Дисертації з теми "Analyse de stabilite de Lyapunov"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Analyse de stabilite de Lyapunov".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Cherifi, Abdelmadjid. "Contribution à la commande des modèles Takagi-Sugeno : approche non-quadratique et synthèse D -stable." Thesis, Reims, 2017. http://www.theses.fr/2017REIMS016/document.
Повний текст джерелаThis work deals with the stability analysis and the stabilisation of nonlinear systems represented by T-S models.The goal is to reduce the conservatism of the stability conditions, obtained through the direct Lyapunov methodand written, when it is possible, as LMIs. In this framework, two main contributions has been proposed. First ofall, we have proposed some new conditions based on FLICs, strictly LMIs and without any order restrictions, forthe non-quadratic design of control laws devoted to stabilize T-S models. Indeed, in this non-quadratic context,the existing works are only available for 2nd order T-S models. In order to unlock this restriction, the proposed conditions have been obtained based on the proof of a dual property. Then, starting from the fact that few worksdeals with the closed-loop performances specification, some new LMI conditions (quadratic and non-quadratic)have been proposed via the D-stability concept. As a first step, D-stabilizing PDC and non-PDC controller designhas been considered for nominal T-S models. Then, these results have been extended to uncertain T-S models.Moreover, it has been highlighted, from an example of the attitude D-stabilization of a quadrotor model, that wecan make use of uncertain T-S models to cope with nonlinear models involving nonlinearities depending on bothstate and input variables
Maisonneuve, Vivien. "Analyse statique des systèmes de contrôle-commande : invariants entiers et flottants." Thesis, Paris, ENMP, 2015. http://www.theses.fr/2015ENMP0007/document.
Повний текст джерелаA critical software is a software whose malfunction may result in death or serious injury to people, loss or severe damage to equipment or environmental harm.Software engineering for critical systems is particularly difficult, and combines different methods to ensure the quality of produced software.Among them, formal methods can be used to prove that a software obeys its specifications.This thesis falls within the context of the validation of safety properties for critical software, and more specifically, of numerical properties for embedded software in control-command systems.The first part of this thesis deals with Lyapunov stability proofs.These proofs rely on computations with real numbers, and do not accurately describe the behavior of a program run on a platform with machine arithmetic.We introduce a generic, theoretical framework to adapt the arguments of Lyapunov stability proofs to machine arithmetic.A tool automatically translates the proof on real numbers to a proof with floating-point numbers.The second part of the thesis focuses on linear relation analysis, using an abstract interpretation based on the approximation by convex polyhedrons of valuations associated with each control point in a program.We present ALICe, a framework to compare different invariant generation techniques.It comes with a collection of test cases taken from the program analysis literature, and interfaces with three tools, that rely on different algorithms to compute invariants: Aspic, iscc and PIPS.To refine PIPS results, two code restructuring techniques are introduced, and several improvements are made to the invariant generation algorithms and evaluated using ALICe
Saoud, Hassan. "Étude des problèmes unilatéraux : analyse de récession, stabilité de Lyapunov et applications en électronique et en mécanique." Limoges, 2009. https://aurore.unilim.fr/theses/nxfile/default/16c02618-5623-40cd-8ebc-268f07ec922b/blobholder:0/2009LIMO4013.pdf.
Повний текст джерелаIn this thesis, we study the unilaterals problems and their applications. It is divided in two parts. The first part is dedicated to the study of the linear semi-coercive variational inequalities. The aim is to give necessary and sufficient conditions for the stability of the problem with respect to data perturbation. For that, we try to characterize the topological interior of the resolvent set associated to the problem. These theoretical results are proved by using of the recession analysis. Some applications of the abstract results in mechanics and in electronic circuits involving devices like ideal diode and practical diode are discussed. The second part concerns the study of the Lyapunov stability for the variational (VEI) and hémivariational (HEI) evolution inequalities. First, we recall some results of stability of (VEI) using Lyapunov’s functions and La Salle’s invariance principle. Moreover, we give two sufficient conditions and a necessary condition to establish the finite-time stability (F. T. S. ) of the equilibrium of (VEI). These results are also applied to the complementarity problem. Second, we study the Lyapunov stability of (HEI). We give an extension of the La Salle principle invariance as well as a study of the F. T. S. . In both cases considered, the results found use Lyapunov’s functions of class C1. Finally, we study the stability of Euler-Lagrange’s systems subjected to a dry friction. The result found is applied to a mechanical problem
Peaucelle, Dimitri. "Formulation générique de problèmes en analyse et commande robuste par les fonctions de Lyapunov dependant des paramètres." Phd thesis, Université Paul Sabatier - Toulouse III, 2000. http://tel.archives-ouvertes.fr/tel-00131516.
Повний текст джерелаTaousser, Fatima Zohra. "Analyse de stabilité des systèmes à commutations sur un domaine de temps non-uniforme." Thesis, Valenciennes, 2015. http://www.theses.fr/2015VALE0038/document.
Повний текст джерелаThis thesis deals with the stability analysis of switched systems that evolve on non uniform time domain by introducing the time scale theory. We are interested mainly in dynamical linear switched systems defined on particular time scale T = P{tσk ,tk+1} = ∪∞k=0[tσk, tk+1]. The studied system switches between a continuous-time dynamical subsystem on the intervals ∪∞k=0[tσk, tk+1[ and a discrete-time dynamical subsystem on instants ∪∞k=0{tk+1} (a discrete time) with a time-varying discrete step. In a first part, sufficient conditions are given to guarantee the exponential stability of this class of switched systems. Then necessary and sufficient conditions for stability are given by determining a region of exponential stability. In the second part, the stability of this class of switched systems with nonlinear uncertainties, is treated using majoration of the solution, and after that by introducing the approach of a common Lyapunov function. The third part is devoted to the consensus problem under intermittent information transmissions where the closed-loop multi-agent system can be represented as a switched system using a combination of linear continuous-time and linear discrete-time systems
Robbé, Mickaël. "Calcul de sous-espaces invariants d'opérateurs elliptiques : Analyse de la stabilité discrète au sens de Lyapunov de matrices de grande taille." Brest, 2000. http://www.theses.fr/2000BRES2003.
Повний текст джерелаDrissi, Zellaji Mourad. "Méthodes d’agrégation et méthode des familles : analyse théorique et numérique pour des systèmes de réactions-diffusion associés à certains modèles aéronomiques." Besançon, 1994. http://www.theses.fr/1994BESA2065.
Повний текст джерелаStathas, Alexandros. "Numerical modeling of earthquake faults." Thesis, Ecole centrale de Nantes, 2021. http://www.theses.fr/2021ECDN0053.
Повний текст джерелаDuring coseismic slip, the energy released by the elastic unloading of the adjacent earth blocks can be separated in three main parts: The energy that is radiated to the earth’s surface (_ 5% of the whole energy budget), the fracture energy for the creation of new fault surfaces and finally, the energy dissipated inside a region of the fault, with finite thickness, which is called the fault gauge. This region accumulates the majority of the seismic slip. Estimating correctly the width of the fault gauge is of paramount importance in calculating the energy dissipated during the earthquake, the fault’s frictional response, and the conditions for nucleation of the fault in the form of seismic or aseismic slip.In this thesis different regularization approaches were explored for the estimation of the localization width of the fault’s principal slip zone during coseismic slip. These include the application of viscosity and multiphysical couplings in the classical Cauchy continuum, and the introduction of a first order micromorphic Cosserat continuum. First, we focus on the role of viscous regularization in the context of dynamical analyses, as a method for regularizing strain localization. We study the dynamic case for a strain softening strain-rate hardening classical Cauchy continuum, and by applying the Lyapunov stability analysis we show that introduction of viscosity is unable to prevent strain localization on a mathematical plane and mesh dependence.We perform fully non linear analyses using the Cosserat continuum under large seismic slip displacements of the fault gouge in comparison to its width. Cosserat continuum provides us with a proper account of the energy dissipated during an earthquake and the role of the microstructure in the evolution of the fault’s friction. We focus on the influence of the seismic slip velocity to the weakening mechanism of thermal pressurization. We notice that the influence of the boundary conditions in the diffusion of the pore fluid inside the fault gouge, leads to frictional strength regain after initial weakening. Furthermore, a traveling strain localization mode is present during shearing of the layer introducing oscillations in the frictional response. Such oscillations increase the spectral content of the earthquake. Introduction of viscosity in the above mode, leads to a rate and state behavior without the introduction of a specific internal state variable. Our conclusions about the role of thermal pressurization during shearing of the fault gouge, agree qualitatively with newly available experimental results.Finally, based on the numerical findings we investigate the assumptions of the current model of a slip on a mathematical plane, in particular the role of the boundary conditions and strain localization mode in the evolution of the fault’s friction during coseismic slip. The case of a bounded domain and a traveling strain localization mode are examined in the context of slip on a mathematical plane under thermal pressurization. Our results expand the original model in a more general context
Cavichioli, Gonzaga Carlos Alberto. "Analyse de stabilité et de performance d'une classe de systèmes non-linéaires à commutations en temps discret." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0086/document.
Повний текст джерелаIn this PhD thesis, several problems of stability analysis and control design of discrete-time switched nonlinear systems are addressed. As main contribution, a new class of Lyapunov functions which takes the nonlinearity into account has been proposed. We show that these functions are suitable to solve the classical stability analysis problem of linear systems connected to a cone bounded nonlinearity. Instead of the original Lyapunov Lur'e function, the assumptions about the nonlinearity variation are not required. Furthermore, the local stability analysis and control synthesis problems of Lur'e systems subject to control saturation are tackled by considering the level set of our function as an estimate of the basin of attraction. We expose that this estimate, which is given by non-convex and disconnected sets, is less conservative than ellipsoidal sets. We extend these results in order to deal with the problems of stability analysis and stabilization of discrete-time switched nonlinear systems. On one hand, we consider the case of arbitrary switching such that our sufficient conditions assure the properties of stability for all possible switching rules. In this framework, we highlight that our function is able to provide a suitable estimate of the basin of attraction. On the other hand, we tackle the problem of switching rule design aiming at the stabilization of discrete-time switched systems with nonlinear modes. We propose a switching strategy depending on the minimum of our switched Lyapunov Lur'e function. Hence, our framework leads to state space partitions, related to the mode activation, which are not restricted to conic sets, commonly exhibited by the switched quadratic functions approaches
Mostefaoui, Imene Meriem. "Analyse mathématique d’un système dynamique/réaction-diffusion modélisant la distribution des bactéries résistantes aux antibiotiques dans les rivières." Thesis, La Rochelle, 2014. http://www.theses.fr/2014LAROS020/document.
Повний текст джерелаThe objective of this thesis is the qualitative study of some models of the dynamic and the distribution of bacteria in a river. We are interested in the stability of equilibria and the existence of periodic solutions. The thesis can be divided into two parts; the first part is concerned with a mathematical analysis of a system of differential equations modelling the dynamics and the interactions of four species of bacteria in a river. The asymptotic behavior of equilibria is established. The stability study of equilibrium states is mainly done by construction of Lyapunov functions combined with LaSalle's invariance principle. On the other hand, the existence of periodic solutions is proved under certain conditions using the continuation theorem of Mawhin. In the second part of this thesis, we propose a non-autonomous convection-reaction diffusion system with nonlinear reaction source functions. This model refers to the quantification and the distribution of antibiotic resistant bacteria (ARB) in a river. Our main contributions are : (i) the determination of the limit set of the system; it is shown that it is reduced to the solutions of the associated elliptic system; (ii) sufficient conditions for the existence of a positive solution of the associated elliptic system based on the Leray Schauder's degree theory
Valmorbida, Giorgio. "Analyse en stabilité et synthèse de lois de commande pour des systèmes polynomiaux saturants." Phd thesis, INSA de Toulouse, 2010. http://tel.archives-ouvertes.fr/tel-00512335.
Повний текст джерелаBen, Salah Jaâfar. "Analyse et commande des systèmes non linéaires complexes : application aux systèmes dynamiques à commutation." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00599364.
Повний текст джерелаAmeur, Omar. "Commande et stabilité des systèmes commutés : Application Fluid Power." Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0032/document.
Повний текст джерелаThis work focuses on the control and stability analysis of an electro-pneumatic system, i.e. a linear pneumatic cylinder controlled by two servo valves regulating the mass flow entering each chamber of the actuator. The general problem is motivated by the appearance of stick-slip on the electro-pneumatic system, hardly taken into account by the current studies in automatic control. This problem, encountered throughout the years, concerns all mono- and multidimensional linear and non-linear controls systems studied at the laboratory. In pneumatic cylinders, the phenomenon consists in a displacement of the rod a while after it has come to a rest ; this is due to the fact that the force acting on the rod initially becomes smaller that the threshold which is necessary for a motion, and then this threshold is overcome later on. In this case, stick-slip is caused by the presence of dry friction and by the pressure dynamics in the chambers, which continue to evolve (integrating the net incoming mass flow from the servovalves) even after the rod has stopped. The first part of this thesis proposes a nonlinear switching control law in order to avoid stick-slip on pneumatic cylinder, taking into account with the variations of dry friction that may occur at any time causing this phenomenon. This technique is implemented and its effectiveness is recognized. The greatest part of this thesis deals with the stability analysis of the pneumatic cylinder with its switched control law. The presence of dry friction and the application of a switched control law requires an appropriate method for approaching the stability analysis ; this method is based on considering the closed-loop system as belonging to a class of switched systems called piecewise affine systems (PWA). The main difficulty in this approach lies in obtaining adequate Lyapunov functions for proving stability, which turns into an optimization problem under LMI constraints (Linear Matrix Inequality) using the S-procedure. In order to analyze the stability of a PWA system, a first method is proposed allowing the computation of a piecewise quadratic Lyapunov function through an optimization problem under LMI constraints. The methods takes into account, in contrast to conventional methods, that the states might converge not to a single point but to a set of equilibrium points. The proposed approach allows also the study of robustness with respect to parametric variations in the system. A second method is also proposed for the construction of a type of Lyapunov functions called piecewise polynomial, using the “sum of squares” and “power transformation” techniques. This approach proposes less conservative sufficient conditions than those imposed by the piecewise quadratic Lyapunov functions, yielding a more succesfull stability test when for PWA systems featuring sliding modes and parametric variations. In fact, on PWA systems with discontinuous dynamics (which can generate sliding phenomena), piecewise quadratic Lyapunov functions might prove ineffective to prove the stability. Therefore, the results on piecewise quadratic Lyapunov functions are extended in order to compute piecewise polynomial Lyapunov functions of higher order, by solving an optimization problem under LMI constraints. These functions are more general and allow less conservative conditions compared to those formerly developed in the literature. Both of these methods have been applied to the stability analysis of the set of equilibrium points of the pneumatic cylinder, considering first a friction model in saturation form and then a model in relay form with a discontinuous dynamics. The application of the methods is successful, i.e. the robust stability is proven under dry friction threshold variations, with possibility of sliding modes
Cavichioli, Gonzaga Carlos. "Analyse de stabilité et de performances d'une classe de systèmes non-linéaires à commutations en temps discret." Phd thesis, Université de Lorraine, 2012. http://tel.archives-ouvertes.fr/tel-00762873.
Повний текст джерелаAberkane, Samir. "Systèmes tolérant aux défauts : analyse et synthèse stochastiques." Phd thesis, Université Henri Poincaré - Nancy I, 2006. http://tel.archives-ouvertes.fr/tel-00151379.
Повний текст джерелаFeltekh, Kais. "Analyse spectrale des signaux chaotiques." Phd thesis, INSA de Toulouse, 2014. http://tel.archives-ouvertes.fr/tel-01071919.
Повний текст джерелаDjema, Walid. "Understanding cell dynamics in cancer from control and mathematical biology standpoints : particular insights into the modeling and analysis aspects in hematopoietic systems and leukemia." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS470.
Повний текст джерелаMedical research is looking for new combined targeted therapies against cancer. Our research project -which involves intensive collaboration with hematologists from Saint-Antoine Hospital in Paris- is imbued within a similar spirit and fits the expectations of a better understanding of the behavior of blood cell dynamics. In fact, hematopoiesis provides a paradigm for studying all the mammalian stem cells, as well as all the mechanisms involved in the cell cycle. We address multiple issues related to the modeling and analysis of the cell cycle, with particular insights into the hematopoietic systems. Stability features of the models are highlighted, since systems trajectories reflect the most prominent healthy or unhealthy behaviors of the biological process under study. We indeed perform stability analysis of systems describing healthy and unhealthy situations, with a particular interest in the case of acute myeloblastic leukemia (AML). Thus, we pursue the objectives of understanding the interactions between the various parameters and functions involved in the mechanisms of interest. For that purpose, an advanced stability analysis of the cell fate evolution in treated or untreated leukemia is performed in several modeling frameworks, and our study suggests new anti-leukemic combined chemotherapy. Throughout the thesis, we cover many biological evidences that are currently undergoing intensive biological research, such as: cell plasticity, mutations accumulation, cohabitation between ordinary and mutated cells, control or eradication of cancer cells, cancer dormancy, etc.Among the contributions of Part I of the thesis, we can mention the extension of both modeling and analysis aspects in order to take into account a proliferating phase in which most of the cells may divide, or die, while few of them may be arrested during their cycle for unlimited time. We also introduce for the first time cell-plasticity features to the class of systems that we are focusing on.Next, in Part II, stability analyses of some differential-difference cell population models are performed through several time-domain techniques, including tools of Comparative and Positive Systems approaches. Then, a new age-structured model describing the coexistence between cancer and ordinary stem cells is introduced. This model is transformed into a nonlinear time-delay system that describes the dynamics of healthy cells, coupled to a nonlinear differential-difference system governing the dynamics of unhealthy cells. The main features of the coupled system are highlighted and an advanced stability analysis of several coexisting steady states is performed through a Lyapunov-like approach for descriptor-type systems. We pursue an analysis that provides a theoretical treatment framework following different medical orientations, among which: i) the case where therapy aims to eradicate cancer cells while preserving healthy ones, and ii) a less demanding, more realistic, scenario that consists in maintaining healthy and unhealthy cells in a controlled stable dormancy steady-state. Mainly, sufficient conditions for the regional exponential stability, estimate of the decay rate of the solutions, and subsets of the basins of attraction of the steady states of interest are provided. Biological interpretations and therapeutic strategies in light of emerging AML-drugs are discussed according to our findings.Finally, in Part III, an original formulation of what can be interpreted as a stabilization issue of population cell dynamics through artificial intelligence planning tools is provided. In that framework, an optimal solution is discovered via planning and scheduling algorithms. For unhealthy hematopoiesis, we address the treatment issue through multiple drug infusions. In that case, we determine the best therapeutic strategy that restores normal blood count as in an ordinary hematopoietic system
Alvarez, Jarquin Nohemi. "Consensus variant dans le temps : application à la formation de véhicles." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112092/document.
Повний текст джерелаThe multiple applications related to networked multi-agent systems such as satellite formation flying, coupled oscillators, air traffic control, unmanned air vehicles, cooperative transport, among others, has been undoubtedly a watershed for the development of this thesis. The study of cooperative control of multi-agent systems is of great interest for his extensive field work and applications. This thesis is devoted to the study of consensus seeking of multi-agents systems and trajectory tracking of nonholonomic mobile robots.In the context of consensus seeking, first we study a ring topology of dynamic agents with time-dependent communication links which may disconnect for long intervals of time. Simple checkable conditions are obtained by using small-gain theorem to guarantee the achievement of consensus. Then, we deal with a network of dynamic agents with time-dependent communication links interconnected over a time-varying topology. We establish that consensus is reached provided that there always exists a « spanning-tree » for a minimal dwell-time by using stability theory of time-varying and switched systems. In the context of trajectory tracking, we investigate a simple leader-follower tracking controller for autonomous vehicles following straight lines. We show that global tracking may be achieved by a controller which has a property of persistency of excitation tailored for nonlinear systems. Roughly speaking the stabilisation mechanism relies on exciting the system by an amount that is proportional to the tracking error. Moreover, the method is used to solve the problem of formation tracking of multiple vehicles interconnected on the basis of a « spanning-tree » topology. We derive stability conditions for the kinematic and dynamic model by using a Lyapunov approach
Yeganefar, Nima. "Définitions et analyse de stabilités pour les systèmes à retard non linéaires." Phd thesis, Ecole Centrale de Lille, 2006. http://tel.archives-ouvertes.fr/tel-00136239.
Повний текст джерелаBENSOUBAYA, MOHAMED Sallet Gauthier. "SUR LA STABILITE ET LA STABILISATION DES SYSTEMES NON LINEAIRES DISCRETS /." [S.l.] : [s.n.], 1997. ftp://ftp.scd.univ-metz.fr/pub/Theses/1997/Bensoubaya.Mohamed.SMZ9740.pdf.
Повний текст джерелаTsanou, Berge. "Etude de quelques modèles épidémiologiques de métapopulations : application au paludisme et à la tuberculose." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0055/document.
Повний текст джерелаThe objective of this thesis is first the modeling, the mathematical analysis and numerical simulations of the metapopulation models of infectious diseases based on some modern approaches of the mobility patterns of humans. Secondly to examine the influence of the mobility (movement) of people on the spread of some human infectious diseases. Finally to deal with the difficult question of the existence and stability of endemic equilibria of metapopulation models. For certain diseases such as Malaria, Tuberculosis or some Sexually Transmitted Diseases that do not confer any immunity, we give some metapopulation models that extend to multiple patches the well know epidemiological models in one patch. Our models are based on the mobility patterns of humans wich can take different forms leading to numerous approaches of modeling metapopulations : the Euler approach of the movement of particles (here humans) as in Fluid Mechanics, is used in the first part. The Lagrange approach of the movement of particles (here humans) as in Fluid Mechanics, is used in the second part. The last and more recent approach based on Statistical Mechanics, wich takes into account the degree distribution of the network of the metapopulation is used in the third and last part of this work. For each approach, we build a metapopulation model for a chosen disease, and gve its mathematical analysis. The theoretical framework we use to analyze ou models is that of triangular, monotone or anti-monotone non-linear dynamical systems. We also use some Lyapunov-Lasalle techniques. In the fisrt two parts of our work, we prove that the steady solutions (called equilibria) of the given systems are globally asymptotically stable when the basic reproduction number R0 is less than or equal to the unity (for the disease free equilibria), and when R0 is greater than one (for the endemic equilibria). In the last part, we build a model to describe the spreading of tuberculosis hinging on the two most used forces of infection in mathematical modeling of epidemics : the frequency-dependant transmission and the density-dependant transmission. For each type of trasmission model, we give the explicit formula for the basic reproduction number. We prove for the frequency-dependant transmission model, that the disease free equilibrium is globally asymptotically stable when R0 is less than one. And for the density-dependant transmission model, we prove the existence of an endemic equilibrium when R0 is greater than one. Numerical simulations are performed at the end of each part to examine the influence of human's mobility on the basic reproduction number, as well as on the behavior of the solutions and consequently on the spreading patterns of the diseases under study
Sun, Yuming. "Energy efficient stability control of a biped based on the concept of Lyapunov exponents." Springer, 2011. http://hdl.handle.net/1993/23264.
Повний текст джерелаLamare, Pierre-Olivier. "Contrôle de systèmes hyperboliques par analyse Lyapunov." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAM062/document.
Повний текст джерелаIn this thesis we have considered different aspects for the control of hyperbolic systems.First, we have studied switched hyperbolic systems. They contain an interaction between a continuous and a discrete dynamics. Thus, the continuous dynamics may evolve in different modes: these modes are imposed by the discrete dynamics. The change in the mode may be controlled (in case of a closed-loop system), or may be uncontrolled (in case of an open-loop system). We have focused our interest on the former case. We procedeed with a Lyapunov analysis, and construct three switching rules. We have shown how to modify them to get robustness and ISS properties. We have shown their effectiveness with numerical tests.Then, we have considered the trajectory generation problem for 2x2 linear hyperbolic systems. We have solved it with backstepping. Then, we have considered the tracking problem with a Proportionnal-Integral controller. We have shown that it stabilizes the error system around the reference trajectory with a new non-diagonal Lyapunov function. The integral action has been shown to be able to reject in-domain, as well as boundary disturbances.Finally, we have considered numerical aspects for the Lyapunov analysis. The conditions for the stability and design of controllers by quadratic Lyapunov functions involve an infinity of matrix inequalities. We have shown how to reduce this complexity by polytopic embeddings of the constraints.Many obtained results have been illustrated by academic examples and physically relevant dynamical systems (as Shallow-Water equations and Aw-Rascle-Zhang equations)
Saramito, Bernard. "Analyse mathematique et numerique de la stabilite d'un plasma." Paris 6, 1987. http://www.theses.fr/1987PA066615.
Повний текст джерелаDauphin, Gabriel. "Application des représentations diffusives à temps discret." Phd thesis, Télécom ParisTech, 2001. http://tel.archives-ouvertes.fr/tel-00005780.
Повний текст джерелаLe première partie consiste en la mise en place des représentations diffusives à temps discret. Certains filtres non-relationnels, notamment les différences frationnaires, sont une agrégation continue de dynamiques purement amorties. Les représentations diffusives s'appliquent à toutes les discrétisations de l'intégration fractionnaire y compris celles pour lesquelles la fonction de transfert n'est pas connue analytiquement. Les filtres diffusifs peuvent être réalisés par un système de dimension infinie. Cette structure est un cadre adapté à l'approximation par un filtre relationnel, à l'analyse asymptotique aux temps longs et à l'élaboration d'un critère de dissipativité.
La deuxième partie consiste à appliquer ces outils pour l'étude des couplages formés de filtres diffusifs et de filtres rationnels positifs. L'application d'un critère de Nyquist prouve la stabilité énergétique. Ces couplages sont en fait la somme d'une partie entière et d'une partie diffusive, ce résultat de décomposition montre que certains couplages sont stables EBSB (entrée-bornée, sortie-bornée). La dissipativité de la réalisation diffusive ainsi que le lemme de Kalman-Yacubovich-Popov montrent notamment la stabilité interne de ces couplages ; une démonstration originale du caractère asymptotique de la stabilité interne est ainsi proposée. Les approches utilisées pour prouver ces stabiblités permettent une analyse asymptotique aux temps longs.
Desrayaud, Gilles. "Analyse de stabilite lineaire dans un milieu semitransparent : determination experimentale des limites de stabilite dans un milieu transparent." Paris 6, 1987. http://www.theses.fr/1987PA066089.
Повний текст джерелаVERZURA, LAURENCE. "Analyse de la stabilite d'ouvrages en sol renforce par fils continus." Marne-la-vallée, ENPC, 1993. http://www.theses.fr/1993ENPC9314.
Повний текст джерелаLammert, Robert. "Quantitative Analyse dynamischer Systeme am Beispiel der Lyapunov-Exponenten." [S.l.] : Universität Stuttgart , Fakultät Informatik, 1999. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB8385932.
Повний текст джерелаPORZIO, ANNA. "Stabilite des systemes hamiltoniens quasi-integrables. Analyse multifractale des mesures en dynamique chaotique." Paris 6, 1992. http://www.theses.fr/1992PA066297.
Повний текст джерелаArmiyoon, Ali Reza. "Exploring yaw and roll dynamics of ground vehicles using TS fuzzy approach and a novel method for stability analysis based on Lyapunov exponents." Springer, 2015. http://hdl.handle.net/1993/31038.
Повний текст джерелаFebruary 2016
Djaneye-Boundjou, Ouboti Seydou Eyanaa. "Particle Swarm Optimization Stability Analysis." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1386413941.
Повний текст джерелаKILIC, AHMET. "Analyse de la stabilite des talus de la mine de lignite d'afsin-elbistan (turquie)." Paris, ENMP, 1996. http://www.theses.fr/1996ENMP0695.
Повний текст джерелаValmorbida, Giorgio. "Estabilidade de sistemas com atraso : analise de incertezas e de saturação empregando desigualdades matriciais lineares." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261833.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-06T06:53:10Z (GMT). No. of bitstreams: 1 Valmorbida_Giorgio_M.pdf: 1105118 bytes, checksum: 1fec640e2bfaeb6dac37afed313255ef (MD5) Previous issue date: 2006
Resumo: Este trabalho apresenta resultados no contexto de estabilidade de sistemas com atraso. A estabilidade de sistemas incertos com atraso é estudada utilizando o Teorema do Pequeno Ganho Escalonado a partir de um sistema de comparação. Aplicando resultados do Lema de Finsler e empregando matrizes de Lyapunov dependentes de parâmetro nas desigualdades matriciais lineares do Teorema do Pequeno Ganho, são obtidas condições independentes e condições dependentes do atraso para sistemas incertos. Sistemas com atraso que apresentam entrada com saturação em posição são estudados visando obter condições para cômputo de ganhos de realimentação de estados e visando obter uma estimativa para a região de atração do sistema em malha fechada. É considerada uma lei de controle com realimentação do estado atual e do estado atrasado. Funcionais de Lyapunov-Krasovskii são utilizados na obtenção das condições de estabilizabilidade. A maximização das estimativas das regiões de atração é feita a partir da solução de problemas de otimizaçã.o com restrições na forma de desigualdades matriciais lineares
Abstract: This work presents results in the context of time-delay system stability. Uncertain time-delay systems are studied by means of the Scaled Small-Gain Theorem. By applying results from Finsler's Lemma and using parameter-dependent Lyapunov matrices, delay-dependent and delay-independent conditions for uncertain systems are obtained in terms of linear matrix inequalities. Time-delay system presenting amplitude-saturating inputs are analyzed aiming to establish conditions to compute state-feedback gains and to obtain an estimate of the bassin of attraction of the system. A control law composed by a current state-feedback and a delayed state-feedback is considered. Lyapunov-Krasovskii functionals are the starting point to obtain the stabilizability conditions. The maximization the estimates of the bassin of attraction is carried out by solving an optimization problem whose constraints are linear matrix inequalities
Mestrado
Automação
Mestre em Engenharia Elétrica
GAERTNER, JEAN-CLAUDE. "Organisation des assemblages demersaux dans le golfe du lion : structures spatiales et stabilite temporelle." Aix-Marseille 2, 1997. http://www.theses.fr/1997AIX22067.
Повний текст джерелаLatorre, Hector. "Modeling and Control of VSC-HVDC Transmissions." Doctoral thesis, KTH, Elektriska energisystem, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-32313.
Повний текст джерелаQC 20110412
Ziar, Ai͏̈ssaoui. "Détermination des exposants de Lyapunov et de la dimension de l'information dans quelques systèmes dynamiques." Grenoble 1, 1992. http://www.theses.fr/1992GRE10086.
Повний текст джерелаLatorre, Hector F. "A Multichoice Control Strategy for a VSC-HVdc." Licentiate thesis, KTH, Elektriska energisystem, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4675.
Повний текст джерелаQC 20101117
Latorre, Hector. "A Multichoice Control Strategy for a VSC-HVdc." Licentiate thesis, Stockholm : Elektriska energisystem, Electric Power Systems, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4675.
Повний текст джерелаGOUIA, BECHIR. "Analyse de la stabilite de talus. Application a la mine a ciel ouvert de nefta-tozeur (tunisie)." Paris, ENMP, 1990. http://www.theses.fr/1990ENMP0206.
Повний текст джерелаHAN, KONG CHANG. "Analyse de la stabilite des talus par les methodes des elements distincts. Application aux mecanismes de basculement." Paris, ENMP, 1993. http://www.theses.fr/1993ENMP0366.
Повний текст джерелаMathieu-Job, Martine, and Gérard Thomas. "Fiabilite dimensionnelle des dents prothetiques posterieures : etude metrologique et analyse statistique." Nancy 1, 1989. http://www.theses.fr/1989NAN13401.
Повний текст джерелаDa, Costa Hirata Silvia. "STABILITE DE LA CONVECTION THERMIQUE ET/OU SOLUTALE EN COUCHES FLUIDE ET POREUSE SUPERPOSEES." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00175767.
Повний текст джерелаAfilaka, Johnson O. "Analyse de la stabilite des talus en mines a ciel ouvert : approche probabiliste, application a la mine de carmaux." Paris, ENMP, 1988. http://www.theses.fr/1988ENMP0092.
Повний текст джерелаGUERTIN, CHANTAL. "Analyse de stabilite numerique des schemas couples de neutronique et de thermohydraulique et nouveau modele de contre-reactions neutroniques." Paris 11, 1995. http://www.theses.fr/1995PA112119.
Повний текст джерелаDessagne, Philippe. "Etude de noyaux loin de la ligne de stabilite : mesures de masse et analyse de l'emission de particules retardees." Université Louis Pasteur (Strasbourg) (1971-2008), 1987. http://www.theses.fr/1987STR13217.
Повний текст джерелаPeaucelle, Dimitri. "Formulation generique de problemes en analyse et commande robuste par des fonctions de lyapunov dependant des parametres." Toulouse 3, 2000. https://tel.archives-ouvertes.fr/tel-00131516.
Повний текст джерелаGady, Valérie. "Analyse granulométrique par microscopie optique des émulsions lipidiques injectables." Paris 5, 1995. http://www.theses.fr/1995PA05P157.
Повний текст джерелаGUEZ-IVANIER, GUEZ VALERIE. "Analyse de la stabilite et du desordre structural de la tyrosyl-trna synthetase de bacillus stearothermophilus, au moyen de proteines hybrides." Paris 7, 1994. http://www.theses.fr/1994PA077037.
Повний текст джерелаGonzález, Zumba Jorge Andrés. "Dynamic Modeling and Stability Analysis of Stochastic Multi-Physical Systems Applied to Electric Power Systems." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/158558.
Повний текст джерела[CA] La naturalesa aleatòria que caracteritza alguns fenòmens en sistemes físics reals (e.g., enginyeria, biologia, economia, finances, epidemiologia i uns altres) ens ha plantejat el desafiament d'un canvi de paradigma del modelatge matemàtic i l'anàlisi de sistemes dinàmics, i a tractar els fenòmens aleatoris com a variables aleatòries o processos estocàstics. Aquest enfocament nou ha portat com a conseqüència noves especificitats que la teoria clàssica del modelatge i anàlisi de sistemes dinàmics deterministes no ha pogut cobrir. Afortunadament, meravelloses contribucions, realitzades sobretot en l'últim segle, des del camp de les matemàtiques per científics com Kolmogorov, Langevin, Lévy, Itô, Stratonovich, només per nomenar alguns; han obert les portes per a un estudi ben fonamentat de la dinàmica de sistemes físics pertorbats per soroll. En la present tesi es discuteix l'ús d'equacions diferencials algebraiques estocàstiques (EDAEs) per al modelatge de sistemes multifísicos en xarxa afectats per pertorbacions estocàstiques, així com l'avaluació de la seua estabilitat asimptòtica a través d'exponents de Lyapunov (ELs). L'estudi està enfocat en EDAEs d-index-1 i la seua reformulació com a equacions diferencials estocàstiques ordinàries (EDEs). Fonamentats en la teoria ergòdica, és factible analitzar els ELs a través de sistemes dinàmics aleatoris (SDAs) generats per EDEs subjacents. Una vegada garantida l'existència d'ELs ben definides, hem procedit a l'ús de tècniques de simulació numèrica per a determinar els ELs numèricament. Hem implementat mètodes numèrics basats en descomposició QR discreta i contínua per al còmput de la matriu de solució fonamental i el seu ús en el càlcul dels ELs. Les característiques numèriques i computacionals més rellevants de tots dos mètodes s'illustren mitjançant proves numèriques. Tota aquesta investigació sobre el modelatge de sistemes amb EDAEs i avaluació de la seua estabilitat a través d'ELs calculats numèricament, té una interessant aplicació en enginyeria. Aquesta és l'avaluació de l'estabilitat dinàmica de sistemes elèctrics de potència. En el present treball de recerca, implementem els nostres mètodes numèrics basats en descomposició QR per al test d'estabilitat dinàmica en dos models de sistemes elèctrics de potència d'una-màquina bus-infinit (OMBI) afectats per diferents pertorbacions sorolloses. L'anàlisi en xicotet-senyal evidencia el potencial de les tècniques proposades en aplicacions d'enginyeria.
[EN] The random nature that characterizes some phenomena in the real-world physical systems (e.g., engineering, biology, economics, finance, epidemiology, and others) has posed the challenge of changing the modeling and analysis paradigm and treat these phenomena as random variables or stochastic processes. Consequently, this novel approach has brought new specificities that the classical theory of modeling and analysis for deterministic dynamical systems cannot cover. Fortunately, stunning contributions made overall in the last century from the mathematics field by scientists such as Kolmogorov, Langevin, Lévy, Itô, Stratonovich, to name a few; have opened avenues for a well-founded study of the dynamics in physical systems perturbed by noise. In the present thesis, we discuss stochastic differential-algebraic equations (SDAEs) for modeling multi-physical network systems under stochastic disturbances, and their asymptotic stability assessment via Lyapunov exponents (LEs). We focus on d-index-1 SDAEs and their reformulation as ordinary stochastic differential equations (SDEs). Supported by the ergodic theory, it is feasible to analyze the LEs via the random dynamical system (RDSs) generated by the underlying SDEs. Once the existence of well-defined LEs is guaranteed, we proceed to the use of numerical simulation techniques to determine the LEs numerically. Discrete and continuous QR decomposition-based numerical methods are implemented to compute the fundamental solution matrix and use it in the computation of the LEs. Important numerical and computational features of both methods are illustrated through numerical tests. All this investigation concerning systems modeling through SDAEs and their stability assessment via computed LEs finds an appealing engineering application in the dynamic stability assessment of power systems. In this research work, we implement our QR-based numerical methods for testing the dynamic stability in two types of single-machine infinite-bus (SMIB) power system models perturbed by different noisy disturbances. The analysis in small-signal evidences the potential of the proposed techniques in engineering applications.
Mi agradecimiento al estado ecuatoriano que, a través del Programa de Becas para el Fortalecimiento y Desarrollo del Talento Humano en Ciencia y Tecnología 2012 de la Secretaría Nacional de Educación Superior, Ciencia y Tecnología (SENESCYT), han financiado mis estudios de doctorado.
González Zumba, JA. (2020). Dynamic Modeling and Stability Analysis of Stochastic Multi-Physical Systems Applied to Electric Power Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/158558
TESIS
Minvielle-Sébastia, Lionel. "Analyse genetique et moleculaire des genes rna14 et rna15 impliques dans la stabilite des arn messagers polyadenyles de la levure saccharomyces cerevisiae." Paris 6, 1992. http://www.theses.fr/1992PA066258.
Повний текст джерела