Добірка наукової літератури з теми "Aluminum scrap"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Aluminum scrap".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Aluminum scrap"

1

Yue, Qiang, Zaidong Fan, Chao Zhang, Fen Liu, Heming Wang, and Fengrui Jia. "Development and Evolution of Aluminum Industry in China Based on Aluminum Flow Analysis." Journal of Systems Science and Information 4, no. 3 (June 25, 2016): 212–22. http://dx.doi.org/10.21078/jssi-2016-212-11.

Повний текст джерела
Анотація:
AbstractThe whole process of aluminum cycle consists of four stages: Production of alumina and primary aluminum, fabrication and manufacture of aluminum products, use of aluminum final products, and recycling of obsolete aluminum products. Aluminum cycle in China in 2011 was analyzed using alumium flow diagram, and the following indices were obtained: The resource self-support ratio of alumina, aluminum and the whole aluminum industry were 53.18%, 95.58% and 54.85%, respectively; self-produced and net imported aluminum scrap use ratios of the aluminum industry were 4.68% and 7.98%, respectively. Aluminum cycles and aluminum flow indices in China of the year 1990, 1995, 2000, 2005 and 2008–2010 were also analyzed. It was found that from 1990 to 2011, imported Al-containing resources increased and imported bauxite has increased significantly since 2005. Resources self-support ratio of aluminum industry changed gradually from fully self-support to depencdent on the imports of raw materials. Self-produced auminum scrap use ratio presented downtrend basically and the imported aluminum scrap use ratio was greater than self-produced aluminum scrap use ratio after 1995.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cui, Ji Rang, Wei Guo, Hans Jørgen Roven, Qu Dong Wang, Yong Jun Chen, and Tao Peng. "Recycling of Aluminum Scrap by Severe Plastic Deformation." Materials Science Forum 667-669 (December 2010): 1177–82. http://dx.doi.org/10.4028/www.scientific.net/msf.667-669.1177.

Повний текст джерела
Анотація:
The production of primary aluminum is an energy costly process. With the global warming being of concern, the secondary aluminum stream is becoming an even more important component of aluminum production and is attractive due to its economic and environmental benefits. Recycling of aluminum by new solid state recycling techniques instead of conventional remelting and subsequent refining processing can result in significant energy savings. Severe Plastic Deformation (SPD) techniques have been applied for consolidating nano particles into fully dense materials with good mechanical properties. However, solid state recycling of scraps by SPD is only in the beginning. In the present study, degreasing of aluminum chips from the machine workshop was investigated by a thermal method and chemical treatment. Thereafter, the decoated chips were recycled by Cyclic Extrusion Compression (CEC) at deformation temperatures between 400 and 500 °C. The microstructure and mechanical properties of the recycled aluminum scrap processed by SPD were subsequently investigated. The results show that SPD technology provides a promising alternative for recycling of aluminum scrap. Thermal degreasing of aluminum scrap resulted in more oxidization of aluminum scrap particles. Visible interfaces between chips were observed even at a low magnification.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Garabito, J. A., H. Granados, V. H. López, A. R. Kennedy, and J. E. Bedolla. "Vacuum Foaming of Aluminum Scrap." MRS Proceedings 1481 (2012): 83–88. http://dx.doi.org/10.1557/opl.2012.1635.

Повний текст джерела
Анотація:
ABSTRACTIn this study, scrap from the automotive industry was used to produce aluminium foams under vacuum. Chips of an aluminium alloy LM26 were melted and 1wt. % of Mg was added for creating a viscous casting with uniform distribution of oxides. An ingot was obtained of this alloy after casting and solidification. Trials for foaming this alloy were performed by re-melting pieces under vacuum at different temperatures. A window in the vacuum chamber allowed observation of the foaming and collapse of the porous structures was observed during cooling. Characterization of the aluminum foams revealed different levels of expansion, porous structures and degrees of drainage. The best foams were obtained at 680 °C with a density of 0.78 g/cm3. This technique appears to be a feasible low cost route for producing Al foams based on scrap material.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Najib Khan, Abdul Shafiq Khan A., Nur Ezzah Faezah Othman, Hadi Purwanto, Hafasihah Abdul Halim, and Ahmad Firdaus Shamsul Baharin. "Synthetic of Pure Alumina from Aluminum Scrap." Advanced Materials Research 1115 (July 2015): 170–73. http://dx.doi.org/10.4028/www.scientific.net/amr.1115.170.

