Зміст
Добірка наукової літератури з теми "Analyse exploratoire de données multivariées"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Analyse exploratoire de données multivariées".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Analyse exploratoire de données multivariées"
Forest, Danielle, Christian Gouriéroux, and Lise Salvas-Bronsard. "D’une analyse de variabilités à un modèle d’investissement des firmes." L’économétrie des firmes et de la finance 73, no. 1-2-3 (February 9, 2009): 331–50. http://dx.doi.org/10.7202/602231ar.
Повний текст джерелаDelsart, Aline, and Emmanuèle Auriac-Slusarczyk. "Étude pragmatique de la relation médecin/patient à partir de données orales authentiques." SHS Web of Conferences 78 (2020): 01005. http://dx.doi.org/10.1051/shsconf/20207801005.
Повний текст джерелаProulx, Monique, Annie Couture, and Carol Gingras. "Étude exploratoire des effets du programme Parents efficaces." Revue des sciences de l'éducation 8, no. 1 (November 2, 2009): 79–90. http://dx.doi.org/10.7202/900358ar.
Повний текст джерелаBignami-Van Assche, Simona, and Visseho Adjiwanou. "Dynamiques familiales et activité sexuelle précoce au Canada." Articles 38, no. 1 (June 16, 2010): 41–69. http://dx.doi.org/10.7202/039988ar.
Повний текст джерелаPaindorge, Martine, Jacques Kerneis, and Valérie Fontanieu. "Analyse de données textuelles informatisée : l’articulation de trois méthodologies, avantages et limites." Nouvelles perspectives en sciences sociales 11, no. 1 (April 1, 2016): 65–92. http://dx.doi.org/10.7202/1035933ar.
Повний текст джерелаPaquette, Mario. "Une recherche exploratoire sur deux expériences de familles d’accueil de réadaptation." Service social 36, no. 1 (April 12, 2005): 148–59. http://dx.doi.org/10.7202/706346ar.
Повний текст джерелаDulude, Éliane, and Martial Dembélé. "Les enseignants et le renouveau collégial au Québec : analyse interactionniste de la construction et de la négociation du sens d’un changement de pratique prescrit." Éducation et francophonie 40, no. 1 (July 5, 2012): 160–75. http://dx.doi.org/10.7202/1010151ar.
Повний текст джерелаKozanitis, Anastassis, and Claude Quévillon Lacasse. "Étude exploratoire de l’utilisation des TICE en soutien aux pédagogies actives en contexte d’enseignement universitaire." Médiations et médiatisations 1, no. 1 (October 10, 2018): 50–71. http://dx.doi.org/10.52358/mm.v1i1.57.
Повний текст джерелаRobin, Monique. "Perception de l’espace résidentiel des mères de jeunes enfants : analyse textuelle du discours." Articles 16, no. 1 (January 6, 2004): 97–119. http://dx.doi.org/10.7202/007344ar.
Повний текст джерелаGoupil, Georgette, Michelle Comeau, and Pierre Michaud. "Étude descriptive et exploratoire sur les services offerts aux élèves en difficulté d’apprentissage." Articles 20, no. 4 (October 10, 2007): 645–56. http://dx.doi.org/10.7202/031760ar.
Повний текст джерелаДисертації з теми "Analyse exploratoire de données multivariées"
Verbanck, Marie. "Analyse exploratoire de données transcriptomiques : de leur visualisation à l'intégration d’information extérieure." Rennes, Agrocampus Ouest, 2013. http://www.theses.fr/2013NSARG011.
Повний текст джерелаWe propose new methodologies of exploratory statistics which are dedicated to the analysis of transcriptomic data (DNA microarray data). Transcriptomic data provide an image of the transcriptome which itself is the result of phenomena of activation or inhibition of gene expression. However, the image of the transcriptome is noisy. That is why, firstly we focus on the issue of transcriptomic data denoising, in a visualisation framework. To do so, we propose a regularised version of principal component analysis. This regularised version allows to better estimate and visualise the underlying signal of noisy data. In addition, we can wonder if the knowledge of only the transcriptome is enough to understand the complexity of relationships between genes. That is why we propose to integrate other sources of information about genes, and in an active way, in the analysis of transcriptomic data. Two major mechanisms seem to be involved in the regulation of gene expression, regulatory proteins (for instance transcription factors) and regulatory networks on the one hand, chromosomal localisation and genome architecture on the other hand. Firstly, we focus on the regulation of gene expression by regulatory proteins; we propose a gene clustering algorithm based on the integration of functional knowledge about genes, which is provided by Gene Ontology annotations. This algorithm provides clusters constituted by genes which have both similar expression profiles and similar functional annotations. The clusters thus constituted are then better candidates for interpretation. Secondly, we propose to link the study of transcriptomic data to chromosomal localisation in a methodology developed in collaboration with geneticists
Béranger, Boris. "Modélisation de la structure de dépendance d'extrêmes multivariés et spatiaux." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066004/document.
Повний текст джерелаProjection of future extreme events is a major issue in a large number of areas including the environment and risk management. Although univariate extreme value theory is well understood, there is an increase in complexity when trying to understand the joint extreme behavior between two or more variables. Particular interest is given to events that are spatial by nature and which define the context of infinite dimensions. Under the assumption that events correspond marginally to univariate extremes, the main focus is then on the dependence structure that links them. First, we provide a review of parametric dependence models in the multivariate framework and illustrate different estimation strategies. The spatial extension of multivariate extremes is introduced through max-stable processes. We derive the finite-dimensional distribution of the widely used Brown-Resnick model which permits inference via full and composite likelihood methods. We then use Skew-symmetric distributions to develop a spectral representation of a wider max-stable model: the extremal Skew-t model from which most models available in the literature can be recovered. This model has the nice advantages of exhibiting skewness and nonstationarity, two properties often held by environmental spatial events. The latter enables a larger spectrum of dependence structures. Indicators of extremal dependence can be calculated using its finite-dimensional distribution. Finally, we introduce a kernel based non-parametric estimation procedure for univariate and multivariate tail density and apply it for model selection. Our method is illustrated by the example of selection of physical climate models
Lazar, Cosmin. "Méthodes non supervisées pour l’analyse des données multivariées." Reims, 2008. http://theses.univ-reims.fr/exl-doc/GED00000846.pdf.
Повний текст джерелаMany scientific disciplines deal with multivariate data. Different recordings of the same phenomenon are usually embedded in a multivariate data set. Multivariate data analysis gathers efficient tools for extracting relevant information in order to comprehend the phenomenon in study. Gathering data into groups or classes according to some similarity criteria is an essential step in the analysis. Intrinsic dimension or dimension reduction of multivariate data, the choice of the similarity criterion, cluster validation are problems which still let open questions. This work tries to make a step further concerning two of the problems mentioned above: the choice of the similarity measure for data clustering and the dimension reduction of multivariate data. The choice of the similarity measure for data clustering is investigated from the concentration phenomenon of metrics point of view. Non Euclidean metrics are tested as alternative to the classical Euclidian distance as similarity measure. We tested if less concentrated metrics are more discriminative for multivariate data clustering. We also proposed indices which take into account the inter-classes distance (e. G. Davies-Bouldin index) in order to find the optimal metric when the classes are supposed to be Gaussian. Blind Source Separation (BSS) methods are also investigated for dimension reduction of multivariate data. A BSS method based on a geometrical interpretation of the linear mixing model is proposed. BSS methods which take into account application constraints are used for dimension reduction in two different applications of multivariate imaging. These methods allow the extraction of meaningful factors from the whole data set; they also allow reducing the complexity and the computing time of the clustering algorithms which are used further in analysis. Applications on multivariate image analysis are also presented
Mnassri, Baligh. "Analyse de données multivariées et surveillance des processus industriels par analyse en composantes principales." Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00749282.
Повний текст джерелаDans l'objectif d'un choix optimal du modèle ACP, une étude comparative de quelques critères connus dans la littérature nous a permis de conclure que le problème rencontré est souvent lié à une ignorance des variables indépendantes et quasi-indépendantes. Dans ce cadre, nous avons réalisé deux démonstrations mettant en évidence les limitations de deux critères en particulier la variance non reconstruite (VNR). En s'appuyant sur le principe d'une telle variance, nous avons proposé trois nouveaux critères. Parmi eux, deux ont été considérés comme étant empiriques car seule l'expérience permettra de prouver leur efficacité. Le troisième critère noté VNRVI représente un remède à la limitation du critère VNR. Une étude de sa consistance théorique a permis d'établir les conditions garantissant l'optimalité de son choix. Les résultats de simulation ont validé une telle théorie en prouvant ainsi que le critère VNRVI étant plus efficace que ceux étudiés dans cette thèse.
Dans le cadre d'un diagnostic de défauts par ACP, l'approche de reconstruction des indices de détection ainsi que celle des contributions ont été utilisées. A travers une étude de généralisation, nous avons étendu le concept d'isolabilité de défauts par reconstruction à tout indice quadratique. Une telle généralisation nous a permis d'élaborer une analyse théorique d'isolabilité de défauts par reconstruction de la distance combinée versus celles des indices SPE et T2 de Hotelling en mettant en avant l'avantage de l'utilisation d'une telle distance. D'autre part, nous avons proposé une nouvelle méthode de contribution par décomposition partielle de l'indice SPE. Cette approche garantit un diagnostic correct de défauts simples ayant de grandes amplitudes. Nous avons également étendu une méthode de contribution classiquement connue par la RBC au cas multidimensionnel. Ainsi, la nouvelle forme garantit un diagnostic correct de défauts multiples de grandes amplitudes. En considérant la complexité de défauts, nous avons exploité la nouvelle approche de contribution RBC afin de proposer une nouvelle qui s'appelle RBCr. Cette dernière s'appuie sur un seuil de tolérance pour l'isolation de défauts. Une analyse de diagnosticabilité basée sur la RBCr montre que celle-ci garantit l'identification des défauts détectables. Ces derniers sont garantis isolables si leurs amplitudes satisfont les mêmes conditions d'isolabilité établies pour l'approche de reconstruction des indices.
Pialot, Daniel Paul Marc. "Analyse des données de milieu en hydrobiologie : apport des techniques d'analyse multivariées." Lyon 1, 1985. http://www.theses.fr/1985LYO11680.
Повний текст джерелаLe, Floch Edith. "Méthodes multivariées pour l'analyse jointe de données de neuroimagerie et de génétique." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00753829.
Повний текст джерелаLe, floch Edith. "Méthodes multivariées pour l'analyse jointe de données de neuroimagerie et de génétique." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112214/document.
Повний текст джерелаBrain imaging is increasingly recognised as an interesting intermediate phenotype to understand the complex path between genetics and behavioural or clinical phenotypes. In this context, a first goal is to propose methods to identify the part of genetic variability that explains some neuroimaging variability. Classical univariate approaches often ignore the potential joint effects that may exist between genes or the potential covariations between brain regions. Our first contribution is to improve the sensitivity of the univariate approach by taking advantage of the multivariate nature of the genetic data in a local way. Indeed, we adapt cluster-inference techniques from neuroimaging to Single Nucleotide Polymorphism (SNP) data, by looking for 1D clusters of adjacent SNPs associated with the same imaging phenotype. Then, we push further the concept of clusters and we combined voxel clusters and SNP clusters, by using a simple 4D cluster test that detects conjointly brain and genome regions with high associations. We obtain promising preliminary results on both simulated and real datasets .Our second contribution is to investigate exploratory multivariate methods to increase the detection power of imaging genetics studies, by accounting for the potential multivariate nature of the associations, at a longer range, on both the imaging and the genetics sides. Recently, Partial Least Squares (PLS) regression or Canonical Correlation Analysis (CCA) have been proposed to analyse genetic and transcriptomic data. Here, we propose to transpose this idea to the genetics vs. imaging context. Moreover, we investigate the use of different strategies of regularisation and dimension reduction techniques combined with PLS or CCA, to face the overfitting issues due to the very high dimensionality of the data. We propose a comparison study of the different strategies on both a simulated dataset and a real fMRI and SNP dataset. Univariate selection appears to be necessary to reduce the dimensionality. However, the generalisable and significant association uncovered on the real dataset by the two-step approach combining univariate filtering and L1-regularised PLS suggests that discovering meaningful imaging genetics associations calls for a multivariate approach
Rigouste, Loïs. "Méthodes probabilistes pour l'analyse exploratoire de données textuelles." Phd thesis, Télécom ParisTech, 2006. http://pastel.archives-ouvertes.fr/pastel-00002424.
Повний текст джерелаBry, Xavier. "Une méthodologie exploratoire pour l'analyse et la synthèse d'un modèle explicatif : l'Analyse en Composantes Thématiques." Paris 9, 2004. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2004PA090055.
Повний текст джерелаGhalamallah, Ilhème. "Proposition d'un modèle d'analyse exploratoire multidimensionnelle dans un contexte d'intelligence économique." Toulouse 3, 2009. http://www.theses.fr/2009TOU30293.
Повний текст джерелаA successful business is often conditioned by its ability to identify, collect, process and disseminate information for strategic purposes. Moreover, information technology and knowledge provide constraints that companies must adapt : a continuous stream, a circulation much faster techniques increasingly complex. The risk of being swamped by this information and no longer able to distinguish the essential from the trivial. Indeed, with the advent of new economy dominated by the market, the problem of industrial and commercial enterprise is become very complex. Now, to be competitive, the company must know how to manage their intangible capital. Competitive Intelligence (CI) is a response to the upheavals of the overall business environment and more broadly to any organization. In an economy where everything moves faster and more complex, management Strategic Information has become a key driver of overall business performance. CI is a process and an organizational process that can be more competitive, by monitoring its environment and its dynamics. In this context, we found that much information has strategic significance to the relationship: links between actors in the field, semantic networks, alliances, mergers, acquisitions, collaborations, co-occurrences of all kinds. Our work consists in proposing a model of multivariate analysis dedicated to the IE. This approach is based on the extraction of knowledge by analyzing the evolution of relational databases. We offer a model for understanding the activity of actors in a given field, but also their interactions their development and strategy, this decision in perspective. This approach is based on the designing a system of generic information online analysis to homogenize and organize text data in relational form, and thence to extract implicit knowledge of the content and formatting are adapted to non-specialist decision makers in the field of knowledge extraction