/j.toxac.2019.03.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bogert, James R. "Advances And Enhancements in Light Element EDXRF." Advances in X-ray Analysis 31 (1987): 449–54. http://dx.doi.org/10.1154/s0376030800022291.

Повний текст джерела
Анотація:
One of the strongest analytical qualities of energy-dispersive x-ray fluorescence (EDXRF) is the wide range of analyte elements that can be detected and analyzed. Historically, the technique has covered all the elements from sodium (Z=11) and above. A useful measure of specific spectrometer performance is analyte sensitivity. X-ray spectrometric sensitivity is usually expressed in terms of minimum detectable amount of analyte or rate of change of analyte line intensity with change in amount of analyte. Many factors affect analyte sensitivity in EDXRF. These include excitation conditions, specimen conditions, system geometry, atmosphere, detector and readout conditions, and of course the specific analyte line. Typically, EDXRF sensitivity is very good, and low ppm concentrations of analytes are routinely analyzed–until one encounters the light elements.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

GARCIA-SCHWARZ, G., M. BERCOVICI, L. A. MARSHALL, and J. G. SANTIAGO. "Sample dispersion in isotachophoresis." Journal of Fluid Mechanics 679 (May 12, 2011): 455–75. http://dx.doi.org/10.1017/jfm.2011.139.

Повний текст джерела
Анотація:
We present an analytical, numerical and experimental study of advective dispersion in isotachophoresis (ITP). We analyse the dynamics of the concentration field of a focused analyte in peak mode ITP. The analyte distribution is subject to electromigration, diffusion and advective dispersion. Advective dispersion results from strong internal pressure gradients caused by non-uniform electro-osmotic flow (EOF). Analyte dispersion strongly affects the sensitivity and resolution of ITP-based assays. We perform axisymmetric time-dependent numerical simulations of fluid flow, diffusion and electromigration. We find that analyte properties contribute greatly to dispersion in ITP. Analytes with mobility values near those of the trailing (TE) or leading electrolyte (LE) show greater penetration into the TE or LE, respectively. Local pressure gradients in the TE and LE then locally disperse these zones of analyte penetration. Based on these observations, we develop a one-dimensional analytical model of the focused sample zone. We treat the LE, TE and LE–TE interface regions separately and, in each, assume a local Taylor–Aris-type effective dispersion coefficient. We also performed well-controlled experiments in circular capillaries, which we use to validate our simulations and analytical model. Our model allows for fast and accurate prediction of the area-averaged sample distribution based on known parameters including species mobilities, EO mobility, applied current density and channel dimensions. This model elucidates the fundamental mechanisms underlying analyte advective dispersion in ITP and can be used to optimize detector placement in detection-based assays.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Wen, Chenyu, Shiyu Li, Shuangshuang Zeng, Zhen Zhang, and Shi-Li Zhang. "Autogenic analyte translocation in nanopores." Nano Energy 60 (June 2019): 503–9. http://dx.doi.org/10.1016/j.nanoen.2019.03.092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Tyler, J. P. P., G. L. Driscoll, H. Smith, J. Dodd, L. Kime, J. Barr, and L. Robinson. "Monitoring superovulation by Dual Analyte." Medical Journal of Australia 147, no. 7 (October 1987): 365–67. http://dx.doi.org/10.5694/j.1326-5377.1987.tb133545.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Cullen, D. C., R. S. Sethi, and C. R. Lowe. "Multi-analyte miniature conductance biosensor." Analytica Chimica Acta 231 (1990): 33–40. http://dx.doi.org/10.1016/s0003-2670(00)86394-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Jones, Geoffrey, and David M. Rocke. "Analyte Identification in Multivariate Calibration." Biometrics 57, no. 2 (June 2001): 571–76. http://dx.doi.org/10.1111/j.0006-341x.2001.00571.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Schifreen, Richard S., and Keith D. Gitterman. "{BLR 2627} Analyte-Specific Reagents." Biotechnology Law Report 17, no. 2 (March 1998): 276–77. http://dx.doi.org/10.1089/blr.1998.17.276.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Cao, Liaoran, Xinyu Zhang, Alix Grimley, Anna R. Lomasney, and Michael G. Roper. "Microfluidic multi-analyte gradient generator." Analytical and Bioanalytical Chemistry 398, no. 5 (September 11, 2010): 1985–91. http://dx.doi.org/10.1007/s00216-010-4168-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Schramm, Willfried, and Se-Hwan Paek. "Continuous monitoring of analyte concentrations." Biosensors and Bioelectronics 7, no. 2 (January 1992): 103–14. http://dx.doi.org/10.1016/0956-5663(92)90015-f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Jokić, Ivana, Zoran Djurić, Katarina Radulović, and Miloš Frantlović. "Analysis of Stochastic Time Response of Microfluidic Biosensors in the Case of Competitive Adsorption of Two Analytes." Proceedings 2, no. 13 (December 13, 2018): 991. http://dx.doi.org/10.3390/proceedings2130991.

Повний текст джерела
Анотація:
A model of stochastic time response of adsorption-based microfluidic biosensors is presented, that considers the competitive adsorption-desorption process coupled with mass transfer of two analytes. By using the model we analyze the expected value of the adsorbed particles number of each analyte, which determine the sensor response kinetics. The comparison with the case when only one analyte exists is used for investigation of the influence of competitive adsorption on the sensor response. The response kinetics analyzed by using the stochastic model is compared with the kinetics predicted by the deterministic response model. The results are useful for optimization of micro/nanosensors intended for detection of substances in ultra-low concentrations in complex samples.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Yap, C. T., and Younan Hua. "Theoretical Studies in EDXRF on a New Linear Relation: In(Fluorescent Intensity Ratio of Analyte to Pure Analyte/Concentration of Analyte) versus In(Fluorescent Energy)." Applied Spectroscopy 47, no. 12 (December 1993): 2052–57. http://dx.doi.org/10.1366/0003702934066299.

Повний текст джерела
Анотація:
The inaccuracies and validity of the approximate linear relation between In(fluorescent intensity/concentration) and In(fluorescent energy) are presented and discussed. We then present the derivation of a new linear relation between In(fluorescent intensity ratio of analyte to pure analyte/concentration of analyte) and In(fluorescent energy) which is valid for all elements that can be excited by radiation sources, whether by tube x-ray or by radioisotope sources.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Lin, CS, GH Chiang, CH Liu, HC Tsai, CC Yang, K. Chen, SK Huang, TL Cheng, and CC Chou. "Comparison of a full-spectrum multi-analyte clinical analyser with six reference instruments using canine and feline blood samples." Veterinární Medicína 62, No. 6 (June 14, 2017): 342–50. http://dx.doi.org/10.17221/109/2016-vetmed.

Повний текст джерела
Анотація:
In this study, we report the characterisation of a novel centrifugation and spectrum-integrated veterinary clinical analyser, the AmiShield<sup>TM</sup>, which has been developed for the multiplex measurement of biochemical, electrolyte and immunoassay parameters in a point-of-care testing environment. The aims of this study were to evaluate the analytical performance of the AmiShield<sup>TM</sup> and to compare it with six reference instruments using clinical blood samples. Two hundred and four canine and 120 feline blood samples collected from veterinary teaching hospitals were analysed in parallel using the AmiShield and appropriate reference instruments. All results were evaluated separately for canine and feline specimens. The instrument’s analytical performance was evaluated initially for short- and long-term precision, bias, and observed total error using quality control material. This was followed by comparison of clinical specimens on the AmiShield analyser in parallel with the Vitros and Hitachi for biochemical parameters, VetScan and SNAPshot for total bile acids, and VetLyte and Biolyte for electrolytes. Overall, the AmiShield analyser’s performance met the standards of the American Society for Veterinary Clinical Pathology for total allowable error for most analytes, and can be considered suitable for use in veterinary clinical practices. Using canine samples, excellent correlation coefficients (r ≧ 0.92) were identified for 14 analytes of various categories including glucose, total protein, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total bilirubin, amylase, blood urea nitrogen, creatinine, phosphorus, Na<sup>+</sup>, K<sup>+</sup>, Cl<sup>–</sup> and total bile acid, while good correlations (0.91 ≧ r ≧ 0.80) were recorded for albumin (r = 0.91). Bland-Altman difference plots also showed agreement (greater than 95% within Limits of Agreement) for glucose, total protein, albumin, alanine aminotransferase, alkaline phosphatase, total bilirubin, amylase, blood urea nitrogen, creatinine, Na<sup>+</sup>, K<sup>+</sup>, Cl<sup>–</sup> and total bile acid between AmiShield and the reference instruments. However, aspartate aminotransferase and phosphorus exhibited higher outliers, implying potential problems associated with matrix interferences such as lipemic samples, which warrant further study. This study demonstrates that the AmiShield compares favourably with standard reference instruments, and the new device generated data of high quality for most analytes in clinical canine and feline samples. The capability of reliably measuring multi-category analytes in one device using minute amounts (170 μl) of whole blood and short turn-around times (&lt; 15 min) underlines the high potential of the device as a good alternative in-house diagnostic application.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Beeson, Michelle D., Kermit K. Murray, and David H. Russell. "Aerosol Matrix-Assisted Laser Desorption Ionization: Effects of Analyte Concentration and Matrix-to-Analyte Ratio." Analytical Chemistry 67, no. 13 (July 1995): 1981–86. http://dx.doi.org/10.1021/ac00109a012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Pavliuk, Georgii, Dmitrii Pavlov, Eugeny Mitsai, Oleg Vitrik, Aleksandr Mironenko, Alexander Zakharenko, Sergei A. Kulinich, et al. "Ultrasensitive SERS-Based Plasmonic Sensor with Analyte Enrichment System Produced by Direct Laser Writing." Nanomaterials 10, no. 1 (December 24, 2019): 49. http://dx.doi.org/10.3390/nano10010049.

Повний текст джерела
Анотація:
We report an easy-to-implement device for surface-enhanced Raman scattering (SERS)-based detection of various analytes dissolved in water droplets at trace concentrations. The device combines an analyte-enrichment system and SERS-active sensor site, both produced via inexpensive and high-performance direct femtosecond (fs)-laser printing. Fabricated on a surface of water-repellent polytetrafluoroethylene substrate as an arrangement of micropillars, the analyte-enrichment system supports evaporating water droplet in the Cassie–Baxter superhydrophobic state, thus ensuring delivery of the dissolved analyte molecules towards the hydrophilic SERS-active site. The efficient pre-concentration of the analyte onto the sensor site based on densely arranged spiky plasmonic nanotextures results in its subsequent label-free identification by means of SERS spectroscopy. Using the proposed device, we demonstrate reliable SERS-based fingerprinting of various analytes, including common organic dyes and medical drugs at ppb concentrations. The proposed device is believed to find applications in various areas, including label-free environmental monitoring, medical diagnostics, and forensics.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Critchfield, A. S., J. K. Paulus, R. Farez, and A. C. Urato. "Abnormal analyte preeclampsia: do the second-trimester maternal serum analytes help differentiate preeclampsia subtypes?" Journal of Perinatology 33, no. 10 (May 23, 2013): 754–58. http://dx.doi.org/10.1038/jp.2013.55.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Peng, Xuejun, Gwendolyn M. Bebault, David D. Y. Chen, and Stephen L. Sacks. "Quantitative description of analyte migration behavior based on the dynamic complexation model in capillary electrophoresis." Canadian Journal of Chemistry 75, no. 5 (May 1, 1997): 507–17. http://dx.doi.org/10.1139/v97-059.

Повний текст джерела
Анотація:
A theory based on dynamic complexation is used to describe analyte migration behavior in capillary electrophoresis (CE). This theory is based on a one-phase system, instead of the commonly accepted two-phase system. The migration behavior of an analyte is described by three parameters (the electrophoretic mobility of the free analyte, the electrophoretic mobility of the analyte–additive complex, and the equilibrium constant (formation constant) that determines the fractions of the free analyte and the complex at a certain additive concentration). Varying the additive concentration shifts the equilibrium and changes the viscosity of the background electrolyte. Viscosity correction is crucial in interpreting the observed migration behavior of analytes. While electroosmotic flow in a capillary often varies from one capillary to another, the viscosity of a buffer is characteristic of the buffer composition and is constant for each buffer. The electrophoretic mobility of a certain species and the equilibrium constant are intrinsic properties and are less sensitive to changes in the environment. Understanding these relationships is indispensable in CE method development and method validation. A universal resolution equation is proposed, with a separation factor that has taken both the electrophoretic mobilities and equilibria into consideration. This resolution equation gives clear guidance for the optimization of CE separations. A group of nucleosides and their phosphates are used as analytes, and β-cyclodextrin is used as the additive in the model system studied in this paper. Both the observed analyte migration behavior and the resolution of analytes agree well with this theory. Keywords: dynamic complexation capillary electrophoresis, nucleoside and nucleotide separation, capacity factor, resolution equation, viscosity correction.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Asadpour-Zeynali, Karim, Raoof Ghavami, Roghayeh Esfandiari, and Payam Soheili-Azad. "Simultaneous Determination of Antazoline and Naphazoline by the Net Analyte Signal Standard Addition Method and Spectrophotometric Technique." Journal of AOAC INTERNATIONAL 93, no. 6 (November 1, 2010): 1995–2001. http://dx.doi.org/10.1093/jaoac/93.6.1995.

Повний текст джерела
Анотація:
Abstract A novel net analyte signal standard addition method (NASSAM) was used for simultaneous determination of the drugs anthazoline and naphazoline. The NASSAM can be applied for determination of analytes in the presence of known interferents. The proposed method is used to eliminate the calibration and prediction steps of multivariate calibration methods; the determination is carried out in a single step for each analyte. The accuracy of the predictions against the H-point standard addition method is independent of the shape of the analyte and interferent spectra. The net analyte signal concept was also used to calculate multivariate analytical figures of merit, such as LOD, selectivity, and sensitivity. The method was successfully applied to the simultaneous determination of anthazoline and naphazoline in a commercial eye drop sample.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Hill, H. Allen O., Napthali A. Klein, Ioanna S. M. Psalti, and Nicholas J. Walton. "Enzyme dual-electrode for analyte determination." Analytical Chemistry 61, no. 19 (October 1989): 2200–2206. http://dx.doi.org/10.1021/ac00194a017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Homola, Jiří, Hana Vaisocherová, Jakub Dostálek, and Marek Piliarik. "Multi-analyte surface plasmon resonance biosensing." Methods 37, no. 1 (September 2005): 26–36. http://dx.doi.org/10.1016/j.ymeth.2005.05.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Lequin, Rudolf M. "Which human chorionic gonadotropin? Which analyte?" American Journal of Obstetrics and Gynecology 177, no. 4 (October 1997): 982. http://dx.doi.org/10.1016/s0002-9378(97)70317-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Evans, G. O. "Thermal Effects on Serum Analyte Concentrations." Clinical Chemistry 38, no. 1 (January 1, 1992): 167–68. http://dx.doi.org/10.1093/clinchem/38.1.167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Saberian-Borujeni, Mehdi, Mohammad Johari-Ahar, Hossein Hamzeiy, Jaleh Barar, and Yadollah Omidi. "Nanoscaled aptasensors for multi-analyte sensing." BioImpacts 4, no. 4 (August 23, 2017): 205–15. http://dx.doi.org/10.15171/bi.2014.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Read, Douglas H., and James E. Martin. "Analyte Discrimination from Chemiresistor Response Kinetics." Analytical Chemistry 82, no. 16 (August 15, 2010): 6969–75. http://dx.doi.org/10.1021/ac101259w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Gloes, Franziska, Andrea Boehme, Thilo Liebscher, Steffen Zinn, Maria Richetta, and Andreas H. Foitzik. "Analyte Tracking for Novel Bio-Applications." Materials Science Forum 941 (December 2018): 2454–57. http://dx.doi.org/10.4028/www.scientific.net/msf.941.2454.

Повний текст джерела
Анотація:
Modern cell culture as well as sophisticated bio-applications involve complex biochemical processes, which are required to induce growth, product development or material degradation. Tracking the reaction processes inside the application presents a major challenge due to its complexity. The development of new analysis and tracking mechanisms for such application presents a solution to fully understand the process. In addition, the applied sensors are required to monitor the reactions enable a live tracking of the process. Furthermore, this gives the opportunity to influence and manipulate reactions to further enhance the application of the process. Possible analytes for tracking during processes can be chemical origin such as glucose, cytokines, antibiotics and growth factors, which are included in the culture medium. Based on the complexity of the culture or bio-application the sensor tracking mechanism has to be adapted to ensure full process control. A variety of different approaches can be used for the tracking mechanism.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Marshall, Graham D., and Jacobus F. van Staden. "Analyte Enrichment Using Sequential-Injection Analysis." Instrumentation Science & Technology 25, no. 4 (November 1997): 307–20. http://dx.doi.org/10.1080/10739149709351474.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Xu, Phyllis F., Albert M. Hung, Hyunwoo Noh, and Jennifer N. Cha. "Switchable Nanodumbbell Probes for Analyte Detection." Small 9, no. 2 (October 8, 2012): 228–32. http://dx.doi.org/10.1002/smll.201201721.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Sun, Eric Yi, Ralph Weissleder, and Lee Josephson. "Continuous Analyte Sensing with Magnetic Nanoswitches." Small 2, no. 10 (August 29, 2006): 1144–47. http://dx.doi.org/10.1002/smll.200600204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Wexler, P. J., W. L. Siqueira, E. J. Helmerhorst, F. G. Oppenheim, R. Lomasky, C. E. Brodley, R. B. Hayman, T. M. Blicharz, D. R. Walt, and F. F. Little. "Salivary Analyte Profiles and Asthma Severity." Journal of Allergy and Clinical Immunology 123, no. 2 (February 2009): S84. http://dx.doi.org/10.1016/j.jaci.2008.12.295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Csako, Gyorgy. "High Analyte Concentrations in ‘Airfuged’ Specimens." Annals of Clinical Biochemistry: International Journal of Laboratory Medicine 31, no. 4 (July 1994): 389–90. http://dx.doi.org/10.1177/000456329403100418.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Higgins, Trefor. "HbA1c — An analyte of increasing importance." Clinical Biochemistry 45, no. 13-14 (September 2012): 1038–45. http://dx.doi.org/10.1016/j.clinbiochem.2012.06.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Olivier, C., and H. J. Morland. "Range corrections using non-analyte spiking." Journal of Radioanalytical and Nuclear Chemistry Letters 146, no. 6 (December 1990): 367–74. http://dx.doi.org/10.1007/bf02199258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Olivier, C., and H. J. Morland. "Range corrections using non-analyte spiking." Journal of Radioanalytical and Nuclear Chemistry Letters 145, no. 3 (June 1990): 239–44. http://dx.doi.org/10.1007/bf02202030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Valcárcel, M., M. Gallego, and S. Cárdenas. "Sample/analyte screening systems and chromatography." Chromatographia 53, S1 (January 2001): S149—S153. http://dx.doi.org/10.1007/bf02490321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Carter, Graham D. "25-Hydroxyvitamin D: A Difficult Analyte." Clinical Chemistry 58, no. 3 (March 1, 2012): 486–88. http://dx.doi.org/10.1373/clinchem.2011.180562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Kim, Dabum, Kangyun Lee, Youngho Jeon, Goomin Kwon, Ung-Jin Kim, Chang-Sik Oh, Jeonghun Kim, and Jungmok You. "Plasmonic nanoparticle-analyte nanoarchitectronics combined with efficient analyte deposition method on regenerated cellulose-based SERS platform." Cellulose 28, no. 18 (October 29, 2021): 11493–502. http://dx.doi.org/10.1007/s10570-021-04283-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Macri, J. N., K. Spencer, and R. Anderson. "Dual Analyte Immunoassay—a New Approach to Neural Tube Defect and Down's Syndrome Screening." Annals of Clinical Biochemistry: International Journal of Laboratory Medicine 29, no. 4 (July 1992): 390–96. http://dx.doi.org/10.1177/000456329202900403.

Повний текст джерела
Анотація:
A microtiter plate based Dual Analyte enzymeimmunoassay method for the simultaneous measurement of α-fetoprotein (AFP) and Free-β human chorionic gonadotrophin (hCG) was evaluated. This rapid assay, which has application in both Neural Tube Defect screening and Down's screening, shows good precision with between assay coefficients of variation between 5 and 7·5% for AFP and 3·7 to 5·8% for Free-β(hCG). Correlation with single analyte procedures is good, with correlation coefficients being greater than 0·91 in both cases. Clinical discrimination in detecting both types of abnormalities is not compromised by this new simultaneous Dual Analyte assay. We conclude that the Dual Analyte approach, which combines analytes achieving the highest known detection efficiency, will bring about improvements in the efficiency of screening, reduce costs and improve report turnaround, all leading to better quality of patient care.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Mandić, Sanja, Dario Mandić, Vatroslav Šerić, Silvija Osvald, Maja Lukić, Vesna Horvat, Tara Rolić, and Iva Lukić. "Test results comparison and sample stability study." Biochemia medica 30, no. 3 (October 12, 2020): 446–56. http://dx.doi.org/10.11613/bm.2020.030704.

Повний текст джерела
Анотація:
Introduction: The aim was to evaluate the BD Barricor tubes by comparison with the BD Rapid Serum Tubes (RST) through measuring 25 analytes and monitoring sample stability after 24 hours and 7 days. Materials and methods: Samples of 52 patients from different hospital departments were examined. Blood was collected in BD RST and BD Barricor tubes (Becton, Dickinson and Company, Franklin Lakes, USA). Analytes were measured by Beckman Coulter AU 480 (Beckman Coulter, Brea, USA), Dimension EXL (Siemens Healthcare Diagnostics, Newark, USA) and ARCHITECT i2000SR (Abbott Diagnostics, Lake Forest, USA). Between-tube comparison for each analyte was performed, along with testing analyte stability after storing samples at 4 °C. Results: BD Barricor tubes showed unacceptable bias compared to BD RST tubes for potassium (K) (- 4.5%) and total protein (4.4%). Analyte stability after 24 hours was acceptable in both tested tubes for most of analytes, except for glucose, aspartate aminotransferase (AST) and lactate dehydrogenase (LD) in BD Barricor and free triiodothyronine in BD RST sample tubes. Analyte stability after 7 days was unacceptable for sodium, K, calcium, creatine kinase isoenzyme MB, AST, LD and troponin I in both samples; additionally for glucose, alkaline phosphatase and albumin in BD Barricor. Conclusion: All analytes, except K and total protein, can be measured interchangeably in BD RST and BD Barricor tubes, applying the same reference intervals. For most of the analytes, sample re-analysis can be performed in both tubes after 24 hours and 7 days, although BD RST tubes show better 7-day analytes stability over BD Barricor tubes.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Zhang, Bo, and Pu-Xian Gao. "Single Chemical Sensor for Multi-Analyte Mixture Detection and Measurement: A Review." International Journal of High Speed Electronics and Systems 29, no. 01n04 (March 2020): 2040008. http://dx.doi.org/10.1142/s012915642040008x.

Повний текст джерела
Анотація:
Multi-analyte chemical sensor aims to transform subtle variations in multiple analytes’ physical or chemical properties into distinct output signals. Chemically responsive nanostructure array (nanoarray) promises as a competitive sensor platform due to its robust physical properties, tunable chemical composition, and high surface area for analyte interaction. Specifically, the well-defined size, shape, and tunable surface structure and properties make it feasible to develop either new sensing modes on single device or integrated multi-modular sensors. In conjunction with the well-developed resistor-type sensors and sensor arrays, the complementary utilization of and intercorrelation with the electrochemical, optical, voltammetry modes in the multi-modular sensing strategies could provide multi-dimensional measurements to different analytes in a complex mixture form, where species information could be accurately and robustly separated from spatially collective responses. This review intends to provide a survey of the recent progress on multi-analyte sensing strategies and their unique structure design, as well as the related sensing mechanics in interaction of analytes and sensitizer and the behind mechanism for analytes’ differentiation.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Abbasi, Azhar Zahoor, Faheem Amin, Tobias Niebling, Sebastian Friede, Markus Ochs, Susana Carregal-Romero, Jose-Maria Montenegro, Pilar Rivera Gil, Wolfram Heimbrodt, and Wolfgang J. Parak. "How Colloidal Nanoparticles Could Facilitate Multiplexed Measurements of Different Analytes with Analyte-Sensitive Organic Fluorophores." ACS Nano 5, no. 1 (January 25, 2011): 21–25. http://dx.doi.org/10.1021/nn1034026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Dupuy, Anne Marie, Anne Sophie Bargnoux, Nils Kuster, Jean Paul Cristol, and Stéphanie Badiou. "Determination of hemolysis cut-offs for biochemical and immunochemical analytes according to their value." Clinical Chemistry and Laboratory Medicine (CCLM) 58, no. 8 (July 28, 2020): 1232–41. http://dx.doi.org/10.1515/cclm-2019-1228.

Повний текст джерела
Анотація:
AbstractBackgroundAll general biochemistry instruments allow the measure of hemolysis index (HI), and suppliers provide an acceptable HI for each assay without consideration of the analyte value or its clinical application. Our first objective was to measure the impact of hemolysis degree on plasma biochemical and immunochemical analytes to determine the maximum allowable HI for each of them using four calculation methods as significant bias in comparison to manufacturer’s data. The second objective was to assess whether the maximum allowable HI varied according to the analyte values.MethodsTwenty analytes were measured in hemolyzate-treated plasma to determine the HI leading to a significant change compared to baseline value. Analytes were assessed at one (3 analytes), two (5 analytes) and three (12 analytes) values according to their sensitivity to hemolysis and their clinical impact. We used four calculation methods as significant limit from baseline value: the total change limit (TCL), the 10% change (10%Δ), the analytical change limit and the reference change value.ResultsAllowable HI was significantly different according to the threshold chosen for most analytes and was also dependent on the analyte value for alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, creatine kinase, iron, haptoglobin and high sensitivity troponin T. No hemolysis interference was observed for albumin, creatinine, C-reactive protein, and procalcitonin even at an HI value of 11 g/L.ConclusionsThis study highlights that TCL is the most appropriate calculation method to determine allowable HI in practice for biochemical and immunochemical parameters using Cobas 8000© from Roche Diagnostics. In addition, different allowable HI were found according to analyte value leading to optimization of resampling to save time in patient care.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Friedrich, Daniel, Colin Please, and Tracy Melvin. "Optimisation of analyte transport in integrated microfluidic affinity sensors for the quantification of low levels of analyte." Sensors and Actuators B: Chemical 131, no. 1 (April 14, 2008): 323–32. http://dx.doi.org/10.1016/j.snb.2007.11.034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Hassell, Kerry M., Yves LeBlanc, and Scott A. McLuckey. "Conversion of multiple analyte cation types to a single analyte anion type via ion/ion charge inversion." Analyst 134, no. 11 (2009): 2262. http://dx.doi.org/10.1039/b914304a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії