Добірка наукової літератури з теми "Analyse de stabilite de Lyapunov"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Analyse de stabilite de Lyapunov".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Analyse de stabilite de Lyapunov"
Di Cintio, Pierfrancesco, and Lapo Casetti. "Discreteness effects, N-body chaos and the onset of radial-orbit instability." Monthly Notices of the Royal Astronomical Society 494, no. 1 (March 20, 2020): 1027–34. http://dx.doi.org/10.1093/mnras/staa741.
Повний текст джерелаXu, Kexin, Xianqing Wu, Miao Ma, and Yibo Zhang. "Energy-based output feedback control of the underactuated 2DTORA system with saturated inputs." Transactions of the Institute of Measurement and Control 42, no. 14 (July 2, 2020): 2822–29. http://dx.doi.org/10.1177/0142331220933475.
Повний текст джерелаGe, Z.-M., C.-S. Chen, H.-H. Chen, and S.-C. Lee. "Regular and chaotic dynamics of a simplified fly-ball governor." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 213, no. 5 (May 1, 1999): 461–75. http://dx.doi.org/10.1243/0954406991522707.
Повний текст джерелаGreulich, Philip, Ben D. MacArthur, Cristina Parigini, and Rubén J. Sánchez-García. "Stability and steady state of complex cooperative systems: a diakoptic approach." Royal Society Open Science 6, no. 12 (December 2019): 191090. http://dx.doi.org/10.1098/rsos.191090.
Повний текст джерелаChanthorn, Pharunyou, Grienggrai Rajchakit, Jenjira Thipcha, Chanikan Emharuethai, Ramalingam Sriraman, Chee Peng Lim, and Raja Ramachandran. "Robust Stability of Complex-Valued Stochastic Neural Networks with Time-Varying Delays and Parameter Uncertainties." Mathematics 8, no. 5 (May 8, 2020): 742. http://dx.doi.org/10.3390/math8050742.
Повний текст джерелаRichard, Quentin. "Global stability in a competitive infection-age structured model." Mathematical Modelling of Natural Phenomena 15 (2020): 54. http://dx.doi.org/10.1051/mmnp/2020007.
Повний текст джерелаSong, Yi, Zehang Song, and Xiaodong Yao. "Permanent Magnet Synchronous Motor Control Based on New Sliding Mode Observer." Journal of Physics: Conference Series 2218, no. 1 (March 1, 2022): 012058. http://dx.doi.org/10.1088/1742-6596/2218/1/012058.
Повний текст джерелаIbrahim, M. O., A. A. Ayoade, O. J. Peter, and F. A. Oguntolu. "ON THE GLOBAL STABILITY OF CHOLERA MODEL WITH PREVENTION AND CONTROL." MALAYSIAN JOURNAL OF COMPUTING 3, no. 1 (June 29, 2018): 28. http://dx.doi.org/10.24191/mjoc.v3i1.4812.
Повний текст джерелаKruthika, H. A., Arun D. Mahindrakar, and Ramkrishna Pasumarthy. "Stability Analysis of Nonlinear Time–Delayed Systems with Application to Biological Models." International Journal of Applied Mathematics and Computer Science 27, no. 1 (March 28, 2017): 91–103. http://dx.doi.org/10.1515/amcs-2017-0007.
Повний текст джерелаHanel, Rudolf, Manfred Pöchacker, and Stefan Thurner. "Living on the edge of chaos: minimally nonlinear models of genetic regulatory dynamics." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1933 (December 28, 2010): 5583–96. http://dx.doi.org/10.1098/rsta.2010.0267.
Повний текст джерелаДисертації з теми "Analyse de stabilite de Lyapunov"
Cherifi, Abdelmadjid. "Contribution à la commande des modèles Takagi-Sugeno : approche non-quadratique et synthèse D -stable." Thesis, Reims, 2017. http://www.theses.fr/2017REIMS016/document.