Повний текст джерела
Анотація:
Abundance in aluminum scrap metals can cause problem such as limited space allocation and pollution. The solution to solve these problems were by recycling the aluminum scrap metal as secondary production of aluminum. Among the recycling process alternative is smelting, However, the process consumes high energy with low productivity. This study focuses on alumina production from aluminum scrap waste. Dissolution process of Al scrap with 0.5M sodium hydroxide (NaOH) yields Al (OH)3and hydrogen gas. Results show that the temperature gradually decreased from 40°C to 35.7°C as the reaction took place. The pH of the solution during dissolution process increased from 12.08 to 12.38. The XRD results show that after calcination of Al (OH)3powders at 1500°C, α-Al2O3peaks could be observed. SEM morphology shows that the calcination process changes the Al (OH)3powders from hexagonal shape to form α-Al2O3with rounded shape.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

DeGaspari, John. "Making the Most of Aluminum Scrap." Mechanical Engineering 121, no. 11 (November 1, 1999): 71–73. http://dx.doi.org/10.1115/1.1999-nov-3.

Повний текст джерела
Анотація:
This article highlights features of a process under-development that aims to recover wrought alloys for high-value applications. Chemically etched wrought aluminum scrap pieces have been separated into their respective alloy families using an optical identification system that is being developed by Alcoa. The technique has successfully completed proof-of-concept testing at Pacific Northwest National laboratory. One method of separating the mix of wrought aluminum into its alloy families combines chemical etching with an optical technique to sort the aluminum by color. John Green, vice president of technology of The Aluminum Association, believes these technologies will give automotive companies an incentive to commit to aluminum for sheet applications by ensuring that recycling wrought aluminum into higher-value applications is feasible. According to an expert, since processing recycled aluminum takes only 5 percent of the energy required to work from primary ingot, using recycled aluminum makes sense for automobiles.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yue, Qiang, and Zhong Wu Lu. "Aluminum Flow Analysis for the Life Cycle of Aluminum Products." Advanced Materials Research 113-116 (June 2010): 2287–91. http://dx.doi.org/10.4028/www.scientific.net/amr.113-116.2287.

Повний текст джерела
Анотація:
In order to achieve a sustainable development of aluminum industry, aluminum flow analysis for the life cycle of aluminum products in China was necessary. Aluminum flow in the aluminum products life cycle of 2003-2007 in China has been analyzed, from which the following data were resulted. Resources self-support ratio in alumina production, aluminum production and the aluminum industry dropped, increased and leveled off in the period 2003-2007, respectively. Self-produced aluminum scrap use ratio was in the range 5-7%, and the situation of the aluminum scrap lacking state can’t be settled in case of fast increment of aluminum production. Proposals for the sustainable development of aluminum industry in China were put forward.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Usmonov, J. M., Sh M. Shakirov, M. M. Ubaydullayev, and S. O. Parmonov. "Aluminum-based composition materials for processing aluminum scrap." ACADEMICIA: An International Multidisciplinary Research Journal 11, no. 8 (2021): 590–95. http://dx.doi.org/10.5958/2249-7137.2021.01857.7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ahmad, Farhan, Akhyar, and Ali Masri. "Experiment on Hardness and Impact Strength of Recycled Aluminum Alloys by Metal Casting Process." Materials Science Forum 961 (July 2019): 65–72. http://dx.doi.org/10.4028/www.scientific.net/msf.961.65.

Повний текст джерела
Анотація:
In this present work, the effects of recycled aluminum scraps on the impact and hardness properties and microstructures with a melting process are studied. The method was conducted to determine an impact toughness by Charphy pendulums; hardness materials by Vickers's test; and chemical composition by spectroscopy. Four types of aluminum scraps have been recycled using a metal casting process. They are beverage cans, aluminum profile bar waste, gasoline engine piston, and scrap pans. The results show that the maximum hardness obtained is 54.13 VHN on the material of the gasoline engine piston. The lowest hardness is 26.88 VHN which is obtained for pan aluminum recycle. The highest impact test result is obtained on an aluminum pan material which is 40.3 J/mm2 in average and the lowest value obtained is on the gasoline engine piston material which is 1.7 J/mm2 in average. The microstructure of the gasoline piston shows finer compared to the pans after cast.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Verkhovlyuk, Anatoly, Vitaliy Dovbenko, and Ivan Chervonyi. "Analysis of aluminum scrap processing technology." ScienceRise 1, no. 12 (December 28, 2019): 47–54. http://dx.doi.org/10.15587/2313-8416.2019.189686.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lee, Ching-Hwa, Tei-Chih Cheau, and Sang-Teh Chen. "Separating aluminum from shredded automotive scrap." JOM 46, no. 5 (May 1994): 40–42. http://dx.doi.org/10.1007/bf03220695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Aluminum scrap"

1

Miller, Shannon(Shannon E. ). "Scrap aluminum as fuel." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123278.

