Дисертації з теми "Analyse numérique – Éléments finis, Méthode des"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Analyse numérique – Éléments finis, Méthode des".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Fontvieille, Franck. "Décomposition Asymptotique et éléments finis." Lyon, INSA, 2004. http://theses.insa-lyon.fr/publication/2004ISAL0029/these.pdf.
Повний текст джерелаThis thesis is devoted to the numerical analysis and simulation by finite element of asymptotic decomposition problems. These are partial differential equation problems, an information about the behaviour of the solutions on a part of the domain is available. This information is used in order to improve the efficiency of numerical methods and is accounted for through the basis functions of the finite element method. It generates particular basis functions : "super-element functions". In a first and very short chapter, we introduce the MAPDD, Method of Asymptotic Partial Domain Decomposition. In a second and thord chapter, one apply and justify \textit{via} asymptotic expansion this strategy for a monodimensionnal singular perturbation problem arising in the shell theory and for Poisson equation on a thin domain. We propose a efficient finite element method which save numerous nodes. Optimal error estimates are given, the same order is obtain with a classical finite element method. In a fourth chapter, one interests in coupling piecewise monodimensionnal and bidimensionnal problems for Poisson equation. One disconnects the domains and glu then by the way of a Lagrange multiplier in a saddle-point problem. Error estimates are given for the finite element approximation of this problem. We show that this approache generalizes the method by "super-element". In a fifth prospective chapter, we deal with the numerical treatment of two problem of the litterature. An adhesive joint, and a transport problem in a least square formulation. We propose a 2D-1D modelisation
Laribi, Imen. "Approximation par éléments finis, analyse a posteriori et simulation de coques anisotropes." Rouen, 2014. http://www.theses.fr/2014ROUES020.
Повний текст джерелаThe aim of this work is to propose the a posteriori error estimator of a finite element discretization. These estimators are particulary used to have a mesh adaptivity for a Naghdi's problem for anisotropic shell model with little regularity. In a first step, we propose an existence and uniqueness result of the anisotropic Naghdi solution. We introduce a mixed formulation on a relaxed functional space with an orthogonality constraint. We prove, also, the existence and uniqueness of the solution for continuous and discrete mixed problems. Then, we propose the a posteriori analysis that leads to the construction of error indicators which satisfy optimal estimates that we use to describe a mesh adaptivity strategy. Finally, we present a constraint-free formulation of the Naghdi's problem without any orthogonality constraint that enables us, in particular, to approximate by conforming finite elements the solution with less degrees of freedom instead of the one introduced previously. We formulate the error estimator in terms of quantities of interest and in particular the upper and lower bounds on the error. Numerical tests are given that validate and illustrate our approach
Carrive, Maïté. "Modélisation intrinsèque et analyse numérique d'un problème de coque mince en grands deplacements." Paris 9, 1995. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1995PA090024.
Повний текст джерелаThis work provides the mathematical foundation for a thin shell model involving large deformations. The model takes full account of the geometric structure. Its formulation is intrinsic in the sense that it does not depend on any surface parametrization and any basis choice. The shell, considered as a splited and fibrated domain, is identified to a mild-surface plus a transverse inextensible director. This hypothesis incorporates finite membrane, bending and transverse shear deformation. The shell balance equation is derived from the three-dimensional equation by integration through the thickness on the actual configuration. The related formulation can be expressed on any configuration by conveying the kinematics and kinetics quantities. Finally, a theoretical justification of the hyperelastic constitutive law relying on the independence of the deformation tensors is obtained. A Cartesian basis is chosen for the numerical application. The study is restricted to a normal director and in the assumption of small deformations but large displacements. The non-linear problem is discretized by Argyris Finite Element and solved by a Newton algorithm. To guarantee the stability of the method and existence and uniqueness theorem for the linearized problem is established. At the end, the method is applied to some test cases, including a collapse
Cavin, Pauline. "Méthode éléments finis avec raffinement spatial et temporel adaptatif et automatique : "STAR-method" (Space Time Automatic Refinement)." Lyon, INSA, 2006. http://theses.insa-lyon.fr/publication/2006ISAL0034/these.pdf.
Повний текст джерелаComplex numerical simulations of non linear dynamic systems require large computational efforts. The developed method, based on finite element techniques, aims to reduce the computing time. The idea is to optimize the spatial and temporal mesh controlling the solution quality. So, the proposed method solves the problem on different spatial and temporal grids. The method is named "STAR-method" for Space Time Automatic Refinement. With the "STAR-method", an error indicator detects the areas where spatial and temporal discretisations are insufficient to obtain the required precision. The \STAR-method" then automatically refines the meshes in these domains. Results show several advantages of the \STAR-method". The final spatial and temporal meshes become user independent. The local space time mesh refinement focuses the calculational effort only there where it is necessary. With the "STAR-method" the number of degrees of freedom and the number of the time steps are reduced compared to classical FEM. Finally, the solution precision is controlled during the calculation. At the end of calculation, the user obtains the solution with constant precision over the entire calculational domain and the spatial and temporal mesh associated
Colin, Claire. "Analyse et simulation numérique par méthode combinée Volumes Finis - Éléments Finis de modèles de type Faible Mach." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I022/document.