Повний текст джерелаThis work deals with the stability analysis and the stabilisation of nonlinear systems represented by T-S models.The goal is to reduce the conservatism of the stability conditions, obtained through the direct Lyapunov methodand written, when it is possible, as LMIs. In this framework, two main contributions has been proposed. First ofall, we have proposed some new conditions based on FLICs, strictly LMIs and without any order restrictions, forthe non-quadratic design of control laws devoted to stabilize T-S models. Indeed, in this non-quadratic context,the existing works are only available for 2nd order T-S models. In order to unlock this restriction, the proposed conditions have been obtained based on the proof of a dual property. Then, starting from the fact that few worksdeals with the closed-loop performances specification, some new LMI conditions (quadratic and non-quadratic)have been proposed via the D-stability concept. As a first step, D-stabilizing PDC and non-PDC controller designhas been considered for nominal T-S models. Then, these results have been extended to uncertain T-S models.Moreover, it has been highlighted, from an example of the attitude D-stabilization of a quadrotor model, that wecan make use of uncertain T-S models to cope with nonlinear models involving nonlinearities depending on bothstate and input variables
Maisonneuve, Vivien. "Analyse statique des systèmes de contrôle-commande : invariants entiers et flottants." Thesis, Paris, ENMP, 2015. http://www.theses.fr/2015ENMP0007/document.
Повний текст джерелаA critical software is a software whose malfunction may result in death or serious injury to people, loss or severe damage to equipment or environmental harm.Software engineering for critical systems is particularly difficult, and combines different methods to ensure the quality of produced software.Among them, formal methods can be used to prove that a software obeys its specifications.This thesis falls within the context of the validation of safety properties for critical software, and more specifically, of numerical properties for embedded software in control-command systems.The first part of this thesis deals with Lyapunov stability proofs.These proofs rely on computations with real numbers, and do not accurately describe the behavior of a program run on a platform with machine arithmetic.We introduce a generic, theoretical framework to adapt the arguments of Lyapunov stability proofs to machine arithmetic.A tool automatically translates the proof on real numbers to a proof with floating-point numbers.The second part of the thesis focuses on linear relation analysis, using an abstract interpretation based on the approximation by convex polyhedrons of valuations associated with each control point in a program.We present ALICe, a framework to compare different invariant generation techniques.It comes with a collection of test cases taken from the program analysis literature, and interfaces with three tools, that rely on different algorithms to compute invariants: Aspic, iscc and PIPS.To refine PIPS results, two code restructuring techniques are introduced, and several improvements are made to the invariant generation algorithms and evaluated using ALICe
Saoud, Hassan. "Étude des problèmes unilatéraux : analyse de récession, stabilité de Lyapunov et applications en électronique et en mécanique." Limoges, 2009. https://aurore.unilim.fr/theses/nxfile/default/16c02618-5623-40cd-8ebc-268f07ec922b/blobholder:0/2009LIMO4013.pdf.
Повний текст джерелаIn this thesis, we study the unilaterals problems and their applications. It is divided in two parts. The first part is dedicated to the study of the linear semi-coercive variational inequalities. The aim is to give necessary and sufficient conditions for the stability of the problem with respect to data perturbation. For that, we try to characterize the topological interior of the resolvent set associated to the problem. These theoretical results are proved by using of the recession analysis. Some applications of the abstract results in mechanics and in electronic circuits involving devices like ideal diode and practical diode are discussed. The second part concerns the study of the Lyapunov stability for the variational (VEI) and hémivariational (HEI) evolution inequalities. First, we recall some results of stability of (VEI) using Lyapunov’s functions and La Salle’s invariance principle. Moreover, we give two sufficient conditions and a necessary condition to establish the finite-time stability (F. T. S. ) of the equilibrium of (VEI). These results are also applied to the complementarity problem. Second, we study the Lyapunov stability of (HEI). We give an extension of the La Salle principle invariance as well as a study of the F. T. S. . In both cases considered, the results found use Lyapunov’s functions of class C1. Finally, we study the stability of Euler-Lagrange’s systems subjected to a dry friction. The result found is applied to a mechanical problem
Peaucelle, Dimitri. "Formulation générique de problèmes en analyse et commande robuste par les fonctions de Lyapunov dependant des paramètres." Phd thesis, Université Paul Sabatier - Toulouse III, 2000. http://tel.archives-ouvertes.fr/tel-00131516.