Повний текст джерела
Анотація:
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019
Cataloged from PDF version of thesis.
Includes bibliographical references (page 32).
The new development of a low cost, low risk aluminum fuel production method has extended the viable use cases of aluminum as a fuel. Scrap aluminum has the potential to provide fuel in disaster relief zones when infrastructure is ruined and scrap metal is abundant. Additionally, converting scrap aluminum to fuel can provide an alternate option to traditional recycling methods. The following paper presents various methods used to process and treat scrap aluminum and the resulting efficacy of these methods. Four different fuel production methods are presented. Parameters such as method of reforming scrap aluminum, percent mass eutectic in fuel, eutectic coating time, and pretreatment of aluminum cans are varied. The various methods achieved a wide range of efficiencies with the best being 57%.
by Shannon Miller.
S.B.
S.B. Massachusetts Institute of Technology, Department of Mechanical Engineering
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Roy, Raja R. "Physicochemical measurements in Aluminum-Salt systems relevant to recycling of Aluminum scrap /." The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487859879941207.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kelly, Sean Michael. "Recycling of Passenger Vehicles: A framework for upcycling and required enabling technologies." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-dissertations/543.

Повний текст джерела
Анотація:
The automotive industry is expected to transition from a net-consumer to a net-producer of aluminum scrap as aluminum-intensive vehicles (AIVs, i.e., Ford’s aluminum-bodied F-150) begin to reach end-of-life (EOL). In the past, the industry has downcycled aluminum scrap to meet the consumption demands of the automotive sector. With the shift to having a large supply of this scrap in the near future, the industry needs to recover and reuse EOL Al by utilizing a circular economic model, create value via an upcycling paradigm (vs downcycling). This work establishes a platform as to how the recycling industry can be restructured to create value in our waste streams and is organized in three segments: First, an analysis of the flow of automobiles at EOL was carried out from the perspective of recovery and reuse; a recycling rate for Al has been determined, and the factors that go into the dynamics of the recycling rate have been identified. Secondly, the current state of the market was surveyed to evaluate where improvements could be made to affect material collection and recovery. The latter led to compositional characterization of aluminum auto-shred to identify the alloys in the mixture, and thereby the needed intelligent sorting systems for upcycling. Thirdly, these results were used in a dynamic material flow model to predict how the composition of auto-shred will change due to increased aluminum usage and as a function of various end-of-life processing scenarios. The outcome and impact of this work is that we have established a platform that enables the ELV recycling industry to upcycle the large amount of Al that will be available in the near future. These results will be discussed and reviewed during this presentation.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Farner, Snorre. "Remelting of Aluminium by Continuous Submersion of Rolled Scrap." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2000. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-230.

Повний текст джерела
Анотація:
When remelting aluminium scrap, metal losses due to dross generation is a common problem. Reduction of these losses will give substantial economic and environmental benefits. Dross is generated when aluminium metal oxidizes and films of oxide envelope molten metal. When a cold metal object is immersed in a melt, the heat of the melt around this is transferred so rapidly into the object that a shell of melt often solidifies to the surface of the object. When scrap with low bulk density is charged to a melt, solidification of melt on the cold scrap prevents melt from entering the cavities in the bulk of the scrap, and the bulk density remains low. Thus the scrap tends to float on the melt surface. Submersion of this scrap is important to avoid oxidation and subsequent dross generation. One solution to this is to roll scrap to a strip and feed it into the melt. This system has been examined by studying feeding of a continuous, thin aluminium plate into molten aluminium. Also, the effect of lacquer was considered, as well as feeding the plate into a launder with melt flowing along the surface of the plate. An analytical, one-dimensional, steady-state model has been developed to describe the melting and the melting mechanisms. It is based on a shell solidifying on the plate surface and a gap introducing a thermal resistance 1/hg between the shell and the plate. The thermal resistance 1/hl of the boundary layer of the melt is included. Depending on these resistances, the initial temperature of the plate and the melt temperature, a shell will form, and the plate will penetrate a distance P into the melt before it melts away. An experimental apparatus was designed and constructed to feed aluminium plate from a coil into a melt bath at a specified velocity. The plate could be withdrawn rapidly to “freeze” the situation like it was below the melt surface. The penetration depth P of the plate could be measured and shell formation observed. More than 200 experiments were performed, and by comparing the penetration depth at different feeding velocities and melt temperatures to model predictions, the two heat-transfer coefficients hl and hg could be determined by curve fitting. They agree reasonably well with values found in the literature and calculated from boundary-layer theory. In a few experiments, the plate feeding was recorded on video tape, and the cross section of some plates was studied in a microscope. Feeding of somewhat thicker plates was also tried. This gave valuable background information for comparing the experiments to the model. We believe that snap-off of the plate due to low mechanical strength around the melting temperature may affect the measurement of the penetration depth of the plate. Attempts were also made to measure the temperature in the plate by attaching thermocouples to its surface. The obtained temperature profiles in the plate were compared to the model predictions, but the method needs improvement. A criterion for formation of a shell is formulated and tested against experimental observations. Qualitative agreement is achieved. Even if there is no shell formation, it seems that there will be an air film with thermal resistance 1/hg. This indicates that the melting rate will be independent of whether a shell is formed or not. Two additional models with only one heat-transfer coefficient are also developed in order to challenge the main model. From this analysis it is found that the use of two heat-transfer coefficients is necessary to describe the system. The model should be of direct interest when feeding rolled scrap into molten aluminium. Improvement of the model can be attained by reconsidering the assumptions made, but then numerical methods must undoubtedly be applied. These new models should include the snap-off mechanism.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Davis, Jennifer. "Closing the cycles of iron, steel and aluminium in the UK on recycling rates, scrap quality and collection of dispersed scrap." Thesis, University of Surrey, 2004. http://epubs.surrey.ac.uk/843368/.

Повний текст джерела
Анотація:
The closure of anthropogenic substance and material cycles is a central theme in industrial metabolism and ecology. Its desirability is based on the analogy with biological nutrient cycles that are closed, as a requirement for their long-term sustainability. This thesis sets out to assess the level of closure of the UK iron, steel and aluminium cycles; i.e. three of the main structural 'nutrients' of the global industrial ecology. To investigate this a new time-dependent methodology for material flow analysis (MFA) has been developed. In sectors such as iron, steel and aluminium where the life-span of goods may be long and the life-spans differ between applications, it is vital to include a temporal dimension in the MFA; different products available as scrap entered use at quite different past times. In this analysis, residence time distribution theory, as developed in chemical engineering science, has been successfully adapted to simulate the delay of goods in use. The methodology has been applied to track the flows of iron, steel and aluminium through the UK economy. Historic information on the amounts of these metals going into different groups of goods, together with values for their estimated life-spans, have enabled modelling of the yearly release of iron/steel and aluminium scrap from the use phase in the form of end-of-life scrap. The iron and steel MFA carried out in this work shows that for 2001, the estimated release of end-of-life scrap and prompt scrap significantly exceeds the documented amount of scrap that is consumed within the country or is exported. This indicates a loss of end-of-life scrap of around 30% (corresponding to three and a half million tonnes). For aluminium, the analysis also shows that for 2001, the estimated amount of released prompt and end-of-life scrap is higher than the documented amount of recovered scrap. There is a loss of end-of-life scrap of about 20% (corresponding to 160 thousand tonnes). For both metals, a level of closure was achieved in the MFAs; i.e. modelled amounts of metal emerging from use could be largely balanced with documented amounts of metal being recycled and sent to landfill. The analysis shows that using a distribution of the life-span (as opposed to a fixed life-span) when modelling the delay of goods in the use phase is more important when the input of goods into use shows a significant increase or decrease over time. To achieve and maintain higher recycling rates of these metals it is vital to avoid build-up of alloying and contaminating elements in the scrap cycle. A model for exploring potential contamination build-up in the metal cycle has been developed in this work, which builds on the MFA methodology, incorporating the temporal dimension. It examines consequences for the composition of the metal flows depending on different future scenarios. A case study of exploring potential build-up of tin in the iron and steel cycle between 2000 and 2020 was performed to demonstrate the model. Not surprisingly, both increasing recycling rates and decreasing scrap exports leads to increases in the concentration of tin in metal products. By separating the scrap before remelting and choosing more carefully what type of scrap goes to which production, buildup can be avoided. The methodology presented here should prove useful in further exploring potential contamination in metal products and developing strategies how to avoid it. The MFA studies show there are still improvements to be made in recovering end-of-life iron/steel and aluminium scrap. Small products such as packaging stand out as a major challenge for these metals. Therefore, possible ways of collecting beverage cans were investigated in a case study of used aluminium beverage cans (UBCs). Two main issues explored included the questions: (1) Does transport intensity differ greatly between various types of collection systems, recovery rates and population density. and (2) How significant is the environmental impact of the collection stage compared to the whole life cycle of the can. Overall, the differences in environmental impacts between the collection systems (kerbside, can banks and deposit) are not considerable. Transport per collected unit increases with decreasing population density. However, in the context of the whole life-cycle of aluminium cans, the analysis of the systems shows that over a range of population density, the collection stage makes negligible contribution to en- vironmental burdens. The savings in environmental impact of recovering and recycling the cans after use far outweigh the impacts of collecting them. This very much highlights the need for functional and easily accessible recovery infrastructures for aluminium cans in the UK.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mlčoch, Petr. "Drapákový manipulátor." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231169.

Повний текст джерела
Анотація:
The subject of this thesis is a design of an aluminium scrap handling device. This device works in a roofed-over hall and it is stationary. Introduction to this thesis brings the usual machines used for handling of metal waste as alternatives to this device, and the reasons why these do not fulfil the customer’s demands. The work contains kinematics lay-out and force analysis. The shape and dimensions of the design derive from these chapters. The following part deals with the description of the major parts including the hydraulic system which provides all the working movements of the device. The conclusion comprises of the retroactive check of the device’s tipping load, calculation of the rollover resistance, stress analysis of the boom and the stick. The work includes the general assembly drawing and subassembly drawings of the boom and the stick.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

RODRIGUES, LEVI S. "Eletrodissolucao de aluminio e uranio metalicos em meio aquoso." reponame:Repositório Institucional do IPEN, 2001. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10898.

Повний текст джерела
Анотація:
Made available in DSpace on 2014-10-09T12:45:16Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:09:38Z (GMT). No. of bitstreams: 1 07291.pdf: 4979703 bytes, checksum: e454a20fc002a772e73a3aa1f5d86a92 (MD5)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
FAPESP:97/00725-0
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Боянівський, Владислав Петрович. "Підвищення ефективності печей для переплавки алюмінієвого брухту". Master's thesis, Київ, 2018. https://ela.kpi.ua/handle/123456789/24376.

Повний текст джерела
Анотація:
Магістерська дисертація на тему «Підвищення ефективності печей для переплавки алюмінієвого брухту»: 104 с., 35 рис., 12 табл., 4 додатки, 15 джерел. Об’єкт дослідження – піч для переплавки алюмінієвого брухту. Мета роботи – підвищення енергетичної ефективності та удосконалення конструкції печей для переплавки алюмінієвого брухту. Проаналізовані основні способи підвищення енергетичної ефективності. Наведені результати розрахунків енергетичної ефективності печі місткістю 6 т, потужністю 600 кВт, для переплвки алюмінієвого брухту. Показано, що за рахунок зменшення терміну відкриття форкамер знизилися витрати підведеної теплоти в печі на 45 %, а за рахунок зміни теплоізоляційних шарів - на 21 %. Підібрані газоспалюючі пристрої – пальники типу ГПП-5 та наведена схема їх розміщення в боковій передній стінці печі. Виконані розрахунки енергетичної та економічної ефективності переводу печі з електричного нагріву на газовий, при цьому для газового нагріву витрати підведеної теплоти зменшуються на 9 – 10 % порівняно з електричним. Розрахунками визначено, що використання газового нагріву порівняно з електричним економічно більш ефективно, оскільки витрати на природний газ в циклі плавки для модернізованої печі потужністю 600 кВт зменшуються приблизно на 10 %. Розроблена конструкція печі з нахиленим склепінням, для якої порівняно з традиційним зменшується термін плавки у середньому на 11 %, а ККД підвищується на 7 %. Для утилізації теплоти димових газів обрано односторонньо-голчастий металевий рекуператор для підігріву дуттьового повітря з площею поверхні нагріву 12 м2. В результаті встановлення рекуператора температура димових газів знижується від 800 °С до 390 °С, при цьому температура дуттьового повітря підвищується від 20 °С до 350 °С. Величина економії палива складає 16,9 %. На базі програмного забезпечення Solid Works побудовані геометричні моделі багатошарових стінок печі та отримані результати розподілу температурних полів по товщині огороджувальних конструкцій. Наведені результати співставні з експериментальними даними отриманими на реальних печах. Передбачені заходи з безпечної і комфортної роботи в приміщенні науково-дослідної лабораторії та заходи з пожежної безпеки та безпеки в надзвичайних ситуаціях. Розроблено стартап-проект за шаблоном Business Model Canvas.
Master's dissertation on "Improving the efficiency of furnaces for aluminum scrap remelting": 104 p., 35 f., 12 tables, 4 applications, 15 sources. The object of the study is an oven for aluminum scrap remelting. The purpose of the work is to increase energy efficiency and improve the design of furnaces for aluminum scrap remelting. Analyzed the main ways of improving energy efficiency. Presented the results of calculations of the energy efficiency of a 6-ton capacity kiln with a capacity of 600 kW for the remelting of aluminum scrap. It is shown that due to reduction of the opening time of the firebox, the cost of the supplied heat in the furnace decreased by 45% and due to the change of the thermal insulation layers - by 21%. Selected gas-fired devices - burners type GPP-5 and the scheme of their placement in the side of the front wall of the furnace. The calculations of the energy and economic efficiency of the furnace conversion from the electric heating to the gas have been performed, while for the gas heating the costs of the supplied heat are reduced by 9 - 10% in comparison with the electric one. Calculations have shown that the use of gas heating compared to electric is economically more efficient, since the cost of natural gas in the melt cycle for a 600 kV upgraded furnace decreases by about 10%. Developed the furnace design with an inclined vault for which the average melting time decreases by 11% compared to the traditional one, and the efficiency increases by 7%. For utilization of flue gases heat was chosen one-sided-needle metal recuperator for heating of blown air with the area of the heating surface 12 m2. As a result of the installation of the recuperator, the temperature of the flue gases is reduced from 800 °C to 390 °C, while the ambient air temperature rises from 20 ° C to 350 C. The amount of fuel savings is 16.9 %. Based on the Solid Works software, constructed geometric models of the multilayer walls of the furnace and obtained the results of the distribution of temperature fields along the thickness of the enclosing structures. The presented results are comparable to the experimental data obtained on real furnaces. Made provision for safe and comfortable work in the premises of a research laboratory and fire and safety measures in emergencies. A startup project based on the Business Model Canvas template has been developed.
Магистерская диссертация на тему «Повышение эффективности печей для переплавки алюминиевого лома» 104 с., 35 рис., 12 табл., 4 приложения, 15 источников. Объект исследования - печь для переплавки алюминиевого лома. Цель работы - повышение энергетической эффективности и совершенствование конструкции печей для переплавки алюминиевого лома. Проанализированы основные способы повышения энергетической эффективности. Приведены результаты расчетов энергетической эффективности печи вместимостью 6 т, мощностью 600 кВт, для переплавки алюминиевого лома. Показано, что за счет уменьшения срока открытия форкамер снизились расходы подведенной теплоты в печи на 45%, а за счет изменения теплоизоляционных слоев - на 21%. Выбраны газосжигающие устройства - горелки типа ГПП-5 и приведена схема их размещения в боковой передней стенке печи. Выполнены расчеты энергетической и экономической эффективности перевода печи с электрического нагрева на газовый, при этом для газового нагрева расходы подведенной теплоты уменьшаются на 9 - 10% по сравнению с электрическим. Расчетами установлено, что использование газового нагрева по сравнению с электрическим экономически более эффективно, поскольку затраты на природный газ в цикле плавки для модернизированной печи мощностью 600 кВт уменьшаются примерно на 10%. Разработана конструкция печи с наклонным сводом, для которой по сравнению с традиционным уменьшается срок плавки в среднем на 11%, а КПД повышается на 7%. Для утилизации теплоты дымовых газов выбран односторонне-игольчатый металлический рекуператор для подогрева дутьевого воздуха с площадью поверхности нагрева 12 м2. В результате установки рекуператора температура дымовых газов снижается от 800 °С до 390 °С, при этом температура дутьевого воздуха повышается от 20 °С до 350 °С. Величина экономии топлива составляет 16,9%. На базе программного обеспечения Solid Works построены геометрические модели многослойных стенок печи и получены результаты распределения температурных полей по толщине ограждающих конструкций. Приведены результаты сопоставимы с экспериментальными данными полученными на реальных печах. Предусмотрены меры по безопасной и комфортной работе в помещении научно-исследовательской лаборатории. Разработан стартап-проект по шаблону Business Model Canvas.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Aluminum scrap"

1

Aluminum recycling. Boca Raton, FL: CRC/Taylor & Francis, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Brown, R. D. Separation of cast and wrought aluminum alloys by thermomechanical processing. Pittsburgh, Pa: U.S. Dept. of the Interior, Bureau of Mines, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

International Primary Aluminium Institute. Statistics Committee Review. Aluminium scrap. 2nd ed. London: The Institute, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Guidelines for Aluminum Scrap Quality. Aluminum Assn, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schlesinger, Mark E. Aluminum Recycling. CRC, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schlesinger, Mark E. Aluminum Recycling, Second Edition. Taylor & Francis Group, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Aluminum Recycling, Second Edition. Taylor & Francis Group, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Association, Aluminum, ed. Guidelines for aluminum scrap receiving and inspection based on safety and health considerations. Washington, D.C: Aluminum Association, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

The World Market for Aluminum Waste and Scrap: A 2004 Global Trade Perspective. Icon Group International, Inc., 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Parker, Philip M. The 2007 Import and Export Market for Aluminum Waste and Scrap in India. ICON Group International, Inc., 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Aluminum scrap"

1

Pantke, K., V. Güley, D. Biermann, and A. E. Tekkaya. "Aluminum Scrap Recycling Without Melting." In Future Trends in Production Engineering, 373–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24491-9_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gesing, Adam, Christopher Stewart, Richard Wolanski, Ron Dalton, and Larry Berry. "Scrap Preparation for Aluminum Alloy Sorting." In Recycling of Metals and Engineercd Materials, 1233–49. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118788073.ch109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Xiao, Y., M. Reuter, P. Vonk, J. Vonken, H. Orbon, Th Probst, and U. Boin. "Experimental Study on Aluminum Scrap Recycling." In Recycling of Metals and Engineercd Materials, 1075–87. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118788073.ch93.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Henderson, Richard S., David V. Neff, and Chris T. Vild. "Recent Developments in Aluminum Scrap Melting Update." In Aluminium Cast House Technology, 77–86. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118806364.ch8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bruggink, P. R. "Aluminum Scrap Supply and Environmental Impact Model." In Recycling of Metals and Engineercd Materials, 809–22. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118788073.ch71.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Oberhausen, Gregory J., Anselm A. A. Christopher, and Daniel R. Cooper. "Reducing Aluminum Extrusion Transverse Weld Process Scrap." In Forming the Future, 1003–19. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_84.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kevorkijan, Varuzan, Peter Cvahte, Branko Hmelak, Sara Hmelak, Vukasin Dragojevic, Marina Jelen, Maijana Lazeta, and Uros Kovacec. "Scrap-Intensive Wrought Aluminum Alloys of Standard Quality." In Light Metals 2015, 237–42. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093435.ch41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Peterson, Warren S. "Hazards in Adding Scrap Copper to Molten Aluminum." In Essential Readings in Light Metals, 1097–101. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118647783.ch139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kevorkijan, Varužan, Peter Cvahte, Branko Hmelak, Sara Hmelak, Vukašin Dragojević, Marina Jelen, Marjana Lažeta, and Uroš Kovačec. "Scrap-Intensive Wrought Aluminum Alloys of Standard Quality." In Light Metals 2015, 237–42. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48248-4_41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Peterson, Warren S. "Hazards in Adding Scrap Copper to Molten Aluminum." In Essential Readings in Light Metals, 1097–99. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48228-6_139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Aluminum scrap"

1

Gesing, Adam J., and Aron Rosenfeld. "Composition Based Sorting of Aluminum Scrap from Aluminum Intensive Vehicles." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/960163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Buckley, Steven G., Dahu Qi, Edward Guevara, and Christopher Stipe. "Sorting of Aluminum and Scrap Metal using Laser-Induced Breakdown Spectroscopy." In Applied Industrial Optics: Spectroscopy, Imaging and Metrology. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/aio.2013.am2b.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bouzouni, Marianthi, and Spyros Papaefthymiou. "How to Design the Utilization of Larger Scrap Share in Aluminum Production." In RawMat 2021. Basel Switzerland: MDPI, 2021. http://dx.doi.org/10.3390/materproc2021005043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

De, Anindya Kanti, Achintya Mukhopadhyay, Swarnendu Sen, and Ishwar K. Puri. "A Numerical Simulation of Oxide Formation During the Melting of Aluminum in Aluminum Furnace." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41286.

Повний текст джерела
Анотація:
A significant amount of aluminum is processed by melting secondary aluminum that contains small amounts of magnesium. A major drawback of aluminum production in secondary melt furnaces is the formation of dross or aluminum oxide by the oxidation of the molten metal. Since aluminum scrap forms a major source of the metal in secondary aluminum processing, the presence of alloying elements plays a key role in the oxidation process. Here, we consider the early stage of oxidation of Al-Mg alloy, during which primarily oxidation of magnesium to magnesium oxide occurs. We have simulated the processes in an aluminum melting furnace and considered the metal oxidation to be limited by one-dimensional diffusion. Our results predict the temporal variation of the oxygen distribution and the rate of metal evaporation and formation of the metal oxide. The effects of melt composition, gas temperature and oxygen concentration in the gas are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Victor Christy, John, Abdel-Hamid I. Mourad, and Jaber Abu Qudeiri. "Tribological Analysis of Squeeze Stir Cast Recycled Aluminum MMC’s." In ASME 2021 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/pvp2021-62819.

Повний текст джерела
Анотація:
Abstract In this work, squeeze stir casting was used to produce recycled Aluminum Metal Matrix Composites (MMC’s) plates. Scrap Aluminum Alloy Wheel (SAAW) was used as a matrix and alumina as reinforcement. The produced recycled MMC plate was subjected to abrasive and sliding wear using a Two-body abrasion tester and Pin-on-Disc tester with a load of 20 N. To improve the wear resistance of the recycled MMC, graphite (1% to 4%) and SiC (3% and 6%) were added to alumina, and the results were compared. The results showed that the addition of graphite and SiC to alumina decreased the wear rate and frictional forces compared to using alumina alone as reinforcements. Also, wear rates and frictional forces further reduced by increasing the percentage of graphite to 4%, whereas increasing the SiC content increased the wear. Scanning Electron Microscopy (SEM) analysis and microstructure analysis was conducted on these samples. These results confirmed that graphite and alumina exhibited better bonding to the SAAW matrix than SiC. Since this recycled Aluminum MMC achieves a cleaner production process, it has great industrial potential, including applications in the piping industry, and its tribological properties can be boosted using graphite (4% by wt.) with alumina (5% by wt.) as reinforcements.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Christy, John Victor, Abdel-Hamid I. Mourad, and Ramanathan Arunachalam. "Sustainable Manufacturing and Optimization of Squeeze Stir Cast Rods Using Recycled Aluminum and Alumina Reinforcements." In ASME 2020 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/pvp2020-21788.

Повний текст джерела
Анотація:
Abstract This work focusses on the production of sustainable metal metrics composites MMCs. The scrap aluminum alloy wheel (SAAW) was used as a metrics and alumina is used as a reinforcement. The process parameters (namely squeeze pressure and time, die preheating temperature and stirrer speed) were optimized using Taguchi method to produce the alumina reinforced-aluminum matrix composites (AMCs). These stir-casted composites were characterized based on their hardness, tensile and compression strengths and wear/tribological properties. The results showed that addition of alumina to aluminum matrix has improved the mechanical and tribological performance. From, Taguchi analysis the optimized 9 approaches (L1 to L9) were obtained and, L5 and L6 methods showed optimum mechanical properties with 100 MPa squeeze pressure, 30 to 40 sec squeeze time, 250 to 350°C die preheating temperature and 450 to 525 rpm stirrer speed process parameters. It was found that properties are process parameters dependent. The produced AMCs have many potential industrial applications including applications in piping industry.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Narayana Swamy, Ashvin Kumar, and Evgeny Shafirovich. "Water Splitting by Aluminum Powder Obtained From Foil." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88150.

Повний текст джерела
Анотація:
The reaction of aluminum with water has the potential for on demand hydrogen generation. Conventional aluminum powders, however, react with water slowly due to a highly protective oxide layer on the particle surface. The present paper investigates the preparation of an activated aluminum powder from aluminum foil that is widely available as scrap and waste. The obtained results demonstrate that a highly reactive, fine aluminum powder can be obtained from aluminum foil by high-energy ball milling with sodium chloride. The obtained powder readily reacts with hot water, releasing hydrogen. The process includes the induction period, the middle stage where the reaction rate is the highest, and the final (saturation) stage. The effective activation energy of the reaction rate at the middle stage is in a good agreement with the literature data for Al-H2O reaction.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

De, Anindya Kanti, Achintya Mukhopadhyay, Swarnendu Sen, and Ishwar K. Puri. "Numerical Modeling of the Oxidation of Aluminum Alloy." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47519.

Повний текст джерела
Анотація:
A significant amount of aluminum is processed by melting secondary aluminum that contains small amounts of magnesium. A major drawback of aluminum production in secondary melt furnaces is the formation of dross or aluminum oxide by the oxidation of the molten metal. Since aluminum scrap forms a major source of the metal in secondary aluminum processing, the presence of alloying elements plays a key role in the oxidation process. Here, we consider the early stage during the oxidation of Al-Mg alloys during which the primary oxidation is that of magnesium to magnesium oxide occurs. We have simulated the processes in an aluminum melting furnace and considered the metal oxidation to be limited by one–dimensional diffusion. Our results predict the temporal variation of the oxygen distribution and the rate of metal evaporation and formation of the metal oxide. The effects of melt composition, gas temperature and oxygen concentration in the gas are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Christy, John Victor, Abdel-Hamid I. Mourad, and Ramanathan Arunachalam. "Mechanical and Tribological Evaluation of Aluminum Metal Matrix Composite Pipes Fabricated by Gravity and Squeeze Stir Casting." In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93857.

Повний текст джерела
Анотація:
Abstract Aluminum metal matrix composites (MMC) find many industrial applications due to its high strength, zero corrosion, light weight and durability. In this work, gravity stir casting and squeeze stir casting were used to produce MMC solid rods of length 21cm. LM25 grade, from scrap alloy wheel of car, was used as matrix and Alumina was added as reinforcements to improve the composite properties. The performed microstructure analysis showed a greater percentage of porosity for gravity casted samples. Brinell hardness tests recorded 61 and 56 for squeeze and gravity stir casting respectively. The analysis was further strengthened by conducting tensile test, compression test, abrasion and erosive wear tests on the casted pipe sections. Optical Microscopy images of squeeze casted Al MMC’s shows a homogenous and a condensed LM25 matrix with alumina reinforcements even at high abrasion rates. Squeeze casted samples exhibited higher hardness, tensile and compression strengths and wear resistance by keeping stirring time, and stirring speed constant. Squeeze stir casting was suggested for the production of Aluminum MMC pipes.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gupita, Linggar Tungga, Cornelius Satria Yudha, Anisa Raditya Nurohmah, Adrian Nur, Arif Jumari, and Agus Purwanto. "Recovery of lithium nickel cobalt aluminum oxide cathode material from battery scrap waste via sol-gel method." In INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0072903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Aluminum scrap"

1

Selby, C. L. Air-Melt Recovery of Lithium-Aluminum Scrap. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/810369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Compere, A. L., W. L. Griffith, H. W. Hayden, and D. F. Wilson. Decontamination and reuse of ORGDP aluminum scrap. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/656526.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

William Van Geertruyden. Cost-Effective Consolidation of Fine Aluminum Scrap for Increased Remelting Effieciency. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/850286.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Robert De Saro. The Development of an Innovative Vertical Floatation Melter and Scrap Dryer for Use in the Aluminum Processing Industry. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/828752.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії