Добірка наукової літератури з теми "ALUMINIUM 6061"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "ALUMINIUM 6061".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "ALUMINIUM 6061"

1

Pranav, Domadala, Sruthi Sivaram, Mukesh Nadarajan, and Ashish Selokar. "Behaviour of Heat Treated Aluminium Alloy under Hardness Test." Applied Mechanics and Materials 903 (April 2021): 99–105. http://dx.doi.org/10.4028/www.scientific.net/amm.903.99.

Повний текст джерела
Анотація:
Currently, Aluminium (Al) 6061 material is used in various industrial application and Automobile sector. Al 6061 gives good formability and excellent mechanical properties. This paper is mainly focused on the behaviour of the heat-treated aluminium alloy-6061 under the various test such as hardness test, impact test and other industrial applications. Based on the outcomes of Heat treatment, the quality of the Aluminium alloy-6061 is also compared with that of Aluminium alloy-5083, 6063. Hence, this paper helps in future research, which is based on the behaviour of the Heat-treated aluminium alloy under Hardness test.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Haga, Toshio, Hideki Inui, Ryoji Nakamura, Shinji Kumai, and Hisaki Watari. "Strip Casting of 6061 and Recycled 6061 Alloy by an Unequal Diameter Twin Roll Caster." Advanced Materials Research 264-265 (June 2011): 1911–16. http://dx.doi.org/10.4028/www.scientific.net/amr.264-265.1911.

Повний текст джерела
Анотація:
A 6061 aluminium alloy and an alloy with increased Fe content, representing recycled 6061 aluminium alloy were cast into strips at speed of 30m/min by an unequal diameter twin roll caster. The Fe content of 6061 aluminium alloy and the model of recycled 6061 aluminium alloy was 0.36 mass% and 0.59 mass%, respectively. Ripple marks, which are typical surface defect of roll cast strips, did not occur on the surface of both as-cast strips. Fe content did not influence the surface condition of the roll-cast-strip. The as-cast strip was cold rolled down to 1 mm, T4 heat treatment was conducted, and then subjected to180 degrees bending test. The result of 180 degrees bending test shows that roll cast 6061 aluminium alloy and 6061 aluminium alloy with increased Fe as recycled had bending ability as same as that of roll-cast 6022 aluminium alloy. In the strip cast by the twin roll caster of the present study, increased Fe content did not influence on the result of the180 degrees bending test.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, You Bin, and Jian Min Zeng. "The Effects of Mn Addition on Microstructure and Properties in 6061 Aluminium Alloy." Advanced Materials Research 399-401 (November 2011): 1838–42. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.1838.

Повний текст джерела
Анотація:
The effects of Mn addition on the microstructure and hardness of 6061 aluminum alloy were studied by means of scanning electron microscope (SEM) , energy dispersive X-Ray Analysis (EDX), X-ray diffraction (XRD) and hardness tester in this work. The results shows that rod and fishbone AlSiFeMn phase will be formed in the alloy with Mn addition in 6061 aluminium alloy, and the AlSiFeMn phase increases with the increasing of Mn content . By the mean of XRD, the Al4.07 Mn Si0.74 phase is found in the 6061 aluminium alloy from 0.7% to 1.5% Mn. The hardness increases with the increasing of Mn contents both for as-cast and for T6 heat treatment. However, the hardness growth rate for as-cast is much more than that for T6 heat treatment at the same Mn addition in the 6061 alloy. Mn has a little effect on the hardness for T6 heat treatment in 6061 alloy.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kou, L. Y., W. Y. Zhao, X. Y. Tuo, G. Wang, and C. R. Sun. "Effect of stress triaxiality on fracture failure of 6061 aluminium alloy." Journal of Mechanical Engineering and Sciences 14, no. 2 (June 23, 2020): 6961–70. http://dx.doi.org/10.15282/jmes.14.2.2020.33.0545.

Повний текст джерела
Анотація:
The effect of stress triaxiality on mechanical properties of 6061 aluminium alloy extruded profiles with different specimens was studied. Macroscopic mechanical property of the various specimen was got through universal testing machine. At the same time, stress triaxiality of different specimens was obtained using the method of finite element simulation. And then the fracture strain of each specimen was outputted by DIC. Fracture modes of 6061 aluminium alloy with different stress triaxiality were studied by SEM. The results show that taking tensile samples as comparison, the cross-sectional area of some notched specimens decreases and the peak load increases. Among them, the minimum cross-sectional area of the R5 central hole specimen is 20% smaller than that of the tensile sample, and the peak load is 28% larger. The fracture strain of the alloy increased with the decrease of stress triaxiality. For the same notch specimens, along the path direction, stress triaxiality of R5 notch specimens, R5 Center-hole specimens and R20 Arc notched specimens increased 47%, 17.8%, 25% respectively. According to the analysis of fracture morphology, the main fracture of 6061 aluminium alloy was ductile fracture. When the stress triaxiality is large, the dimples are small and sparsely distributed, and when the stress triaxiality is small, the dimple is large and evenly distributed. Finally, the Johnson-Cook model material parameters of 6061 aluminum alloy are fitted based on the tensile test results of different shapes of specimens, which can accurately simulate the elastic-plastic deformation and fracture instability of 6061 aluminum alloy under different stress states.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ab Rahim, Syaiful Nizam, and Mohd Amri Lajis. "Effects on Mechanical Properties of Solid State Recycled Aluminium 6061 by Extrusion Material Processing." Key Engineering Materials 730 (February 2017): 317–20. http://dx.doi.org/10.4028/www.scientific.net/kem.730.317.

Повний текст джерела
Анотація:
In this research, mechanical properties of recycled 6061 aluminium alloy, produced by solid state recycling through extrusion, were compared to as-received billets. Aluminum 6061 chips were extruded using a hot extrusion machine. The effects of extrusion parameters on the mechanical properties of the produced recycled 6061 aluminium alloy were investigated. The objective of the study was to analyze the mechanical and structural features of the alloy after plastic consolidation. The extrusion processes were conducted at different preheat temperatures and preheat times, while the ram speed was kept constant. The findings of the study highlighted the potential of combining the extrusion process parameters as an efficient processing route for production of high quality and high-performance type of extruded billets. Tensile test results showed that, material extruded at 550°C exhibited better mechanical properties compared to that extruded at 400°C. The higher temperature resulted in a higher tensile strength being produced, at the expense of a trade-off in ductility. Overall, it was revealed that, the ultimate tensile strength (UTS) and elongation (ETF) of the produced recycled 6061 aluminium through extrusion exhibited mechanical and structural properties comparable to those of the as-received billets.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rinderer, Barbara. "The Metallurgy of Homogenisation." Materials Science Forum 693 (July 2011): 264–75. http://dx.doi.org/10.4028/www.scientific.net/msf.693.264.