Повний текст джерелаIn this thesis, we study some flows characterized by a low Mach number. In a first part, we develop a numerical scheme allowing the resolution of the Navier-Stokes equations in the low Mach number approximation. The continuityequation is solved by a finite volume method, while the momentum and temperature equations are solved by finite elements. The scheme ensures the preservation of constant states. In a second part, we analyze a specific low Mach type model, in which the thermodynamic pressure is considered constant, and the viscosity is a particular function of the temperature. We show the existence, the uniqueness and the regularity of the solutions, as well as a maximum principle result for the temperature. Finally, in a third part, we develop a numerical scheme to simulate the equations of this model. Emphasis is placed on the discretization of the temperature equation, which is of finite volume type. Several schemes are studied and compared on criteria of precision and respect of the maximum principle. The momentum equation is discretized by finite elements, defining a new combined scheme
Tournour, Michel. "Modélisation numérique par éléments finis et éléments finis de frontière du comportement vibroacoustique de structures complexes assemblées et couplées à une cavité." Compiègne, 1999. http://www.theses.fr/1999COMP1197.
Повний текст джерелаMortazavi, Iraj. "Méthode hybride vortex-éléments finis : étude de la convergence numérique, caractérisation et analyse d'un écoulement complexe." Lille 1, 1997. http://www.theses.fr/1997LIL10090.
Повний текст джерелаBorges, Nelson. "Méthodes multigrilles en éléments finis : Programmation et estimation de facteur de convergence." Ecully, Ecole centrale de Lyon, 1986. http://www.theses.fr/1986ECDL0003.
Повний текст джерелаOudin, Fabienne. "Schémas volumes finis pour problèmes elliptiques : analyse a priori et a posteriori par éléments finis mixtes, méthode de décomposition de domaines." Lyon 1, 1995. http://www.theses.fr/1995LYO10303.
Повний текст джерелаBradji, Abdallah. "Amélioration de l'ordre de convergence dans les méthodes de volumes et éléments finis." Aix-Marseille 1, 2005. http://www.theses.fr/2005AIX11028.
Повний текст джерелаAdjedj, Geneviève. "Stratégie adaptative pour éléments finis hiérarchiques en élasticité linéaire." Châtenay-Malabry, Ecole centrale de Paris, 1988. http://www.theses.fr/1988ECAP0072.
Повний текст джерелаAbdalass, El Montasser. "Résolution performante du problème de stokes par mini-éléments, maillages auto-adaptatifs et méthodes multigrille : Applications." Ecully, Ecole centrale de Lyon, 1987. http://www.theses.fr/1987ECDL0015.
Повний текст джерелаMusy, François. "Etude d'une classe de méthodes multigrilles pour les problèmes variationnels : théorie générale et estimations du taux de convergence." Lyon 1, 1985. http://www.theses.fr/1985LYO19044.
Повний текст джерелаOttavy, Noël. "Contribution à l'algorithme numérique en environnement CAO : méthode de superposition de maillages en éléments finis." Poitiers, 1989. http://www.theses.fr/1989POIT2002.
Повний текст джерелаBidal, Samuel. "Reconstruction tridimensionnelle d'éléments anatomiques et génération automatique de maillages éléments finis optimisés." Aix-Marseille 2, 2003. http://www.theses.fr/2003AIX20673.
Повний текст джерелаThe aim of this work is to quickly generate good quality models of the human body. We created a method package which generates finite element meshes from pictures of serial slices (taken from anatomic slices, X-ray sanner or MRI). The mesh generation is divided into three main steps : contours detection, 3D reconstruction and meshing. Contour detection methods were chosen to be applicable on a wide range of pictures. 3D reconstruction and meshing methods are new and based on an octahedral lattice. They allow to generate quadrangular or hexahedral elements. The heads organs were chosen to validate the package. We studied other organs too but these work are just given here as examples
Agouzal, Abdellatif. "Analyse numérique de méthodes de décomposition de domaines : Méthodes de domaines fictifs avec multiplicateurs de Lagrange." Pau, 1993. http://www.theses.fr/1993PAUUA002.
Повний текст джерелаEl, Rhabi Mohammed. "Analyse Numérique et discrétisation par éléments spectraux avec joints des équations tridimensionnelles de l'électromagnétisme." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2002. http://tel.archives-ouvertes.fr/tel-00002224.
Повний текст джерелаGeniaut, Samuel. "Approche X-FEM pour la fissuration sous contact des structures industrielles." Nantes, 2006. http://www.theses.fr/2006NANT2114.
Повний текст джерелаIndustrial surveys have shown that mesh-based approaches are unable to treat helix-shape cracks problems in shafts. Problems with various 3D cracks cannot be meshed with automatic meshing. A new approach allows one to introduce cracks in a very simple mesh. With the extended finite element method (X-FEM), the mesh doesn’t necessarily follow the crack geometry, and the framework of the finite element method is kept. This method uses the partition of unity to enrich the classical shape functions basis, with a jump and asymptotic functions. Besides, the use of the level sets method makes the representation of 3D cracks very handy. To take into account the possibility of a crack closure, a method for treating the contact effects has been adapted to the X-FEM framework, based on a Lagrangian Augmented formulation. Besides, one of the main features of contact with X-FEM is that under small displacements assumptions, no contact-nodes searching algorithm is needed, because a geometrical point of the surface can be seen as two physical points, one on each side of the surface. Therefore the displacement jump is expressed in terms of enriched degrees of freedom introduced by X-FEM. The formulation has been stabilized, in order to respect a compatibility condition (LBB condition) between the approximation spaces of the displacement and contact fields. This formulation has been implemented within a general-purpose finite element code, Code_Aster, developed by EDF
Somphone, Oudom. "Recalage par éléments finis avec partition de l'unité : applications en imagerie médicale." Paris 9, 2009. https://bu.dauphine.psl.eu/fileviewer/index.php?doc=2009PA090032.
Повний текст джерелаIn this work, we present a Partition of Unity Finite Element Method (PUFEM) to compute the transformation between two images, which is represented by a non-rigid, locally polynomial displacement field. The partition of unity property offers an efficient optimization scheme by breaking down the global minimization of the mismatch energy into independent, local minimizations. We then introduce a conformity constraint between the local representations to provide a flexible way to control the globality of the deformation. We first apply our method to register 3D-CT images in order to estimate the respiratory motion; it is compared to four other methods with respect to quantitative and qualitative criteria. Secondly, we use our partition of unity representation for the purpose of two-phase, prior-based image segmentation. The crux is to register a binary prior shape to an image in order to segment it. The conformity constraint compels the solution to be compliant with the shape prior
Laghsal, Mohamed. "Etude des méthodes nodales pour la résolution de certains problemes elliptiques sur divers types de maillages." Besançon, 1995. http://www.theses.fr/1995BESA2051.
Повний текст джерелаRoyis, Hakima. "Contribution à l'analyse numérique des équations de l'élastoplasticité incrémentale en transformations finies : une formulation mixte en vitesses." Lyon, INSA, 1996. http://www.theses.fr/1996ISAL0083.
Повний текст джерелаThe general framework of the developments constituting the matter of this thesis deals with the finite element modelisation of simple material continua. More precisely they concern the extension to large deformations of a rate mixed finite element method developed in previous works for small and quasistatic transformations of continua. After a first chapter devoted to the statement of classical results and notations needful to the comprehension of the following ones, a mixed variational formulation involving the velocity and an objective rate of the Cauchy stresses is proposed, in the frame of large deformations and for a particular class of incremental elastoplastic constitutive laws involving interpolations. Two consistency conditions of the constitutive equations are stated in order to ensure the existence and the uniqueness of the solution of the resulting mixed variational problems. Then the problem of the time-integration of the stress and displacement fields is tackled, and an easy to implement but strongly algorithm is proposed. Its accuracy is analysed through a set of numerical simulations of academic problems. The topics relating to computer programming are also examined, and the routines added to the mixed finite element code EMILI1. 0 in order to extend it to large deformations are described. At last some numerical results coming from simulations with increasing complexity are presented
Tomas, Laurent. "Optimisation de forme et domaines fictifs : Analyse de nouvelles formulations et aspects algorithmiques." Ecully, Ecole centrale de Lyon, 1997. http://www.theses.fr/1997ECDL0013.
Повний текст джерелаBouhafs, Brahim. "Analyse numérique du comportement des coques élasto-viscoplastiques en grandes rotations soumises à des charges dynamiques et thermiques." Lille 1, 2002. https://pepite-depot.univ-lille.fr/RESTREINT/Th_Num/2002/50376-2002-255.pdf.
Повний текст джерелаChouly, Franz. "Contribution au traitement des conditions limites et d'interface dans le cadre de la Méthode des Éléments Finis." Habilitation à diriger des recherches, Université de Franche-Comté, 2013. http://tel.archives-ouvertes.fr/tel-00981356.
Повний текст джерелаColson, Marie-Hélène. "Adaptation de maillages éléments finis volumiques et surfaciques à partir d'un calcul d'erreur de discrétisation." Nancy 1, 1997. http://www.theses.fr/1997NAN10256.
Повний текст джерелаGamha, Habiba. "Calculs par éléments finis des structures élasto-viscoplastiques : analyse comparative et application à la fatigue thermique." Compiègne, 1990. http://www.theses.fr/1990COMPD310.
Повний текст джерелаLi, Wei. "Analyse numérique de problèmes non convexes à donnée au bord non linéaire." Metz, 1993. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1993/Li.Wei.SMZ9310.pdf.
Повний текст джерелаIn this thesis, we study a kind of non-convex varaitional problems. Such problems originated in material science, for example in crystal, etc. We consider the following problems : inf#(*(x)) dx; inf#(*(x))+((x)a(x)) dx on certain Sobolev space w#1#p(a) and where the energy density posses energy wells, say w1 i=1,. . . K. In general, such problems can be no classical solution. In our studies, the numerical method introduced by M. Chipot, C. Collins and D. Kinderlerer has been developped. In section 1 and 2 some results of estimation in a space of finit-element are obtained. Section 3 is contributed to an analysis or parametrized measure. We get a result of Young measure which showing the existence and uniqueness of the generalized solution. And in section 4, we have some estimation results in terms of probability, which explains the behavior of the minimising sequences
Adélaïde, Lucas Hector. "Méthode des élements finis espace-temps : adaptation du maillage en cours d'évolution avec contact." Montpellier 2, 2001. http://www.theses.fr/2001MON20152.
Повний текст джерелаPerez, Wilson Carlos Eduardo. "Analyse numérique de phénomènes de couplage liés aux transferts thermiques." Pau, 2003. http://www.theses.fr/2003PAUU3002.
Повний текст джерелаThis work deals with the study of the coupling between the non-steady Navier-Stokes and Energy equations for Newtonian fluid flows with thermal properties depending on the temperature for a mixed convection regime. The physical model is based on Boussinesq hypothesis. A mathematical study is performed. We establish, by means of compactness methods, an existence result. A particular uniqueness result is also demonstrated. A Finite Element analysis is undertaken for the steady problem. The error of approximation for a conforming, inf-sup compatible family, is established. A numerical tool is build, which is validated by regarding the constant thermophysical properties case. Non-steady convective heat transfer associated to the evolution of waves and thermoconvective vortex is analyzed
Marhabi, Driss. "Contribution à l'optimisation du maillage dans le calcul par élèments finis de l'écoulement quasi-tridimensionnel en turbomachine." Lille 1, 1988. http://www.theses.fr/1988LIL10138.
Повний текст джерелаNajib, Khalid. "Analyse numérique de modèles d'écoulements quasi-newtoniens." Lyon 1, 1988. http://www.theses.fr/1988LYO10065.
Повний текст джерелаCapatina-Papaghiuc, Daniela. "Contribution à la prévention de phénomènes de verrouillage numérique." Pau, 1997. http://www.theses.fr/1997PAUU3016.
Повний текст джерелаLabbé, Valérie. "Modélisation numérique du chauffage par induction : approche éléments finis et calcul parallèle." Phd thesis, École Nationale Supérieure des Mines de Paris, 2002. http://tel.archives-ouvertes.fr/tel-00443740.
Повний текст джерела- électromagnétique, - thermique, - éventuellement thermo-mécanique.
Le choix du modèle électromagnétique est primordial. De nombreuses approximations basées sur des hypothèses plus ou moins fortes existent.
Nous avons seulement utilisé l'approximation des régimes quasi-permanents. Nous avons vu que cette première approximation, qui revient à négliger le phénomène de propagation des ondes, est valable dans la gamme de fréquences utilisée lors des procédés de chauffage par induction, les plus hautes fréquences étant largement inférieures au mégahertz. La propagation des ondes est alors considérée comme instantanée, ce qui au vu de la taille caractéristique des installations (quelques mètres) par rapport à la célérité de la lumière (3.105 m/s) est tout à fait raisonnable.
En revanche, nous avons choisi d'écarter l'approximation harmonique des champs électromagnétiques. Cette approximation découple les évolutions spatiales et temporelles du champ et revient à calculer une amplitude complexe pour le champ électromagnétique à partir d'une équation stationnaire. L'avantage d'une telle approximation est le gain souvent important en temps de calcul. Seulement, on perd une précision importante sur l'évolution temporelle et sur la déformation des champs électromagnétiques lorsqu'il s'agit d'un matériau ferromagnétique. En effet, les harmoniques secondaires ne sont pas prises en compte. Afin de pouvoir représenter les phénomènes physiques le plus réellement possible, le modèle électromagnétique utilisé est dépendant du temps. Néanmoins, afin de n'être pas trop pénalisant en temps de calcul, des compromis entre la précision des calculs et le temps de calcul nécessaire ont été étudiés. Ils se situent au niveau :
- du nombre de calculs électromagnétiques nécessaires pour bien décrire l'évolution temporelle d'une période électromagnétique, du nombre de périodes électromagnétiques nécessaires pour arriver à une solution stable,
du nombre de calculs électromagnétiques complets nécessaires au cours de l'évolution du champ de température.
Ces points importants, ainsi que des échelles de temps caractéristiques électromagnétiques et thermiques présentant un rapport allant de 10-2 à 10-6 ont nécessité la mise en place d'un couplage faible, basé sur la stabilisation du terme de puissance Joule moyennée sur une période électromagnétique ainsi que sur la stabilisation des paramètres électromagnétiques au cours de la montée en température.
La méthode numérique employée, de type éléments finis, est fiable et robuste. Néanmoins, elle nécessite une bonne compréhension des phénomènes physiques électromagnétiques inhérents au procédé. En effet, modéliser un espace ouvert par une méthode éléments finis nécessite la fermeture du domaine et l'imposition de conditions aux limites artificielles. L'utilisateur doit estimer la taille du domaine étudié qui doit être assez grand pour ne pas venir tronquer les lignes du champ électromagnétique et ainsi les modifier. Son avantage par rapport à une méthode mixte est que la matrice du système est creuse et symétrique. La résolution du problème est facilitée et se prête mieux à des développements en calcul parallèle.
Enfin, une nouvelle stratégie a été développée pour simuler le déplacement de l'inducteur : ses propriétés se déplacent virtuellement dans l'air. Cette méthode a donné de très bons résultats et ne nécessite aucun remaillage.
Les perspectives de recherche sont multiples.
Au niveau des données, le modèle accepte actuellement une tension ou une densité de courant source uniforme dans l'inducteur. Suite à un calcul électromagnétique complet, la répartition de courants est connue dans l'inducteur et permet une évaluation de l'intensité réelle circulant dans les spires. Il serait intéressant de mettre au point un outil de transfert des données électrotechniques vers nos paramètres d'entrées.
Un autre point, plus académique, serait d'effectuer des comparaisons pour des matériaux ferromagnétiques entre un modèle harmonique et le nôtre, dépendant en temps. En effet nous avons vu que ces deux modèles donnent des solutions identiques pour des matériaux amagnétiques. Tout l'intérêt de notre modèle dépendant en temps apparaît par son analyse beaucoup plus riche des matériaux non linéaires. Nous avons vu que le signal périodique peut être grandement déformé et ne ressemble alors plus du tout à une sinusoïde. Néanmoins, il n'est pas forcément évident que la puissance Joule, issue du calcul électromagnétique et obtenue par intégration sur une période électromagnétique, soit très différente de celle obtenue par une analyse harmonique. Cette différence serait très intéressante à quantifier.
Enfin des comparaisons entre les méthodes numériques 'tout' éléments finis et mixtes permettraient de quantifier la précision des méthodes suivant les tailles des éléments finis, les tailles du domaine de fermeture, ainsi que les différences en temps de calculs.
Un autre axe de ce travail a consisté à étudier et à implémenter une stratégie de parallélisation du modèle direct et de la procédure d'optimisation. Nous avons commencé par tester des solveurs itératifs préconditionnés sur nos différents modèles de type parabolique. Ceux ci donnant des résultats satisfaisants par rapport notamment à un solveur direct, nous avons pu nous orienter vers une méthode de parallélisation SPMD de type partitionnement de domaine. Cette méthode, simple et efficace, donne de très bons résultats au niveau du modèle direct, avec une bonne efficacité et une bonne scalabilité.
La parallélisation de l'optimisation montre une efficacité convenable sur deux et quatre processeurs mais qui tend à chuter rapidement avec le nombre de processeurs: la scalabilité est relativement moyenne. Ce problème fait apparaître une thématique de recherche intéressante en calcul parallèle appliqué aux méthodes adjointes: améliorer la scalabilité de l'optimisation parallèle en développant une meilleure stratégie d'accès aux données, en rééquilibrant les données stockées et les données à recalculer.
Enfin les perspectives à plus long terme consisteraient à développer un modèle analogue tridimensionnel.
Liu, Yu. "Algorithmes pour la méthode des éléments finis et pour la méthode de continuation : application à la contrôlabilité exacte." Compiègne, 1989. http://www.theses.fr/1989COMPD197.
Повний текст джерелаSandri, Dominique. "Analyse numérique de fluides non newtoniens : fluides viscoélastiques et fluides quasi-newtoniens." Lyon 1, 1991. http://www.theses.fr/1991LYO10095.
Повний текст джерелаLobos, Yanez Claudio. "Amélioration des techniques de génération de maillages 3D des structures anatomiques humaines pour la méthode des éléments finis." Grenoble 1, 2009. http://www.theses.fr/2009GRE10041.
Повний текст джерелаThe Finite Element Method (FEM) is probably the most used strategy to simulate physical phenomena in a domain. The method needs a subdivision of the domain into simpler geometrical structures. This subdivision is known as a mesh. The numerical solution computed by the FEM directly depends on the employed mesh. In the medical field, the domains to simulate are complex geometries. Due to this complexity, it is preferred to use Registration Methods (RMs) to produce the mesh of the domain to be simulated. The RMs are a family of strategies that “adapt” a predefined mesh (the atlas) to patient data in order to represent the target domain. A RM reallocates the nodes of the atlas without changing the topology of it. Unfortunately, the RMs don't consider element information; therefore it is possible to produce invalid and poor quality elements. This thesis proposes reparation methods to achieve validity and improve the quality of the elements in the mesh after registration. Results are presented for femur and face model. The most important limitation of RMs is that sometimes the focus of the simulation is given on a particular region. An example of this is the brain tumor resection surgery. In this case, a mesh with higher density of nodes is needed on the region between the opening skull point and the location of the tumor. It is on this region where the simulation must be more precise. Unfortunately an “atlas” mesh cannot be produced for each single case. Therefore a mesh generation technique with region refinement is also proposed on this thesis. Results are shown over neurosurgery
Mbinky, Estelle Carine. "Adaptation de maillages pour des schémas numériques d'ordre très élevé." Paris 6, 2013. http://www.theses.fr/2013PA066696.
Повний текст джерелаMesh adaptation is an iterative process which consists in changing locally the size and orientation of the mesh according the behavior of the studied physical solution. It generates the best mesh for a given problem and a fix number of degrees of freedom. Mesh adaptation methods have proven to be extremely effective in reducing significantly the mesh size for a given precision and reaching quickly an second-order asymptotic convergence for problems containing singularities when they are coupled to high order numerical methods. In metric-based mesh adaptation, two approaches have been proposed: Multi-scale methods based on a control of the interpolation error in Lp-norm and Goal oriented methods that control the approximation error of a functional through the use of the adjoint state. However, with the emergence of very high order numerical methods such as the discontinuous Galerkin method, it becomes necessary to take into account the order of the numerical scheme in mesh adaptation process. Mesh adaptation is even more crucial for such schemes as they converge to first-order in flow singularities. Therefore, the mesh refinement at the singularities of the solution must be as important as the order of the method is high. This thesis deals with the extension of the theoretical and numerical results getting in the case of mesh adaptation for piecewise linear solutions to high order piecewise polynomial solutions. These solutions are represented using kth-order Lagrangian finite elements (k ≥ 2). This thesis will focus on modeling the local interpolation error of order k ≥ 3 on a continuous mesh. However, for metric-based mesh adaptation methods, the error model must be a quadratic form, which shows an intrinsic metric space. Therefore, to be able to produce such an area, it is necessary to decompose the homogeneous polynomial and to approximate it by a quadratic form taken at power k. This modeling allows us to define a metric field necessary to communicate with the mesh generator. The decomposition method will be an extension of the diagonalization method to high order homogeneous polynomials. Indeed, in 2D and 3D, symmetric tensor decomposition methods such as Sylvester decomposition and its extension to high dimensions will allow us to decompose locally the error function, then, to deduce the quadratic error model. Then, this local error model is used to control the overall error in Lp-norm and the optimal mesh is obtained by minimizing this error. In this thesis, we seek to demonstrate the kth-order convergence of high order mesh adaptation method for analytic functions and numerical simulations using kth-order solvers (k ≥ 3)
Cioni, Jean-Pierre. "Résolution numérique des équations de Maxwell instationnaires par une méthode de volumes finis." Phd thesis, Université de Nice Sophia-Antipolis, 1995. http://tel.archives-ouvertes.fr/tel-00005612.
Повний текст джерелаMedjo, Eko Robert. "Compactage de l'argile Sainte-Rosalie, étude expérimentale dans un cadre élastoplastique et analyse numérique par la méthode des éléments finis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ48544.pdf.
Повний текст джерелаBasset, Olivier. "Simulation numérique d'écoulements multi-fluides sur grille de calcul." Phd thesis, École Nationale Supérieure des Mines de Paris, 2006. http://tel.archives-ouvertes.fr/tel-00376484.
Повний текст джерелаSadek, Marwan. "Étude numérique du comportement des micropieux sous chargement sismique : analyse de l'effet de groupe et de l'inclinaison." Lille 1, 2003. https://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/7282a248-7fb0-49d7-b650-6436f49e9dad.
Повний текст джерелаYoussef, Souhail. "Etude par tomographie X et modélisation par éléments finis du comportement mécanique des mousses solides." Lyon, INSA, 2004. http://theses.insa-lyon.fr/publication/2004ISAL0079/these.pdf.
Повний текст джерелаThe mechanical properties of cellular materials are related to their micro-structure. In fact, macroscopic stresses are the consequence of stresses in the cell wall and struts and of stresses in the cell walls and struts and of the cell failure mechanisms. In the present work we perform tomography during in situ compression tests on different type of foams to inspect the 3D-microstructure and deformation mechanisms. We also present a method to transform large data images of actual microstructures into a tetrahedral mesh, which will be used to model the mechanical behaviour by the finite element method. We finally confront computation results and in situ observations to validate the model. X-ray Computed Micro Tomography (XRCMT) has been widely used recently as a non-destructive technique that gives picture of the interior of cellular solids. This allows studying architectural parameters and, when coupled with in situ loading tests, deformation mechanisms of foams. Local deformation mechanisms of closed cell foam have been studied during compression experimentally by X-Ray tomography and numerically by FEM. The presence of elastic buckling and plastic yielding of foam walls was observed. The combination of effective e modelling tools gives attractive opportunities to build sufficiently large data model to represent the foam structure. Once the modelling technique was validated, we use it to study the effect of various bulk material properties for a same microstructure of the foam on the mechanical behaviour. The mechanical response of these foams was also studied numerically under various uniaxial loads configuration and multiaxial loading
Granet, Sylvie. "Modélisation et étude numérique des transferts en milieux fissurés." Bordeaux 1, 2000. http://www.theses.fr/2000BOR10520.
Повний текст джерелаPriou, Jean-Pascal. "Contribution à l'étude de la propagation acoustique en milieu non homogène dans les cavités et résonateurs de Helmholtz par la méthode des éléments finis." Poitiers CEAT, 1994. http://www.theses.fr/1994POIT2350.
Повний текст джерелаBen, Hassine Mohamed Rafik. "Étude asymptotique et numérique d’inclusions fines dans des domaines élastiques." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI086/document.
Повний текст джерелаThis work focused on mathematical modeling and numerical approximation of the influence of a very thin inclusion on an elastic substrate of different stiffness. The study is motivated by applications in tires and is not based on conventional homogenization techniques. Indeed, the objective was to treat the interaction between a single inclusion and its elastic medium and not a density of inclusions. The study consisted of three parts, the first concerning mathematical modeling for linear behavior laws leading to an expression of the contribution of the inclusion in the form of the inclusion-free field corrected by correctors at different orders. These correctors are independent of the characteristic size of the inclusion. The second relates to the numerical approximation of this influence by means of the finite element method and that of the inverted finite elements. A numerical strategy for taking into account the influence of several inclusions is also presented. The last part is prospective and discusses the possibility of extending the approach for nonlinear behavioral laws
Helluy, Philippe. "Résolution numérique des équations de Maxwell harmoniques par une méthode d'éléments finis discontinus." Phd thesis, Ecole nationale superieure de l'aeronautique et de l'espace, 1994. http://tel.archives-ouvertes.fr/tel-00657828.
Повний текст джерелаFol, Hugo. "Méthodes de type Galerkin discontinu pour la résolution numérique des équations de Maxwell 3D en régime harmonique." Nice, 2006. http://www.theses.fr/2006NICE4069.
Повний текст джерелаThe general objective of this study is the development and the evaluation of discontinuous Galerkin (DG) methods on unstructured tetrahedral meshes for the numerical resolution of the first order system of 3D Maxwell equations in the frequency domain. In the first part of this thesis, we formulate and analyze centred DG methods based on a P0 local approximation (i. E. Finite volumes or DG-P0 method) and a P1 local approximation (i. E. Linear discontinuous Galerkin or DG-P1 method). The second part is devoted to the design of domain decomposition methods for the solution of the algebraic systems associated to DG methods for the discretization of the time-harmonic Maxwell equations. We first consider the system of Maxwell equations in the continuous case and study the convergence of overlapping and non-overlapping Schwarz algorithms based on a first order (natural) interface condition that corresponds to a Dirichlet condition for characteristic variables associated to incoming waves. We then conduct a convergence analysis in the discrete case corresponding to the finite volume formulation (DG-P0 method) on a quadrilateral mesh. Finally, we study optimized interface conditions in order to accelerate the convergence of the non-overlapping Schwarz algorithm. Preliminary tests in 2D illustrate the performance gains resulting from the use of optimised interface conditions. The third part of the thesis is concerned with a numerical evaluation of the DG-P0 et DG-P1 formulations on tetrahedral meshes. We make use of a series of test cases of increasing complexity dealing with diffraction problems in homogeneous and heterogeneous media. We conduct a detailed analysis of the parallel performances of an overlapping Schwarz algorithm based on natural interface condition. We present results of numerical simulations involving several million unknowns
Mer, Katherine. "Modèles de viscosités du quatrième ordre pour l'advection-diffusion en maillage non-structuré." Nice, 1996. http://www.theses.fr/1996NICE5048.
Повний текст джерелаBouillard, Philippe. "Méthodes de contrôle de la qualité de solutions éléments finis: applications à l'acoustique." Doctoral thesis, Universite Libre de Bruxelles, 1997. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212096.
Повний текст джерелаAs in other application fields, error control is an important issue in acoustic computations. It is clear that the numerical parameters (mesh size h and degree of approximation p) must be adapted to the physical parameter k. The well known ‘rule of the thumb’ for the h version with linear elements is to resolve the wavelength lambda=2 pi k-1 by six elements characterising the approximability of the finite element mesh. If the numerical model is stable, the quality of the numerical solution is entirely controlled by the approximability of the finite element mesh. The situation is quite different in the presence of singularities. In that case, stability (or the lack thereof) is equally (sometimes more) important. In our application, the solutions are ‘rough’, i.e. highly oscillatory if the wavenumber is large. This is a singularity inherent to the differential operator rather than to the domain or the boundary conditions. This effect is called the k-singularity. Similarly, the discrete operator (“stiffness” matrix) becomes singular at eigenvalues of the discretised interior problem (or nearly singular at damped eigenvalues in solid-fluid interaction). This type of singularities is called the lambda-singularities. Both singularities are of global character. Without adaptive correction, their destabilizing effect generally leads to large error of the finite element results, even if the finite element mesh satisfies the ‘rule of the thumb’.
The k- and lambda-singularities are first extensively demonstrated by numerical examples. Then, two a posteriori error estimators are developed and the numerical tests show that, due to these specific phenomena of dynamo-acoustic computations, error control cannot, in general, be accomplished by just ‘transplanting’ methods that worked well in static computations. However, for low wavenumbers, it is necessary to also control the influence of the geometric (reentrants corners) or physical (discontinuities of the boundary conditions) singularities. An h-adaptive version with refinements has been implemented. These tools have been applied to two industrial examples :the GLT, a bi-mode bus from Bombardier Eurorail, and the Vertigo, a sport car from Gillet Automobiles.
As a conclusion, it is recommanded to replace the rule of the thumb by a criterion based on the control of the influence of the specific singularities of the Helmholtz operator. As this aim cannot be achieved by the a posteriori error estimators, it is suggested to minimize the influence of the singularities by modifying the formulation of the finite element method or by formulating a “meshless” method.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Fabre, Mathieu. "Méthodes de domaines fictifs pour les éléments finis, application à la mécanique des structures." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0057/document.
Повний текст джерелаThis thesis is dedicated to the study of the fictitious domain methods for the finite element methods. These methods, initially designed for the fluid-structure interaction, consist in immersing the real domain in a simply-shaped and a geometrically bigger domain called the fictitious domain. We apply these methods to a unilateral frictionless contact problem in small deformation of two deformable elastics bodies separated by an initial gap and satisfying boundary Dirichlet and Neumann conditions. The first two chapters are devoted to the introduction of these methods and to the unilateral contact problem. The chapter 3 is dedicated to a theoretical study for Dirichlet and contact boundary conditions taken into account with a Nitsche type method. Some theoretical results are presented: the consistency of the discrete method, existence and uniqueness results. To obtain an optimal a priori error estimate, a stabilized fictitious domain method is necessary. These results are numerically validated using Hertz contact in two and three dimensions. The chapter 4 is devoted to the study of a residual-based a posteriori error estimator, without the fictitious domain approach, between an elastic body and rigid obstacle. The numerical study of two tests cases will be performed: a rectangular domain with only a part of the potential zone of contact in effective contact as well as a Hertz contact in two and three dimensions. The chapter 5 is a generalization of the chapter 4 to the fictitious domain approach and the care of to two elastics bodies