Повний текст джерелаTaousser, Fatima Zohra. "Analyse de stabilité des systèmes à commutations sur un domaine de temps non-uniforme." Thesis, Valenciennes, 2015. http://www.theses.fr/2015VALE0038/document.
Повний текст джерелаThis thesis deals with the stability analysis of switched systems that evolve on non uniform time domain by introducing the time scale theory. We are interested mainly in dynamical linear switched systems defined on particular time scale T = P{tσk ,tk+1} = ∪∞k=0[tσk, tk+1]. The studied system switches between a continuous-time dynamical subsystem on the intervals ∪∞k=0[tσk, tk+1[ and a discrete-time dynamical subsystem on instants ∪∞k=0{tk+1} (a discrete time) with a time-varying discrete step. In a first part, sufficient conditions are given to guarantee the exponential stability of this class of switched systems. Then necessary and sufficient conditions for stability are given by determining a region of exponential stability. In the second part, the stability of this class of switched systems with nonlinear uncertainties, is treated using majoration of the solution, and after that by introducing the approach of a common Lyapunov function. The third part is devoted to the consensus problem under intermittent information transmissions where the closed-loop multi-agent system can be represented as a switched system using a combination of linear continuous-time and linear discrete-time systems
Robbé, Mickaël. "Calcul de sous-espaces invariants d'opérateurs elliptiques : Analyse de la stabilité discrète au sens de Lyapunov de matrices de grande taille." Brest, 2000. http://www.theses.fr/2000BRES2003.
Повний текст джерелаDrissi, Zellaji Mourad. "Méthodes d’agrégation et méthode des familles : analyse théorique et numérique pour des systèmes de réactions-diffusion associés à certains modèles aéronomiques." Besançon, 1994. http://www.theses.fr/1994BESA2065.
Повний текст джерелаStathas, Alexandros. "Numerical modeling of earthquake faults." Thesis, Ecole centrale de Nantes, 2021. http://www.theses.fr/2021ECDN0053.
Повний текст джерелаDuring coseismic slip, the energy released by the elastic unloading of the adjacent earth blocks can be separated in three main parts: The energy that is radiated to the earth’s surface (_ 5% of the whole energy budget), the fracture energy for the creation of new fault surfaces and finally, the energy dissipated inside a region of the fault, with finite thickness, which is called the fault gauge. This region accumulates the majority of the seismic slip. Estimating correctly the width of the fault gauge is of paramount importance in calculating the energy dissipated during the earthquake, the fault’s frictional response, and the conditions for nucleation of the fault in the form of seismic or aseismic slip.In this thesis different regularization approaches were explored for the estimation of the localization width of the fault’s principal slip zone during coseismic slip. These include the application of viscosity and multiphysical couplings in the classical Cauchy continuum, and the introduction of a first order micromorphic Cosserat continuum. First, we focus on the role of viscous regularization in the context of dynamical analyses, as a method for regularizing strain localization. We study the dynamic case for a strain softening strain-rate hardening classical Cauchy continuum, and by applying the Lyapunov stability analysis we show that introduction of viscosity is unable to prevent strain localization on a mathematical plane and mesh dependence.We perform fully non linear analyses using the Cosserat continuum under large seismic slip displacements of the fault gouge in comparison to its width. Cosserat continuum provides us with a proper account of the energy dissipated during an earthquake and the role of the microstructure in the evolution of the fault’s friction. We focus on the influence of the seismic slip velocity to the weakening mechanism of thermal pressurization. We notice that the influence of the boundary conditions in the diffusion of the pore fluid inside the fault gouge, leads to frictional strength regain after initial weakening. Furthermore, a traveling strain localization mode is present during shearing of the layer introducing oscillations in the frictional response. Such oscillations increase the spectral content of the earthquake. Introduction of viscosity in the above mode, leads to a rate and state behavior without the introduction of a specific internal state variable. Our conclusions about the role of thermal pressurization during shearing of the fault gouge, agree qualitatively with newly available experimental results.Finally, based on the numerical findings we investigate the assumptions of the current model of a slip on a mathematical plane, in particular the role of the boundary conditions and strain localization mode in the evolution of the fault’s friction during coseismic slip. The case of a bounded domain and a traveling strain localization mode are examined in the context of slip on a mathematical plane under thermal pressurization. Our results expand the original model in a more general context
Cavichioli, Gonzaga Carlos Alberto. "Analyse de stabilité et de performance d'une classe de systèmes non-linéaires à commutations en temps discret." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0086/document.
Повний текст джерелаIn this PhD thesis, several problems of stability analysis and control design of discrete-time switched nonlinear systems are addressed. As main contribution, a new class of Lyapunov functions which takes the nonlinearity into account has been proposed. We show that these functions are suitable to solve the classical stability analysis problem of linear systems connected to a cone bounded nonlinearity. Instead of the original Lyapunov Lur'e function, the assumptions about the nonlinearity variation are not required. Furthermore, the local stability analysis and control synthesis problems of Lur'e systems subject to control saturation are tackled by considering the level set of our function as an estimate of the basin of attraction. We expose that this estimate, which is given by non-convex and disconnected sets, is less conservative than ellipsoidal sets. We extend these results in order to deal with the problems of stability analysis and stabilization of discrete-time switched nonlinear systems. On one hand, we consider the case of arbitrary switching such that our sufficient conditions assure the properties of stability for all possible switching rules. In this framework, we highlight that our function is able to provide a suitable estimate of the basin of attraction. On the other hand, we tackle the problem of switching rule design aiming at the stabilization of discrete-time switched systems with nonlinear modes. We propose a switching strategy depending on the minimum of our switched Lyapunov Lur'e function. Hence, our framework leads to state space partitions, related to the mode activation, which are not restricted to conic sets, commonly exhibited by the switched quadratic functions approaches
Mostefaoui, Imene Meriem. "Analyse mathématique d’un système dynamique/réaction-diffusion modélisant la distribution des bactéries résistantes aux antibiotiques dans les rivières." Thesis, La Rochelle, 2014. http://www.theses.fr/2014LAROS020/document.
Повний текст джерелаThe objective of this thesis is the qualitative study of some models of the dynamic and the distribution of bacteria in a river. We are interested in the stability of equilibria and the existence of periodic solutions. The thesis can be divided into two parts; the first part is concerned with a mathematical analysis of a system of differential equations modelling the dynamics and the interactions of four species of bacteria in a river. The asymptotic behavior of equilibria is established. The stability study of equilibrium states is mainly done by construction of Lyapunov functions combined with LaSalle's invariance principle. On the other hand, the existence of periodic solutions is proved under certain conditions using the continuation theorem of Mawhin. In the second part of this thesis, we propose a non-autonomous convection-reaction diffusion system with nonlinear reaction source functions. This model refers to the quantification and the distribution of antibiotic resistant bacteria (ARB) in a river. Our main contributions are : (i) the determination of the limit set of the system; it is shown that it is reduced to the solutions of the associated elliptic system; (ii) sufficient conditions for the existence of a positive solution of the associated elliptic system based on the Leray Schauder's degree theory
Книги з теми "Analyse de stabilite de Lyapunov"
Orlik, Lyubov', and Galina Zhukova. Operator equation and related questions of stability of differential equations. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1061676.
Повний текст джерелаZhu, Yang, and Miroslav Krstic. Delay-Adaptive Linear Control. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691202549.001.0001.
Повний текст джерелаImpacts in Mechanical Systems: Analysis and Modelling (Lecture Notes in Physics). Springer, 2000.
Знайти повний текст джерелаI, Bléjer Mario, Skreb Marko 1957-, and Dubrovnik Conference on Transition Economies (1st : 1995?), eds. Macroeconomic stabilization in transition economies. Cambridge: Cambridge University Press, 1997.
Знайти повний текст джерелаЧастини книг з теми "Analyse de stabilite de Lyapunov"
Fridman, Emilia. "Lyapunov-Based Stability Analysis." In Systems & Control: Foundations & Applications, 51–133. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09393-2_3.
Повний текст джерелаLakshmikantham, V., V. M. Matrosov, and S. Sivasundaram. "Why several Lyapunov functions?" In Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, 1–52. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7939-1_1.
Повний текст джерелаLakshmikantham, V., V. M. Matrosov, and S. Sivasundaram. "Refinements." In Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, 53–91. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7939-1_2.
Повний текст джерелаLakshmikantham, V., V. M. Matrosov, and S. Sivasundaram. "Extensions." In Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, 93–134. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7939-1_3.
Повний текст джерелаLakshmikantham, V., V. M. Matrosov, and S. Sivasundaram. "Applications." In Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, 135–58. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7939-1_4.
Повний текст джерелаKojima, Chiaki, Paolo Rapisarda, and Kiyotsugu Takaba. "Lyapunov Stability Analysis of Higher-Order 2-D Systems." In Perspectives in Mathematical System Theory, Control, and Signal Processing, 197–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-93918-4_18.
Повний текст джерелаMarin, J. P. "Fuzzy Stability Analysis of Fuzzy Systems: A Lyapunov Approach." In Advances in Fuzzy Control, 67–101. Heidelberg: Physica-Verlag HD, 1998. http://dx.doi.org/10.1007/978-3-7908-1886-4_4.
Повний текст джерелаEfremov, Artem A., Vera V. Karakchieva, and Vladimir N. Kozlov. "Stability Analysis of Dynamical Systems Based on Lyapunov Vector Functions." In System Analysis in Engineering and Control, 177–86. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98832-6_16.
Повний текст джерелаRoy, Spandan, and Indra Narayan Kar. "The Lyapunov-Krasovskii Based Stability Analysis of Time-Delayed Control." In Studies in Systems, Decision and Control, 97–115. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0640-6_5.
Повний текст джерелаVoßwinkel, Rick. "Begriffe und Ansätze zur Lyapunov-basierten Stabilitätsanalyse." In Systematische Analyse und Entwurf von Regelungseinrichtungen auf Basis von Lyapunov's direkter Methode, 7–27. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-28061-1_2.
Повний текст джерелаТези доповідей конференцій з теми "Analyse de stabilite de Lyapunov"
Jedrzejewski, F. "Entropy and Lyapunov Exponents Relationships in Stochastic Dynamical Systems." In ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-1822.
Повний текст джерелаZeng, Hairong, Qiong Wu, and Nariman Sepehri. "On Control of a Two-Link Non-Fixed-Base Inverted Pendulum With Guaranteed Uniqueness." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61239.
Повний текст джерелаNikoiakopouios, Padelis G., and Chris A. Papadopouios. "Lyapunov’s Stability of Non-Linear Misaligned Journal Bearings." In ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-072.
Повний текст джерелаRajaram, Rajeev, and Umesh Vaidya. "Robust stability analysis using Lyapunov density." In 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426681.
Повний текст джерелаGalarza, Jose, Dumitru I. Caruntu, Simon Vasquez, and Robert Freeman. "Gait Stability Using Lyapunov Exponents." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-73242.
Повний текст джерелаXu, Hongru, Yan Chen, and Brian Keel. "Large Signal Stability Analysis of a Hybrid AC/DC Microgrid With a Cascaded Control Inverter." In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9163.
Повний текст джерелаChiaki Kojima. "Dual Lyapunov stability analysis in behavioral approach." In 2008 47th IEEE Conference on Decision and Control. IEEE, 2008. http://dx.doi.org/10.1109/cdc.2008.4739451.
Повний текст джерелаBuffington, James, and Dale Enns. "Daisy chain control allocation - Lyapunov stability analysis." In Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-3341.
Повний текст джерелаKumar, Amresh, and S. K. Bhagat. "Voltage stability analysis using Lyapunov energy function." In 2015 1st Conference on Power, Dielectric and Energy Management at NERIST (ICPDEN). IEEE, 2015. http://dx.doi.org/10.1109/icpden.2015.7084500.
Повний текст джерелаBerbey, A., R. Galán, P. San Segundo, and J. Sanz-Bobi. "Lyapunov based stability analysis for metro lines." In URBAN TRANSPORT 2008. Southampton, UK: WIT Press, 2008. http://dx.doi.org/10.2495/ut080111.
Повний текст джерела