Повний текст джерела
Анотація:
Homogenisation of aluminium alloys is the high temperature heat treatment (450-600 °C) performed after casting and consists of three distinct steps; heat-up, soak and cooldown. This review considers the metallurgical importance of homogenisation and how it impacts on the further processing and final properties of some aluminium alloys, with emphasis on homogenisation of extrusion billet. The introduction of continuous homogenisation has significantly improved the temperature uniformity of homogenisation allowing the soak time to be minimised. Batch homogenisation, however, provides flexibility in practices tailored for different aluminium alloys. Soft 6060 and 6063 alloys are best homogenised at a higher soak temperature than harder alloys such as 6061 and 6082. The homogenisation cooling rate can also impact on the behaviour of the billet during extrusion processing as well as affecting the final mechanical properties. An understanding of the microstructural changes occurring as a result of homogenisation allows the cast house to ensure that the billet processing meets the customer requirements.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pradani, Yayi Febdia, Mochamad Sulaiman, and Saiful Hardiyanto. "ANALISIS TINGKAT KEKERASAN ALUMINIUM 6061 BERDASARKAN VARIASI MEDIA PENDINGIN PADA PROSES PACK CARBURIZING." Steam Engineering 2, no. 1 (September 1, 2020): 1–10. http://dx.doi.org/10.37304/jptm.v2i1.1663.

Повний текст джерела
Анотація:
Aluminium banyak digunakan sebagai bahan pembuat komponen mesin seperti piston, engine block, gear dan komponen lainnya karena sifat kekerasan dan keuletannya. Permasalahan yang sering timbul pada kekerasan permukaan adalah pengaruh dari gaya luar berupa benturan yang menyebabkan terjadinya deformasi. Penelitian ini bertujuan untuk mengetahui pengaruh media pendingin terhadap tingkat kekerasan aluminium 6061 dengan proses pack carburizing. Bahan eksperimen pada penelitian ini menggunakan serbuk arang berukuran 80 mesh, yang dipanaskan menggunakan tungku furnace hingga 530°C dengan waktu penahanan 180 menit. Kemudian dilakukan tiga variasi quenching dengan air sumur, oli SAE 40 dan udara. Pengujian aluminium 6061 dilakukan sebelum dan sesudah perlakuan carburizing. Pengujian yang dilakukan yaitu pengujian kekerasan mikro Vickers, struktur mikro dan ketebalan pada lapisan karbon. Hasil penelitian menunjukan nilai kekerasan aluminium 6061 tanpa perlakuan sebesar 60,37 kg/mm2. Pasca perlakuan carburizing didapatkan nilai kekerasan 41,53 kg/mm2, 36,01 kg/mm2 dan 33,01 kg/mm2. Penurunan nilai kekerasan aluminium 6061 setelah diberi perlakuan carburizing disebabkan karena berubahnya struktur mikro dari aluminium 6061 setelah perlakuan carburizing dibandingkan dengan raw material. Hasil foto mikro pada spesimen uji menunjukkan bahwa setelah proses carburizing didominasi oleh fasa tidak stabil yang homogen, sehingga dapat menyebabkan nilai kekerasan menurun.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Luo, Daming, Fan Li, and Guohua Xing. "Corrosion resistance of 6061-T6 aluminium alloy and its feasibility of near-surface reinforcements in concrete structure." REVIEWS ON ADVANCED MATERIALS SCIENCE 61, no. 1 (January 1, 2022): 638–53. http://dx.doi.org/10.1515/rams-2022-0048.

Повний текст джерела
Анотація:
Abstract The durability of concrete structures is often reduced owing to the corrosion of reinforcement in an aggressive environment. Ordinary reinforcement methods, such as wrapping section steel or steel plate, are also vulnerable to corrosion. Using 6061-T6 aluminium alloy as near-surface reinforcement of the concrete structure is a feasible method. In this study, the corrosion resistance of 6061-T6 aluminium alloy bars was studied by simulating the coastal environment, atmospheric environment, and concrete internal environment with chloride solution, simulated acid rain solution, and saturated Ca(OH)2 solution. The corrosion rate of the 6061-T6 aluminium alloy in the above environments was tested using a weight loss method, and its corrosion resistance was evaluated using the metal corrosion resistance classification standard. Based on the electrochemical reaction mechanism, the polarisation properties and AC impedance spectra of steel and 6061-T6 aluminium alloy were compared, and the corrosion resistance mechanisms of steel and the 6061-T6 aluminium alloy in the above corrosive environments were obtained. The results show that the 6061-T6 aluminium alloy has better corrosion resistance than steel bars in chloride and atmospheric environments, with corrosion currents of 0.012 and 0.037 µA·cm−2, and 8-day corrosion rates of 0.051 and 0.031 mm·a−1, respectively. However, owing to the activity of the aluminium alloy, its corrosion resistance in an alkaline environment inside concrete is poor; the corrosion current is 0.22 µA·cm−2 and the 8-day corrosion rate is 16.166 mm·a−1. The research results can provide a reference for applying aluminium alloy bars as external prestressed concrete bars and near-surface steel bars.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lubis, M. Sobron Yamin, Abrar Riza, and Dani Putra Agung. "PENGARUH PARAMETER PEMESINAN TERHADAP KEKASARAN PERMUKAAN MATERIAL ALUMINIUM 6061 DAN 7075 PADA PROSES SEKRAP." Jurnal Muara Sains, Teknologi, Kedokteran dan Ilmu Kesehatan 4, no. 1 (June 1, 2020): 145. http://dx.doi.org/10.24912/jmstkik.v4i1.3414.

Повний текст джерела
Анотація:
Aluminum Alloy metal is widely used in making lightweight construction on machinery. To produce a flat metal alluminium alloy surface, a shearing machine is needed. There are two types of aluminum materials that are commonly used, namely Aluminum 6061 and 7075. In the process of forming metals using a scrap machine, it is important to determine the machining parameters because this is closely related to the surface conditions of the workpiece produced. Difficulties in determining the appropriate combination of machining parameters often result in work surface conditions that are not as expected or have a high roughness. With the right parameters, the quality of surface roughness can be predicted as planned before the machining process. The cutting parameters are cutting speed and cutting depth. In this study the cutting speed used varied, namely 4.68 m / min, 7.30 m / min, 11.70 m / min, 18.29 m / min with a cutting depth of 0.50 mm, 1.00 mm and 1 , 50 mm, to cut aluminum 6061 and 7075 using the HSS chisel. In the initial step, do the machine tool settings, place the chisel on the chisel holder, place the workpiece in vise, adjust the cutting speed, depth of feed, and perform machining. After machining, a surface roughness measurement is carried out using a surface test. From the results of the study it was found that the value of surface roughness is directly proportional to the depth of cut. The value of surface roughness is inversely proportional to cutting speed and hardness of the material. Determination of cutting speed through empirical equations based on surface roughness: aluminum alloy 6061 is: Ra = 23,366e-0,146Vc (µm) and aluminum alloy 7075 are: Ra = 13,482e-0.109Vc (µm). ABSTRAK Bahan logam aluminium Alloy banyak digunakan dalam pembuatan konstruksi ringan pada mesin-mesin. Untuk menghasilkan permukaan logam alluminium alloy yang rata, maka diperlukan mesin sekrap. Terdapat dua jenis material aluminium yang umum digunakan yaitu Aluminium 6061 dan 7075. Pada proses pembentukan logam dengan menggunakan mesin sekrap, adalah penting untuk menentukan parameter pemesinan Karena hal ini berkaitan erat dengan kondisi permukaan benda kerja yang dihasilkan. Kesulitan dalam menentukan kombinasi parameter pemesinan yang sesuai seringkali mengakibatkan kondisi permukaan benda kerja kerja yang tidak sesuai diharapkan atau memiliki kekasaran yang tinggi. Dengan parameter yang tepat, kualitas kekasaran permukaan dapat diprediksi seperti yang direncanakan sebelum proses pemesinan. Parameter pemotongan tersebut adalah kecepatan pemotongan dan kedalaman potong. Pada penelitian ini kecepatan pemotongan yang digunakan bervariasi yaitu 4,68 m/min,7,30 m/min, 11,70 m/min,18,29 m/min dengan kedalaman pemotongan 0,50 mm,1,00 mm dan 1,50 mm, untuk memotong aluminum 6061 dan 7075 dengan menggunakan mata pahat HSS.. Pada langkah awali dilakukan setting mesin perkakas, meletakkan mata pahat pada pemegang mata pahat, meletakkan benda kerja pada ragum, melakukan settingg untuk kecepatan pemotongan, kedalaman pemakanan, dan melakukan pemesinan. Setiap kali selesai pemesinan, dilakukan pengukuran kekasaran permukaan dengan menggunakan alat ukur surface test. Dari hasil penelitian diperoleh bahwa nilai kekasaran permukaan berbanding lurus dengan kedalaman potong. Nilai kekasaran permukaan berbanding terbalik dengan kecepatan potong dan kekerasan material. Penentuan kecepatan potong melalui persamaan empiris berdasarkan kekasaran permukaan: aluminium alloy 6061 adalah: Ra = 23.366e-0.146Vc(µm) dan aluminium alloy 7075 adalah: Ra = 13.482e-0.109Vc(µm).
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kareem, Ansar, Jaber Abu Qudeiri, Asarudheen Abdudeen, Thanveer Ahammed, and Aiman Ziout. "A Review on AA 6061 Metal Matrix Composites Produced by Stir Casting." Materials 14, no. 1 (January 1, 2021): 175. http://dx.doi.org/10.3390/ma14010175.

Повний текст джерела
Анотація:
In recent years, many alloys as well as composites of aluminium were developed for enhanced material performance. AA 6061 is an aluminium alloy that has extensive applications due to its superior material characteristics. It is a popular choice of matrix for aluminium matrix composite (AMC) fabrication. This study provides a review on AA 6061 aluminium alloy matrix composites produced through the stir-casting process. It focusses on conventional stir-casting fabrication, process parameters, various reinforcements used, and the mechanical properties of the AA 6061 composites. Several research studies indicated that the stir-casting method is widely used and suitable for fabricating AA 6061 composites with reinforcements such as SiC, B4C, Al2O3, TiC, as well as other inorganic, organic, hybrid, and nanomaterials. The majority of the studies showed that an increase in the reinforcement content enhanced the mechanical and tribological properties of the composites. Furthermore, hybrid composites showed better material properties than single reinforcement composites. The usage of industrial and agricultural residues in hybrid composites is also reported. Future studies could focus on the fabrication of AA 6061 nanocomposites through stir casting and their material characterisation, since they have great potential as advanced materials.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "ALUMINIUM 6061"

1

Wiest, Anthony D. "Thermal cycling behavior of unidirectional and cross-plied P100 Gr/6061 aluminium composites." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/24071.

Повний текст джерела
Анотація:
Approved for public release; distribution is unlimited
The thermal strain response of as-cast samples of 40% PI 00 graphite fiber reinforced 6061 Al composites in the unidirectionally reinforced and the [0/90] cross-plied configuration was studied. Thermal strain hysteresis and residual plastic strain were observed, both changing with continued cycling. The compressive residual plastic strain is attributable primarily to creep deformation due to compressive residual stress in the matrix at elevated temperature. The role of matrix creep in the heating rate dependence of the strain response was studied by measuring strains under isothermal conditions in the absence of applied stresses. Damage mechanisms operative in the composites during thermal cycling, and the impact of ply constraint on the strain response were also evaluated.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Salvo, Luc. "Comportement au durcissement structural de matériaux composites à matrice aluminium renforcée de particules céramiques : cas des systèmes 6061/SIC et 6061/Al2O3." Grenoble INPG, 1992. http://www.theses.fr/1992INPG0064.

Повний текст джерела
Анотація:
Nous avons entrepris une etude systematique sur le durcissement structural de materiaux composites a matrice metallique renforces de particules ceramiques sur deux plans: la precipitation et le comportement en durete. Tout au long de cette etude, nous nous sommes attaches a comparer le comportement a la precipitation et au durcissement structural des cmm avec la matrice non renforcee suivant la temperature de revenu principalement. Dans la matrice comme dans les cmm, une temperature critique, delimitant deux domaines de precipitation, a ete mise en evidence. La cinetique de precipitation est toujours acceleree dans les cmm par rapport a la matrice non renforcee, d'autant plus que la fraction volumique de renforts est importante. Ces resultats sont interpretes en terme de germination et croissance des precipites differentes dans les cmm du fait de la presence d'une forte densite de dislocations. L'etude de l'evolution comparee de la durete en fonction du temps de revenu des composites et de la matrice non renforcee indique qu'en dessous de la temperature critique, les cinetiques de durcissement des materiaux sont semblables, alors qu'au-dessus, les composites presentent un maximum de durete plus tot. Ces effets sont correles a l'etat de precipitation
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rekik, Wissal. "Etude de la ténacité d'une soudure en undermatch : Application à la tenue mécanique de la jonction soudée FE en Al 6061-T6." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2016. http://www.theses.fr/2016ESMA0015/document.

Повний текст джерела
Анотація:
Dans le cadre de la démonstration de l’intégrité des composants nucléaires les plus sensibles, une analyse de la présence d’un défaut potentiel de type fissure peut être requise par la sureté nucléaire. Ceci est particulièrement le cas en présence de jonctions soudées. Pour assurer un conservatisme de cette analyse, la position du défaut postulé doit être la plus pénalisante possible. Les analyses réalisées pour des démonstrations similaires sur des structures en acier reposent sur une approche de type mono matériau utilisant le comportement du métal de base. Cette approche est la plus pénalisante dans le cas d’une soudure en overmatch mais doit être remise en cause dans le cas d’une soudure en undermatch. Dans ce cadre, cette thèse propose une méthodologie expérimentale et numérique permettant l’identification de la configuration la plus pénalisante vis-à-vis de la mécanique de la rupture d’une soudure en undermatch. L’application de cette méthode a été réalisée sur une soudure en faisceau d’électrons en Al6061-T6. Un gradient de propriétés mécaniques le long de la jonction soudée a été dans un premier temps identifié permettant la conduite d’une analyse fine basée sur une approche multimatériau. Dans un second temps, le comportement en ténacité de la jonction soudée a été étudié sur éprouvettes CT. La transférabilité du paramètre J à l’amorçage à une autre géométrie d’éprouvette a été démontrée ce qui constitue une base importante pour l’hypothèse de transférabilité vers des structures. Pour finir, une étude numérique sur un tube de grandes dimensions avec un défaut semi-elliptique a été développée en prenant en compte les contraintes résiduelles de soudage. Les résultats montrent que la zone affectée thermiquement à 13 mm du centre de la soudure considérée est la plus sensible en mécanique de la rupture, ceci remet par conséquent en question les méthodes traditionnelles menées dans des analyses à la rupture brutale qui consistent à considérer un défaut dans la zone fondue
For the demonstration of the integrity of the most sensitive nuclear components, conventional defects, as cracks for example, must be considered within the design step as required by the nuclear safety authority. This phase is particularly crucial for dimensioning of welded structures. To ensure a conservative prediction, the position of the initial crack within the welded joint must be the most detrimental in fracture behavior. Commonly used analyzes consider homogeneous structure with the behavior of the base metal of the welded joint, considered as the weakest metallurgical zone in the case of an overmatched weld. In contrast, similar analysis is not conservative in case of undermatched weld. The thesis contributes by the development of an experimental and numerical methodology allowing the identification of the detrimental metallurgical zone in fracture behavior of an undermatched welded joint. The methodology proposed is applied to an electron beam welded joint on Al 6061-T6. To reach this goal, the gradient of the mechanical behavior along the welded joint was first identified. This is particularly interesting to conduct an advanced analysis based on a multimaterial approach. In a second step, the fracture behavior of the welded joint was studied on CT specimen. The transferability of the J integral at initiation was approved on another geometry: this represents an important foundation for the transferability assumption to structure. Finally, a numerical analysis on full scale tube was developed. Residual welding stresses and structural effects were considered. The results demonstrate that the heat affected zone located at 13 mm from the middle of the welded joint is the most detrimental zone for fracture analysis. This contradicts the conventional methods conducted on fracture analysis which consider a conventional defect within the fusion zone
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Béal, Maxime. "Compréhension et maîtrise de la mise en œuvre par fabrication additive (LPBF) d'un alliage d'aluminium à basse teneur en silicium pour l'aéronautique." Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2022. http://www.theses.fr/2022ECDL0026.

Повний текст джерела
Анотація:
La fabrication additive devenant de plus en plus mature a montré sa capacité à être une technologie de rupture en matière d’innovation industrielle. En effet, la fabrication additive permet d’obtenir une pièce quasi fonctionnelle à partir d’un fichier 3D. La fusion laser sur lit de poudre (Laser Powder Bed Fusion - LPBF) est l’un des procédés de fabrication additive. La société Thales® est très fortement intéressée par ce type de procédé et souhaite le développement du LPBF pour accentuer sa compétitivité sur le marché aéronautique. Un alliage d’aluminium a été développé pour le procédé LPBF et breveté par Thales en 2019. Les travaux de thèse présentés dans ce manuscrit ont comme objectif de poursuivre les travaux menés sur cet alliage et de faciliter le processus d’industrialisation de celui-ci par le procédé LPBF pour des pièces destinées à l’aéronautique et l’aérospatiale. Le manuscrit est divisé en 4 parties, la première traitant de la bibliographie et des méthodes utilisées. La deuxième partie aborde l’interaction laser matière et l’optimisation de la rugosité. La partie numéro trois traite du cycle de vie de la poudre en analysant l’effet de la réutilisation et du stockage sur le procédé. Enfin la quatrième et dernière partie aborde l’optimisation de la composition chimique de l’alliage et la recherche d’un traitement thermique adapté. L’optimisation de l’interaction laser a montré la relation entre les paramètres utilisés et la géométrie des bains de fusion formés. Il a également été montré qu’il était plus difficile de mettre en oeuvre l’alliage 6061-Zr qu’un alliage d’aluminium de fonderie type Al-Si. Ce chapitre a également mis en lumière le phénomène de focal shift et l’importance de l’altitude plateau impactant fortement le procédé. Par la suite une optimisation de la rugosité a été effectuée en appliquant des contours. Un très bon état de surface est obtenu, néanmoins, cette méthode a été éprouvée sur des géométries plus complexes que des cubes et a montré ces faiblesses. Le traitement de la poudre a ensuite été abordé. La réutilisation de la poudre conduit à une hausse du taux d’oxygène et une modification chimique de la poudre. Le tamisage est essentiel pour garantir la granulométrie et éviter ces phénomènes. Le stockage des poudres est critique pour les applications visées. En effet, le stockage tel que réalisé dans cette étude a montré un fort impact sur le procédé réduisant la densité, l’allongement et la résilience des pièces tout en dégradant l’état de surface. Le brevet concernant le 6061-Zr étant assez large, le taux de Zirconium a été optimisé afin de répondre le plus possible au cahier des charges tout en évitant le phénomène de fissuration à chaud. Par la suite, des traitements thermiques ont été appliqués sur des alliages comportant différents taux de Zirconium afin d’observer l’impact de ces traitements en fonction de la température, de la durée et de la présence plus ou moins importante de Zirconium. L’ensemble de ces résultats a permis de lever des verrous scientifiques et facilite ainsi la progression de cette technologie vers une industrialisation maîtrisée pour des applications aéronautiques et spatiales
Additive manufacturing is becoming more and more mature and has shown its capacity to be a disruptive technology in terms of industrial innovation. Indeed, additive manufacturing allows to obtain a functional part from a 3D file. Laser Powder Bed Fusion (LPBF) is one of the additive manufacturing processes. Thales® is very interested in this type of process and would like to develop LPBF to increase its competitiveness in the aeronautical market. An aluminium alloy has been developed for the LPBF process and patented by Thales in 2019. The objective of the thesis work presented in this manuscript is to continue the work carried out on this alloy and to facilitate the industrialisation process of this alloy by the LPBF process for aeronautical and aerospace parts. The manuscript is divided into 4 parts, the first one focusing on the bibliography and the methods used. The second part deals with laser-material interaction and roughness optimisation. Part three deals with the life cycle of the powder by analysing the effect of reuse and storage on the process. Finally, the fourth and last part focuses on the optimisation of the chemical composition of the alloy and the search for a suitable heat treatment. The optimisation of the laser interaction showed the relationship between the parameters used and the geometry of the molten pool formed. It was also shown that it was harder to use the 6061-Zr alloy than a cast aluminium alloy such as Al-Si alloy. This chapter also highlighted the focal shift phenomenon and the importance of the plate altitude which has a strong impact on the process. Subsequently, a roughness optimisation was carried out by applying contours. A very good surface finish was obtained, however, this method was tested on more complex geometries than cubes and showed its weaknesses. The life cycle of the powder was then discussed. The reuse of the powder leads to an increase in oxygen content and chemical modification of the powder. Sieving is essential to ensure particle size and avoid these phenomena. The storage of powders is critical for the intended applications. Indeed, storage as carried out in this study has shown a strong impact on the process reducing the density, elongation and resilience of the parts while degrading the surface finish. As the patent for 6061-Zr is quite broad, the zirconium content was optimised to meet the specifications as much as possible while avoiding hot cracking. Subsequently, heat treatments were applied to alloys with different levels of Zirconium in order to observe the impact of these treatments as a function of temperature, duration and the level of Zirconium content. All of these results helped to remove scientific obstacles and thus facilitate the progression of this technology into controlled industrialisation for aeronautical and space applications
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shen, Yang. "Comportement et endommagement des alliages d’aluminium 6061-T6 : approche micromécanique." Thesis, Paris, ENMP, 2012. http://www.theses.fr/2012ENMP0089/document.

Повний текст джерела
Анотація:
L'alliage d'aluminium 6061-T6 a été retenu pour la fabrication du caisson-coeur du futur réacteur expérimental Jules Horowitz (RJH). L'objectif de cette thèse est de comprendre et modéliser le comportement et l'endommagement de cet alliage en traction et en ténacité, ainsi que l'origine de l'anisotropie d'endommagement. Il s'agit de faire le lien entre la microstructure et l'endommagement du matériau à l'aide d'une approche micromécanique. Pour ce faire, la microstructure de l'alliage, la structure granulaire et es précipités grossiers ont été caractérisés en utilisant des analyses surfaciques (Microscopie Électronique à Balayage) et volumiques (tomographie/laminographie X). Le mécanisme d'endommagement a été identifié par des essais de traction sous MEB in-situ, des essais de tomographie X ex-situ et des essais de laminographie X in-situ pour différents taux de triaxialité. Ces observations ont notamment permis de montrer que la germination des cavités sur les précipités grossiers de type Mg2Si est plus précoce que sur les intermétalliques au fer. Le scénario identifié et les grandeurs mesurées ont ensuite permis de développer un modèle d'endommagement couplé, basé sur l'approche locale de la rupture, de type GTN intégrant la germination, la croissance et la coalescence des cavités. Le lien entre l'anisotropie d'endommagement et de forme/répartition des précipités a pu être montré. Cette anisotropie microstructurale modifie les mécanismes : Pour une sollicitation dans le sens long l'endommagement est majoritairement intergranulaire alors que dans le sens travers on observe un endommagement mixte intergranulaire et intragranulaire. La prise en compte des mesures de l'endommagement dans la simulation a permis d'expliquer l'anisotropie d'endommagement. Ce travail servira de référence pour les études futures qui seront menées sur le matériau irradié
The AA6061-T6 aluminum alloy was chosen as the material for the core vessel of the future Jules Horowitz testing reactor (JHR). The objective of this thesis is to understand and model the tensile and fracture behavior of the material, as well as the origin of damage anisotropy. A micromechanical approach was used to link the microstructure and mechanical behavior. The microstructure of the alloy was characterized on the surface via Scanning Electron Microscopy and in the 3D volume via synchrotron X-ray tomography and laminography. The damage mechanism was identified by in-situ SEM tensile testing, ex-situ X-ray tomography and in-situ laminography on different levels of triaxiality. The observations have shown that damage nucleated at lower strains on Mg2Si coarse precipitates than on iron rich intermetallics. The identified scenario and the in-situ measurements were then used to develop a coupled GTN damage model incorporating nucleation, growth and coalescence of cavities formed by coarse precipitates. The relationship between the damage and the microstructure anisotropies was explained and simulated
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Flament, Camille. "Etude des évolutions microstructurales sous irradiation de l'alliage d'aluminium 6061-T6." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI074/document.

Повний текст джерела
Анотація:
L’alliage d’aluminium 6061-T6 a été choisi comme matériau de structure du casier et du caisson du cœur de réacteur Jules Horowitz (RJH). Transparent aux neutrons, il doit ses bonnes propriétés mécaniques à la précipitation de fines aiguilles nanométriques appelées béta'' contenant Mg et Si et à la présence de dispersoïdes Al(Cr,Fe,Mn)Si jouant un rôle important dans la résistance à la recristallisation. Le caisson et le casier seront soumis à de forts flux neutroniques à une température avoisinant les 50°C. L’objectif de cette thèse est d’étudier les évolutions microstructurales de l’alliage sous irradiation et plus particulièrement la stabilité des précipités. Pour cela, des études analytiques par irradiations in-situ et ex-situ aux électrons et aux ions à température ambiante et forte dose ont été réalisées ainsi qu’une étude du comportement des précipités sous irradiations aux neutrons à faible dose. La caractérisation fine des précipités par Microscopie Electronique en Transmission a montré que les dispersoïdes sont stables sous irradiation, cependant ils présentent une structure cœur/coquille avec un cœur riche en (Fe, Mn) et une coquille riche en Cr qui s’accentue sous irradiation par accélération de la diffusion. En revanche, les nano-phases type béta’’ sont déstabilisées par l’irradiation. Elles sont dissoutes par irradiation aux ions au profit de l’apparition d’amas riches en Mg, Si, Al, Cu et Cr participant à l’augmentation du durcissement de l’alliage, tandis qu’elles tendent à se transformer en précipités cubiques sous irradiation aux neutrons
The 6061-T6 Aluminium alloy, whose microstructure contains Al(Fe,Mn,Cr)Si dispersoids and hardening needle-shaped beta” precipitates (Mg, Si), has been chosen as the structural material for the core vessel of the Material Testing Jules Horowitz Nuclear Reactor. Because it will be submitted to high neutron fluxes at a temperature around 50°C, it is necessary to study microstructural evolutions induced by irradiation and especially the stability of the second phase particles. In this work, analytical studies by in-situ and ex-situ electron and ion irradiations have been performed, as well as a study under neutron irradiation. The precipitates characterization by Transmission Electron Microscopy demonstrates that Al(Fe,Mn,Cr)Si dispersoids are driven under irradiation towards their equilibrium configuration, consisting of a core/shell structure, enhanced by irradiation, with a (Fe, Mn) enriched core surrounded by a Cr-enriched shell. In contrast, the (Mg,Si) beta” precipitates are destabilized by irradiation. They dissolve under ion irradiation in favor of a new precipitation of (Mg,Si,Cu,Cr,Al) rich clusters resulting in an increase of the alloy’s hardness. beta’’ precipitates tend towards a transformation to cubic precipitates under neutron irradiation
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Benoit, Alexandre. "Développement du soudage MIG CMT pour la réparation de pièces aéronautiques. Application aux pièces en alliage base aluminium 6061." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112308/document.

Повний текст джерела
Анотація:
Cette étude répond à une demande industrielle de réparation d’une pièce aéronautique en alliage d’aluminium 6061 à l’aide d’un procédé de soudage à l’arc. La première partie est consacrée à la comparaison des procédés Metal Inert Gas (MIG), MIG pulsé, Tungsten Inert Gas et MIG Cold Metal transfer (CMT). C’est ce dernier procédé qui a été sélectionné pour ses aptitudes particulières, comme son bon contrôle des paramètres et le faible endommagement produit dans le métal de base. Puis, deux métaux d’apport ont été testés – les alliages 5356 et 6061 – avec deux stratégies de réparation : le soudage et le rechargement. Les résultats d’essais mécaniques ont démontré que le rechargement avec l’aluminium 5356 est l’option la plus adaptée pour cette application. Les essais sur pièce réelle ont prouvé la pertinence de cette approche.La zone affectée thermiquement générée, dans l’alliage 6061, par les procédés de soudage à l’arc a également été caractérisée. Il a été mis en évidence une variation de la microstructure associée aux changements de propriétés mécaniques de cette zone. Enfin, les essais exploratoires de soudage homogène à l’arc, c’est-à-dire, avec le métal d’apport en 6061, ont prouvé qu’il était possible, dans certaines conditions, de souder sans générer de fissuration, bien que, cet aluminium soit réputé comme étant insoudable de cette manière
This study responds to an industrial demand of repair using an arc welding process. It concerns an aeronautical piece made in 6061 aluminium alloy. The first part of the study is devoted to the comparison of processes Metal Inert Gas (MIG), pulsed MIG, Tungsten Inert Gas and MIG Cold Metal Transfer (CMT). It is the latter process that was selected for its special abilities, such as its good control of parameters and the low damaging produced in the base metal. Then, two filler alloys were tested – 5356 and 6061 aluminium alloys– with two repairing strategies : welding and building up. The results of mechanical tests showed that building up with aluminum 5356 is most suitable option for this application. The trials on the real piece showed the relevance of this approach.The heat affected zone generated by the arc welding process in the 6061 base metal was also characterized. It was shown a varaition of microstructure associated with the change of mechanical properties in this zone. Finally, exploratory trials of homogeneous arc welding, i.e., with the 6061 filler alloy showed that it was possible, with certain conditions, to weld without generating weld cracking, although, this aluminium is deemed unweldable by this way
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jalali, Alireza. "Performance of minimum quantity cooling (MQC) when turning aluminium alloy 6061-T6 : surface roughness, tool temperature and aerosol emission." Mémoire, École de technologie supérieure, 2013. http://espace.etsmtl.ca/1206/1/JALALI_Alireza.pdf.

Повний текст джерела
Анотація:
Aujourd'hui, les industries désirent réaliser la meilleure finition de surface et un taux élevé d'usinage. Ces facteurs sont utilisés pour évaluer la performance des processus d'usinage. Lorsque le taux d'enlèvement de matière augmente lors de l'usinage, la température de l'outil s’élève aussi et le refroidissement devient nécessaire. Pour réduire les effets de la chaleur sur les outils de coupe et la durée de vie des machines, une application efficace et rentable du fluide de coupe est nécessaire. En outre, pour faire face aux questions environnementales et de sécurité au travail, les nouvelles méthodes de lubrification et de refroidissement telles que la quantité minimale de lubrifiant (MQL) et la quantité minimale de refroidisseur (MQC) ont été proposées. L'usinage presque sec ou microlubrifiée avec la quantité minimale de refroidisseur ou de lubrifiant (MQCL), fournit une diminution considérable de la consommation de fluide de coupe par rapport à un refroidissement conventionnel ainsi que l'augmentation de l'usinabilité en comparaison avec d'usinage complètement à sec. La rugosité de surface, la réduction de la chaleur générée dans l'outil de coupe et l'émission de la poussière et d'aérosols dans l'atelier, comme un indicateur de la qualité du processus d'usinage, dépendent largement des conditions d'usinage. La présente recherche sorte sur l'étude des effets des différentes conditions de coupe, en utilisant de la quantité minimale de refroidisseur, sur la rugosité de surface, la température de l'outil de coupe et la concentration des aérosols et des poussières lors du tournage d'alliage d'aluminium 6061-T6. Les résultats sont comparés a ceux obtenus en tournage à sec et ceux obtenus en tournage sous lubrification abondante. Il est trouvé qu'il y a des conditions optimales pour lesquelles l’usinage MQC donne de meilleur fini de surface que l’usinage à sec et l’usinage sous lubrification abondante; l’usinage MQC et l’usinage à lubrification abondante produisent plus d’aérosols (liquide et solide) comparé à l’usinage à sec; et enfin, l’usinage MQC refroidit moins la coupe que l’usinage lubrifié traditionnel. Cependant l’usinage MQC demeure préférable en raison de la réduction des risques pour la sécurité du travail et pour l’environnement.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Petit, Tom. "Compréhension et modélisation d’essais de ténacité avec pop-in : application à l’aluminium 6061-T6 et influence de l’irradiation neutronique." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEM019/document.

Повний текст джерела
Анотація:
Le pop-in est un phénomène d’instabilité de propagation de fissure observé lors d’essais de ténacité sur certains matériaux. Ce phénomène a été observé sur l’alliage d’aluminium 6061-T6 qui a été identifié pour constituer des éléments de structure essentiels du cœur du réacteur de recherche Jules Horowitz. Cette thèse a été initiée pour comprendre l’origine de ce phénomène sur l’aluminium 6061-T6 et en proposer une modélisation à bases physiques qui pourra être utilisée pour l’exploitation et l’interprétation des essais de ténacité, notamment à l’état irradié.Les différentes pistes identifiées dans la littérature ont été testées expérimentalement. Des revenus (4/8/12/16 h) ont été appliqués afin d’obtenir différents comportements mécaniques. Des essais de traction avec corrélation d’images ont montré que les pop-ins observés ne sont pas dus à un effet PLC. Ils ne correspondent pas non plus à une hétérogénéité microstructurale ; ils ne sont pas liés à des mécanismes d’endommagement, car la rupture est typiquement ductile, qu’un pop-in soit intervenu ou non. Ces mécanismes et les différentes microstructures ont été comparés par le biais de plusieurs techniques (MEB, EBSD, EDS, Sonde Atomique Tomographique, tomographie, laminographie et nanolaminographie par rayonnement synchrotron). Les pop-ins sont donc uniquement le résultat d’une accélération de la rupture ductile.En réalité, ils sont dus à une interaction entre deux paramètres : une résistance réduite du matériau à la propagation de fissure (i.e. un faible module de déchirement) et une complaisance importante du dispositif d’essai (i.e. une faible raideur). Afin d’investiguer ce deuxième paramètre, un dispositif innovant a été conçu, permettant de faire varier la raideur de la machine d’essai lors d’essais de ténacité. Deux critères analytiques, l’un basé sur la courbe force-ouverture, l’autre sur l’intégrale J, ont été établis, permettant de quantifier les conditions d’amorçage et d’arrêt de pop-in de façon fiable.Pour prendre en compte le rôle central du durcissement vis-à-vis de la propagation ductile, un nouveau critère de germination piloté par les contraintes a été introduit dans un unique modèle GTN. Cela permet de simuler et de reproduire par éléments finis les différentes courbes de ténacité J-Δa en modifiant uniquement la loi élastoplastique. En rajoutant des ressorts dans les modélisations et avec un pilotage adapté, les pop-ins sont simulés avec succès, et restent exploitables avec les critères analytiques.Des études sur éprouvettes irradiées réalisées dans des enceintes blindées ont montré que l’augmentation des pop-ins avec l’irradiation résultait de la diminution du module de déchirement, elle-même due au durcissement. De même qu’à l’état non irradié, les pop-ins apparaissent donc à cause de l’interaction du module de déchirement avec le dispositif d’essai, et non pas à cause d’une gamme d’élaboration industrielle non maitrisée
Pop-in is a phenomenon of crack propagation instability observed during toughness tests on some materials. This phenomenon has been observed on the 6061-T6 aluminum alloy, which has been identified as an essential structural element of the core of the Jules Horowitz research reactor. This thesis was initiated to understand the origin of this phenomenon on 6061-T6 aluminum and to propose a physics-based modeling, usable for the exploitation and interpretation of toughness tests, especially in the irradiated state.The different origins identified in the literature have been experimentally tested. Different aging times (4/8/12/16h) were applied to obtain different mechanical behaviors. Tensile tests with image correlation have shown that the observed pop-ins are not due to a PLC effect. Nor do they correspond to microstructural heterogeneity; they are not linked to different fracture mechanisms, because the rupture is typically ductile, whether a pop-in is involved or not. These mechanisms and the different microstructures were compared using several techniques (SEM, EBSD, EDS, Atom Probe Tomography, tomography, synchrotron laminography and nanolaminography). Pop-ins are therefore only the result of an acceleration of the ductile fracture.In fact, they are due to an interaction between two parameters: the reduced material crack growth toughness (i.e. the low tearing modulus), and the significant compliance of the test device (i.e. the low stiffness). In order to investigate this second parameter, an innovative setup has been designed to vary the machine stiffness during toughness tests. Two analytical criteria, one based on the load-opening curve, the other on the J-integral, have been established, making it possible to reliably quantify the conditions for initiation and arrest of pop-in.To take into account the central role of hardening for ductile propagation, a new stress-controlled nucleation criterion has been introduced into a single GTN model. This makes it possible to simulate and capture by finite elements the various J-Δa toughness curves by modifying only the elastoplastic law. By adding springs in the models and with an adapted control, the pop-ins are successfully simulated, and remain exploitable with the analytical criteria.Studies on irradiated specimens carried out in hot cells have shown that the increase in pop-ins with irradiation results from the decrease in the tearing modulus, itself due to hardening. As in the non-irradiated state, pop-ins thus appear solely because of the interaction between the tearing modulus and the test device stiffness, and not because of a range of industrial development not mastered
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Arshad, Saad. "Single Point Incremental Forming : A study of Forming Parameters, Forming limits and Part accuracy of Aluminium 2024, 6061 and 7475 alloys." Thesis, KTH, Industriell produktion, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-103006.

Повний текст джерела
Анотація:
Nowadays there is an increasingly demanding need for the development of agile manufacturing techniques that can easily be adaptable to a constant introduction of new products in the market. Single point incremental forming (SPIF) is a new innovative and feasible solution for the rapid prototyping and the manufacturing of small batch sheet parts. The process is carried out at room temperature (cold forming) and requires a CNC machining centre, a spherical tip tool and a simple support to fix the sheet being formed. This work studied the effects of step size, angle, spindle speed, and feed rate on the forming limits of Aluminium alloys namely AA 2024, AA 6061 and AA 7475 in soft annealed condition. The Study also includes measuring the strain path and determination of maximum forming limit angles for the above mentioned alloys. This thesis provides a better understanding of the influence of rotating tool in the occurrence of fracture without previous necking or fracture following previous necking. Surface and geometric accuracy of the parts manufactured was also studied and comparisons were made between the CAD files and the actual manufactured parts and then corrections were made accordingly. The main contribution of this thesis to Single stage SPIF was the successful manufacturing of a Cone shaped parts with almost vertical walls.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "ALUMINIUM 6061"

1

Wiest, Anthony D. Thermal cycling behavior of unidirectional and cross-plied P100 Gr/6061 aluminium composites. Monterey, Calif: Naval Postgraduate School, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hafley, Johanna L. A comparison of the aging kinetics of a cast alumina-6061 aluminum composite and a monolithic 6061 aluminum alloy. Monterey, Calif: Naval Postgraduate School, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

S, Tompkins Stephen, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., eds. Effects of thermal cycling on graphite-fiber-reinforced 6061 aluminum. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

S, Tompkins Stephen, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., eds. Effects of thermal cycling on graphite-fiber-reinforced 6061 aluminum. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schauder, Thomas J. The effects of thermomechanical processing parameters on elevated temperature behavior of a 6061 Al-Al2O3 metal matrix composite. Monterey, Calif: Naval Postgraduate School, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jones, S. J. The influence of homogenisation treatment and manganese content on the aluminium-iron-silicon intermetallics in 6063 aluminium alloys. Manchester: UMIST, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Elkin, Leslie R. Corrosion mechanisms and behavior of a P-130x Gr/6063 A1 composite in aqueous environments. Monterey, California: Naval Postgraduate School, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

King, Joel David. Characterization of the corrosion of a P-130x graphite fiber reinforced 6063 aluminum metal matrix composite. Monterey, Calif: Naval Postgraduate School, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Comparison of Friction Stir Welding and Friction Stir Processing Using Aluminium Alloy 6061 and Aluminium Alloy 6063. Karur, India: ASDF International, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Microstructure and Mechanical Properties of Aluminium Alloy 6061 Reinforced Glass. Tiruchengode, India: ASDF International, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "ALUMINIUM 6061"

1

Couper, M. J., M. Cooksey, and B. Rinderer. "Effect of Homogenisation Temperature and Time on Billet Microstructure and Extruded Properties of Alloy 6061." In Aluminium Cast House Technology, 286–96. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118806364.ch29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jha, A. K., S. V. Prasad, and G. S. Upadhyaya. "Activated Sintered 6061 Aluminium Alloy Particulate Composites Containing Coated Graphite." In Controlled Interphases in Composite Materials, 829–40. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-7816-7_80.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Friend, C., R. Young, and I. Horsfall. "Heat-Treatment Effects in δ -Alumina Fibre Reinforced Aluminium Alloy 6061." In Developments in the Science and Technology of Composite Materials, 227–32. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1123-9_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Khan, Mahmood, Rafi Ud-Din, Abdul Wadood, Wilayat Husain Syed, Shahid Akhtar, and Ragnhild Elizabeth Aune. "Spark Plasma Sintering of Graphene Nanoplatelets Reinforced Aluminium 6061 Alloy Composites." In Light Metals 2020, 301–11. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36408-3_44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Aleem Pasha, Md, P. Ravinder Reddy, P. Laxminarayana, and Ishtiaq Ahmed Khan. "SiC and Al2O3 Reinforced Friction Stir Welded Joint of Aluminium Alloy 6061." In Lecture Notes on Multidisciplinary Industrial Engineering, 163–82. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0378-4_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Giglio, M., A. Gilioli, and A. Manes. "Mechanical Behaviour of Al 6061-T6 Aluminium Alloy Under Large Strain and Failure." In Advanced Structured Materials, 143–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54258-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Arun Kumar, S., and R. Raman Goud. "Processing and Characterization of 6061 Aluminium Alloy with Nickel (Ni) and Zirconium (Zr)." In Lecture Notes in Mechanical Engineering, 353–61. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7557-0_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gupta, Arnav, V. P. Yashvanth, and Lokavarapu Bhaskara Rao. "Design of Gears Using Aluminium 6061-T6 Alloy for Formula SAE Steering System." In Lecture Notes in Mechanical Engineering, 489–505. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7557-0_41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Arunkumar, T., K. Aditya Sreevatsa, Dinesh R. Krishnan, and Ram Subbiah. "Corrosion Behaviour of Aluminium 6061/MWCNT Composite Prepared by Double Stir Casting Method." In Lecture Notes in Mechanical Engineering, 293–99. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0909-1_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, Xiangjie, Qingmei Ma, Gang Sun, and Jianzhong Cui. "Effects of Electromagnetic Field on Horizontal Continuous Casting of 6061 Aluminium Alloy Bar Process." In PRICM, 1035–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118792148.ch126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "ALUMINIUM 6061"

1

Yasin, J., and M. Kumaresan. "Effect of silicon carbide and aluminium oxide in mechanical properties of aluminium alloy 6061." In RECENT TRENDS IN SCIENCE AND ENGINEERING. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0074175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Marzbanrad, Bahareh, Ehsan Marzbanrad, and Hamid Jahed. "Cold Spray Deposition of Aluminium 6061 Decorated with Al2O3 Nanoparticles." In ITSC 2023. ASM International, 2023. http://dx.doi.org/10.31399/asm.cp.itsc2023p0574.

Повний текст джерела
Анотація:
Abstract This research presents a novel approach for producing metal matrix composite powders using a nanoparticle decoration technique. A 1wt% stable suspension of 30nm Al2O3 particles was decorated onto primary AA6061using a redispersion method. The resulting AA6061-1wt% Al2O3 composite powder was mixed in a rotary mixer for one hour and subsequently dried at 45°C. Scanning electron microscopy of the composite powder confirmed the successful material composition. The composite powders were then deposited onto an AA6061 substrate using a low-pressure cold spray system, with the coating quality, deposition efficiency, surface roughness, and hardness of the deposited materials analyzed. After heat treatment at 430oC, the role of the nanoparticles in hindering recrystallization was studied, with Orowan strengthening shown to be the main mechanism for preventing recrystallization and grain growth. This technique provides a promising alternative method for producing metal matrix composites and offers potential for further exploration of their properties and applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Verma, Rajesh P., KN Pandey, Nitin Kumar, and Saim Saleem. "Welding Process to Produce 6061-T6 Aluminium Alloy Butt Joint." In 5th International Congress on Computational Mechanics and Simulation. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1139-3_033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Krishnakumar, D., R. Venkatachalam, R. Rameshkumar, and V. Anadakrishnan. "Synthesis and characterization of aluminium 6061 with ZirSiO4 and graphite." In PROCEEDINGS OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN MECHANICAL AND MATERIALS ENGINEERING: ICRTMME 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0024887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Manoj S. V., Madhusudana C. K., Manoj K. C., Manoj V., and Srinivas M. R. "Analysis on wear characteristics of aluminium 6061 reinforced with graphene." In THE 8TH ANNUAL INTERNATIONAL SEMINAR ON TRENDS IN SCIENCE AND SCIENCE EDUCATION (AISTSSE) 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0116947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Loke, Kelvin, Richard Kwok, P. K. Koh, T. C. Lim, and Philip Cheang. "Process-Property Correlation of Heat-Treated Aluminium 6061 Cold Spray Coatings." In ITSC2015, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.itsc2015p0155.

Повний текст джерела
Анотація:
Abstract Cold spray Aluminium 6061 coating samples were produced with variations of cold spray gas temperatures from 300°C, 400°C, 500°C, 600°C and 700°C, with all other spray parameters constant. The tensile adhesive strengths of the coatings were found to be decreasing with increasing spray temperature, with a marked 70% drop from 400°C to 500°C. A 72% increase in the average coating adhesive strength was observed after T6-heat treatment of non-grit blasted coating samples although the average coating adhesive strength decreased by 9% after stress-relief heat treatment. A 64% increase in the average coating adhesive strength was observed after T6-heat treatment of grit blasted coating samples although the average coating adhesive strength decreased by 20% after stress-relief heat treatment. Coatings were also sprayed at 40° and 60° and subjected to stress-relief and T6 heat treatment. However there were no significant variations in the coating adhesive strengths after heat treatment.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Benoit, A., P. Paillard, T. Baudin, S. Jobez, J. F. Castagné, Francisco Chinesta, Yvan Chastel, and Mohamed El Mansori. "Evaluation Of Four Welding Arc Processes Applied To 6061 Aluminium Alloy." In INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES (AMPT2010). AIP, 2011. http://dx.doi.org/10.1063/1.3552556.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kumbhar, A. P., R. T. Vyavahare, and S. G. Kulkarni. "Vibrational response and mechanical properties characterization of aluminium alloy 6061/Sic composite." In PROCEEDINGS OF THE INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2017): Metallurgy and Advanced Material Technology for Sustainable Development. Author(s), 2018. http://dx.doi.org/10.1063/1.5038715.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Salunkhe, Subodh, Balasaheb Gandhare, and Swanand Kulkarni. "Manufacturing of Aluminum Alloy 6061 Composite Material using Bagasse Ash- Working Paper." In National Conference on Relevance of Engineering and Science for Environment and Society. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.118.6.

Повний текст джерела
Анотація:
Aluminium (Al) is existing in a very large quantity found in the earth’s crust and third most abundant element. Al is easily available, it has a high strength to weight ratio and it is durable. Al alloy is light weight and corrosion resistant hence used in aircraft and automobile industries. Wear is loss of material from surfaces and the life of material decreases due to wear. Al 6061 has good mechanical properties, it exhibits good weldability and it has wear resistant properties. In the literature review, information about wear resistance properties of composites containing Al 6061 as a matrix is studied for different reinforcement materials for various applications. Very few researchers studied Al 6061 is a matrix material and bagasse ash as reinforced materials. In this paper, aluminum composite material manufacturing using the stir casting method is carried out for manufacturing because of flexibility, simplicity, and having mass production capability. The problem identification about improving the wear properties of Al 6061 matrix material reinforced bagasse ash has been explored and further, research objective and methodology for the same is discussed with flowcharts. The work carried still to date is reported in this working paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Preethi, K., T. N. Raju, and H. A. Shivappa. "Corrosion studies of aluminium-6061 metal matrix reinforced with multiwall carbon nanotubes composites." In RECENT TRENDS IN MANUFACTURING TECHNOLOGIES, MATERIALS PROCESSING, AND TESTING. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0069150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "ALUMINIUM 6061"

1

Wong, C. R., O. Diehm, and D. C. Van Aken. Damping Capacity of Aluminum 6061-Indium Alloys. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada222802.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kuhn, Howard A. Atlas of Formability: Cast Aluminum 6061 Flow Stress Curves. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada268301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

GOGOLSKI, JARROD. ALUMINUM ALLOY (6061-O, 5052-O, AND 1100) DISSOLUTION RATE TESTING. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1844189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yahr, G. T. Prevention of non-ductile fracture in 6061-T6 aluminum nuclear pressure vessels. Office of Scientific and Technical Information (OSTI), June 1995. http://dx.doi.org/10.2172/81049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alexander, D. J. The effect of irradiation on the mechanical properties of 6061-T651 aluminum. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10162906.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Corona, Edmundo, Christopher Laursen, and Carter Fietek. Response of 304L stainless steel and 6061-T651 aluminum alloy at -40 C. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1775054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kuhn, Howard A. Atlas of Formability: Cast Aluminum 6063 Flow Stress Curves. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada268303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dike, J. J., J. A. Brooks, D. J. Bammann, and M. Li. Thermal-mechanical modeling and experimental validation of weld solidification cracking in 6061-T6 aluminum. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/304022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

D'Entremont, A., R. Fuentes, L. Olson, and R. Sindelar. PREPARATION OF ALUMINUM OXIDE FILMS UNDER WATER EXPOSURE - PRELIMINARY REPORT ON 6061 SERIES ALLOYS. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1471991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

d'Entremont, Anna L., Roderick E. Fuentes, Luke C. Olson, and Robert L. Sindelar. Preparation of Aluminum Oxide Films Under Water Exposure – Preliminary Report on 6061 Series Alloys. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1472000.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії