Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Analisi infinitesimale.

Статті в журналах з теми "Analisi infinitesimale"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Analisi infinitesimale".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Ikeda, Hiroshi. "Infinitesimal Stability of Anosov Endomorphisms." Journal of Differential Equations 130, no. 1 (September 1996): 1–8. http://dx.doi.org/10.1006/jdeq.1996.0129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wu, Yan, Yi Qi, and Zunwei Fu. "On Geodesic Segments in the Infinitesimal Asymptotic Teichmüller Spaces." Journal of Function Spaces 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/276719.

Повний текст джерела
Анотація:
LetAZ(R)be the infinitesimal asymptotic Teichmüller space of a Riemann surfaceRof infinite type. It is known thatAZ(R)is the quotient Banach space of the infinitesimal Teichmüller spaceZ(R), whereZ(R)is the dual space of integrable quadratic differentials. The purpose of this paper is to study the nonuniqueness of geodesic segment joining two points inAZ(R). We prove that there exist infinitely many geodesic segments between the basepoint and every nonsubstantial point in the universal infinitesimal asymptotic Teichmüller spaceAZ(D)by constructing a special degenerating sequence.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kiselev, A., and B. Simon. "Rank One Perturbations with Infinitesimal Coupling." Journal of Functional Analysis 130, no. 2 (June 1995): 345–56. http://dx.doi.org/10.1006/jfan.1995.1074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

van Ackooij, W., B. de Pagter, and F. A. Sukochev. "Domains of infinitesimal generators of automorphism flows." Journal of Functional Analysis 218, no. 2 (January 2005): 409–24. http://dx.doi.org/10.1016/j.jfa.2004.05.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sandu, Adrian. "A Class of Multirate Infinitesimal GARK Methods." SIAM Journal on Numerical Analysis 57, no. 5 (January 2019): 2300–2327. http://dx.doi.org/10.1137/18m1205492.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Abadias, Luciano, and Pedro J. Miana. "Quasigeostrophic Equations for Fractional Powers of Infinitesimal Generators." Journal of Function Spaces 2019 (February 7, 2019): 1–7. http://dx.doi.org/10.1155/2019/4763450.

Повний текст джерела
Анотація:
In this paper we treat the following partial differential equation, the quasigeostrophic equation: ∂/∂t+u·∇f=-σ-Aαf, 0≤α≤1, where (A,D(A)) is the infinitesimal generator of a convolution C0-semigroup of positive kernel on Lp(Rn), with 1≤p<∞. Firstly, we give remarkable pointwise and integral inequalities involving the fractional powers (-A)α for 0≤α≤1. We use these estimates to obtain Lp-decayment of solutions of the above quasigeostrophic equation. These results extend the case of fractional derivatives (taking A=Δ, the Laplacian), which has been studied in the literature.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bismut, Jean-Michel. "The infinitesimal Lefschetz formulas: A heat equation proof." Journal of Functional Analysis 62, no. 3 (July 1985): 435–57. http://dx.doi.org/10.1016/0022-1236(85)90013-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Airault, Hélène. "Projection of the infinitesimal generator of a diffusion." Journal of Functional Analysis 85, no. 2 (August 1989): 353–91. http://dx.doi.org/10.1016/0022-1236(89)90041-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Galé, José E., and Tadeusz Pytlik. "Functional Calculus for Infinitesimal Generators of Holomorphic Semigroups." Journal of Functional Analysis 150, no. 2 (November 1997): 307–55. http://dx.doi.org/10.1006/jfan.1997.3136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Primozic, Eric. "Motivic cohomology and infinitesimal group schemes." Annals of K-Theory 7, no. 3 (December 19, 2022): 441–66. http://dx.doi.org/10.2140/akt.2022.7.441.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Najdanovic, Marija, Ljubica Velimirovic, and Svetozar Rancic. "The total torsion of knots under second order infinitesimal bending." Applicable Analysis and Discrete Mathematics, no. 00 (2020): 35. http://dx.doi.org/10.2298/aadm200206035n.

Повний текст джерела
Анотація:
In this paper we consider infinitesimal bending of the second order of curves and knots. The total torsion of the knot during the second order infinitesimal bending is discussed and expressions for the first and the second variation of the total torsion are given. Some examples aimed to illustrate infinitesimal bending of knots are shown using figures. Colors are used to illustrate torsion values at different points of bent knots and the total torsion is numerically calculated.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Dajczer, Marcos, and Miguel Ibieta Jimenez. "Conformal infinitesimal variations of submanifolds." Differential Geometry and its Applications 75 (April 2021): 101721. http://dx.doi.org/10.1016/j.difgeo.2021.101721.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Hurder, Steven. "Infinitesimal rigidity for hyperbolic actions." Journal of Differential Geometry 41, no. 3 (1995): 515–27. http://dx.doi.org/10.4310/jdg/1214456480.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Winkelnkemper, Horst Elmar. "Infinitesimal obstructions to weakly mixing." Annals of Global Analysis and Geometry 10, no. 3 (1992): 209–18. http://dx.doi.org/10.1007/bf00136864.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Garcea, Giovanni, Giovanni Formica, and Raffaele Casciaro. "A numerical analysis of infinitesimal mechanisms." International Journal for Numerical Methods in Engineering 62, no. 8 (2005): 979–1012. http://dx.doi.org/10.1002/nme.1158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Yao, Guowu. "A binary infinitesimal form of the Teichmüller metric." Journal d'Analyse Mathématique 131, no. 1 (March 2017): 323–35. http://dx.doi.org/10.1007/s11854-017-0011-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Sergeyev, Yaroslav D. "Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains." Nonlinear Analysis: Theory, Methods & Applications 71, no. 12 (December 2009): e1688-e1707. http://dx.doi.org/10.1016/j.na.2009.02.030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Février, Maxime, and Alexandru Nica. "Infinitesimal non-crossing cumulants and free probability of type B." Journal of Functional Analysis 258, no. 9 (May 2010): 2983–3023. http://dx.doi.org/10.1016/j.jfa.2009.10.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Tryhuk, V., V. Chrastinová, and O. Dlouhý. "The Lie Group in Infinite Dimension." Abstract and Applied Analysis 2011 (2011): 1–35. http://dx.doi.org/10.1155/2011/919538.

Повний текст джерела
Анотація:
A Lie group acting on finite-dimensional space is generated by its infinitesimal transformations and conversely, any Lie algebra of vector fields in finite dimension generates a Lie group (the first fundamental theorem). This classical result is adjusted for the infinite-dimensional case. We prove that the (local,C∞smooth) action of a Lie group on infinite-dimensional space (a manifold modelled onℝ∞) may be regarded as a limit of finite-dimensional approximations and the corresponding Lie algebra of vector fields may be characterized by certain finiteness requirements. The result is applied to the theory of generalized (or higher-order) infinitesimal symmetries of differential equations.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Idris, Ismail M. "On unitary groups modulo infinitesimals." Linear Algebra and its Applications 235 (March 1996): 63–76. http://dx.doi.org/10.1016/0024-3795(94)00115-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Neff, Patrizio, Antje Sydow, and Christian Wieners. "Numerical approximation of incremental infinitesimal gradient plasticity." International Journal for Numerical Methods in Engineering 77, no. 3 (January 15, 2009): 414–36. http://dx.doi.org/10.1002/nme.2420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Smoller, Joel, and Arthur Wasserman. "Symmetry, degeneracy, and universality in semilinear elliptic equations. Infinitesimal symmetry-breaking." Journal of Functional Analysis 89, no. 2 (March 1990): 364–409. http://dx.doi.org/10.1016/0022-1236(90)90099-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Chow, Yat Tin, and Wilfrid Gangbo. "A partial Laplacian as an infinitesimal generator on the Wasserstein space." Journal of Differential Equations 267, no. 10 (November 2019): 6065–117. http://dx.doi.org/10.1016/j.jde.2019.06.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Cruzeiro, Ana Bela, and Paul Malliavin. "Non-existence of infinitesimally invariant measures on loop groups." Journal of Functional Analysis 254, no. 7 (April 2008): 1974–87. http://dx.doi.org/10.1016/j.jfa.2007.11.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Bracci, Filippo, Manuel D. Contreras, and Santiago Díaz-Madrigal. "Infinitesimal generators associated with semigroups of linear fractional maps." Journal d'Analyse Mathématique 102, no. 1 (August 2007): 119–42. http://dx.doi.org/10.1007/s11854-007-0018-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Calvez, Vincent, Thomas Lepoutre, and David Poyato. "Ergodicity of the Fisher infinitesimal model with quadratic selection." Nonlinear Analysis 238 (January 2024): 113392. http://dx.doi.org/10.1016/j.na.2023.113392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Wang, JinRong, and Ahmed G. Ibrahim. "Existence and Controllability Results for Nonlocal Fractional Impulsive Differential Inclusions in Banach Spaces." Journal of Function Spaces and Applications 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/518306.

Повний текст джерела
Анотація:
We firstly deal with the existence of mild solutions for nonlocal fractional impulsive semilinear differential inclusions involving Caputo derivative in Banach spaces in the case when the linear part is the infinitesimal generator of a semigroup not necessarily compact. Meanwhile, we prove the compactness property of the set of solutions. Secondly, we establish two cases of sufficient conditions for the controllability of the considered control problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Feng, Sebert. "Symmetry analysis for a second-order ordinary differential equation." Electronic Journal of Differential Equations 2021, no. 01-104 (October 15, 2021): 85. http://dx.doi.org/10.58997/ejde.2021.85.

Повний текст джерела
Анотація:
In this article, we apply the Lie symmetry analysis to a second-order nonlinear ordinary differential equation, which is a Lienard-type equation with quadratic friction. We find the infinitesimal generators under certain parametric conditions and apply them to construct canonical variables. Also we present some formulas for the first integral for this equation. For more information see https://ejde.math.txstate.edu/Volumes/2021/85/abstr.html
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Gurtin, M. E., H. M. Soner, and P. E. Souganidis. "Anisotropic Motion of an Interface Relaxed by the Formation of Infinitesimal Wrinkles." Journal of Differential Equations 119, no. 1 (June 1995): 54–108. http://dx.doi.org/10.1006/jdeq.1995.1084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

MARDARE, SORIN, та MARCELA SZOPOS. "LINEAR AND NONLINEAR KORN INEQUALITIES ON CURVES IN ℝ3". Analysis and Applications 03, № 03 (липень 2005): 251–70. http://dx.doi.org/10.1142/s021953050500056x.

Повний текст джерела
Анотація:
We establish several linear and nonlinear inequalities of Korn's type for curves in the three-dimensional Euclidean space. These inequalities are obtained under weak regularity assumptions on the curve of reference. We also establish an infinitesimal rigid displacement lemma for curves.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Álvarez, A., J. L. Bravo, C. Christopher, and P. Mardešić. "Infinitesimal Center Problem on Zero Cycles and the Composition Conjecture." Functional Analysis and Its Applications 55, no. 4 (October 2021): 257–71. http://dx.doi.org/10.1134/s0016266321040018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Kierat, W. "A remark about the infinitesimal operator of the cauchy semigroup." Integral Transforms and Special Functions 4, no. 3 (August 1996): 243–48. http://dx.doi.org/10.1080/10652469608819111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Seubert, S. M. "A Note on Infinitesimal Generators of Semigroups on H2/φH2". Journal of Mathematical Analysis and Applications 173, № 2 (березень 1993): 649–53. http://dx.doi.org/10.1006/jmaa.1993.1095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Manzanilla, Raúl, Luis Gerardo Mármol, and Carmen J. Vanegas. "On the Controllability of a Differential Equation with Delayed and Advanced Arguments." Abstract and Applied Analysis 2010 (2010): 1–16. http://dx.doi.org/10.1155/2010/307409.

Повний текст джерела
Анотація:
A semigroup theory for a differential equation with delayed and advanced arguments is developed, with a detailed description of the infinitesimal generator. This in turn allows to study the exact controllability of the equation, by rewriting it as a classical Cauchy problem.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Applebaum, David. "On the Infinitesimal Generators of Ornstein–Uhlenbeck Processes with Jumps in Hilbert Space." Potential Analysis 26, no. 1 (October 12, 2006): 79–100. http://dx.doi.org/10.1007/s11118-006-9028-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Qian, Nantian. "Infinitesimal rigidity of higher rank lattice actions." Communications in Analysis and Geometry 4, no. 3 (1996): 495–524. http://dx.doi.org/10.4310/cag.1996.v4.n3.a7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Krötz, Bernhard, Job J. Kuit, Eric M. Opdam, and Henrik Schlichtkrull. "The Infinitesimal Characters of Discrete Series for Real Spherical Spaces." Geometric and Functional Analysis 30, no. 3 (June 2020): 804–57. http://dx.doi.org/10.1007/s00039-020-00540-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Gubinelli, Massimiliano, and Nicolas Perkowski. "The infinitesimal generator of the stochastic Burgers equation." Probability Theory and Related Fields 178, no. 3-4 (August 26, 2020): 1067–124. http://dx.doi.org/10.1007/s00440-020-00996-5.

Повний текст джерела
Анотація:
Abstract We develop a martingale approach for a class of singular stochastic PDEs of Burgers type (including fractional and multi-component Burgers equations) by constructing a domain for their infinitesimal generators. It was known that the domain must have trivial intersection with the usual cylinder test functions, and to overcome this difficulty we import some ideas from paracontrolled distributions to an infinite dimensional setting in order to construct a domain of controlled functions. Using the new domain, we are able to prove existence and uniqueness for the Kolmogorov backward equation and the martingale problem. We also extend the uniqueness result for “energy solutions” of the stochastic Burgers equation of Gubinelli and Perkowski (J Am Math Soc 31(2):427–471, 2018) to a wider class of equations. As applications of our approach we prove that the stochastic Burgers equation on the torus is exponentially $$L^2$$ L 2 -ergodic, and that the stochastic Burgers equation on the real line is ergodic.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Kukushkin, Maksim V. "Note on the Equivalence of Special Norms on the Lebesgue Space." Axioms 10, no. 2 (April 16, 2021): 64. http://dx.doi.org/10.3390/axioms10020064.

Повний текст джерела
Анотація:
In this paper, we consider a norm based on the infinitesimal generator of the shift semigroup in a direction. The relevance of such a focus is guaranteed by an abstract representation of a uniformly elliptic operator by means of a composition of the corresponding infinitesimal generator. The main result of the paper is a theorem establishing equivalence of norms in functional spaces. Even without mentioning the relevance of this result for the constructed theory, we claim it deserves to be considered itself.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Console, Sergio. "Infinitesimally homogeneous submanifolds of euclidean spaces." Annals of Global Analysis and Geometry 12, no. 1 (February 1994): 313–34. http://dx.doi.org/10.1007/bf02108304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Azarina, Svetlana V., and Yuri E. Gliklikh. "Stochastic differential inclusions in terms of infinitesimal generators and mean derivatives." Applicable Analysis 88, no. 1 (January 2009): 89–105. http://dx.doi.org/10.1080/00036810802556795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Kuznetsov, Ivan, and Sergey Sazhenkov. "Weak solutions of impulsive pseudoparabolic equations with an infinitesimal transition layer." Nonlinear Analysis 228 (March 2023): 113190. http://dx.doi.org/10.1016/j.na.2022.113190.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Azé, Dominique, Chin Cheng Chou, and Jean-Paul Penot. "Subtraction Theorems and Approximate Openness for Multifunctions: Topological and Infinitesimal Viewpoints." Journal of Mathematical Analysis and Applications 221, no. 1 (May 1998): 33–58. http://dx.doi.org/10.1006/jmaa.1995.5054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Ruíz-Pantaleón, J. C., D. García-Beltrán, and Yu Vorobiev. "Infinitesimal Poisson algebras and linearization of Hamiltonian systems." Annals of Global Analysis and Geometry 58, no. 4 (September 9, 2020): 415–31. http://dx.doi.org/10.1007/s10455-020-09733-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Patout, Florian. "The Cauchy problem for the infinitesimal model in the regime of small variance." Analysis & PDE 16, no. 6 (August 23, 2023): 1289–350. http://dx.doi.org/10.2140/apde.2023.16.1289.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Grinshpun, Edward. "Asymptotics of spectrum under infinitesimally form-bounded perturbation." Integral Equations and Operator Theory 19, no. 2 (June 1994): 240–50. http://dx.doi.org/10.1007/bf01206413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Sklyar, Grigory M., and Vitalii Marchenko. "Hardy inequality and the construction of infinitesimal operators with non-basis family of eigenvectors." Journal of Functional Analysis 272, no. 3 (February 2017): 1017–43. http://dx.doi.org/10.1016/j.jfa.2016.11.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Kanel-Belov, A. Ya, V. A. Voronov, and D. D. Cherkashin. "On the chromatic number of an infinitesimal plane layer." St. Petersburg Mathematical Journal 29, no. 5 (July 26, 2018): 761–75. http://dx.doi.org/10.1090/spmj/1515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Froyland, Gary, Oliver Junge, and Péter Koltai. "Estimating Long-Term Behavior of Flows without Trajectory Integration: The Infinitesimal Generator Approach." SIAM Journal on Numerical Analysis 51, no. 1 (January 2013): 223–47. http://dx.doi.org/10.1137/110819986.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Boua, Hamid. "Spectral Theory For Strongly Continuous Cosine." Concrete Operators 8, no. 1 (January 1, 2021): 40–47. http://dx.doi.org/10.1515/conop-2020-0110.

Повний текст джерела
Анотація:
Abstract Let (C(t)) t∈ℝ be a strongly continuous cosine family and A be its infinitesimal generator. In this work, we prove that, if C(t) – cosh λt is semi-Fredholm (resp. semi-Browder, Drazin inversible, left essentially Drazin and right essentially Drazin invertible) operator and λt ∉ iπℤ, then A – λ 2 is also. We show by counterexample that the converse is false in general.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії