Добірка наукової літератури з теми "Alkyl-Alkyl couplings"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Alkyl-Alkyl couplings".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Alkyl-Alkyl couplings"

1

Li, Yangyang, Yuqiang Li, Long Peng, Dong Wu, Lei Zhu, and Guoyin Yin. "Nickel-catalyzed migratory alkyl–alkyl cross-coupling reaction." Chemical Science 11, no. 38 (2020): 10461–64. http://dx.doi.org/10.1039/d0sc03217d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Saito, Bunnai, and Gregory C. Fu. "Alkyl−Alkyl Suzuki Cross-Couplings of Unactivated Secondary Alkyl Halides at Room Temperature." Journal of the American Chemical Society 129, no. 31 (August 2007): 9602–3. http://dx.doi.org/10.1021/ja074008l.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Qin, Tian, Min Zhou, and Jet Tsien. "Unsymmetrical Heterocycle Cross-Couplings Enabled by Sulfur(IV) Reagents." Synlett 31, no. 20 (August 14, 2020): 1962–66. http://dx.doi.org/10.1055/s-0040-1706412.

Повний текст джерела
Анотація:
Whereas metal-mediated cross-couplings find broad applications in syntheses of medicines, agrochemicals, and natural products, these powerful transformations have limited utility for Lewis basic substrates (e.g., heteroarenes), wherein basic functionalities coordinate to the metal center, hindering product formation. In this context, we have developed a transition-metal-free cross-coupling reaction mediated by sulfur(IV). This method leverages the ability of simple alkyl sulfinyl(IV) chlorides to form bipyramidal sulfurane complexes to drive a pseudo ‘reductive elimination’ process from the hypervalent sulfur atom, thereby readily providing unsymmetrical biheteroarenes.1 Introduction2 Historical Sulfurane(IV)-Mediated Couplings3 Unsymmetrical Heterocycle Cross-Couplings4 Conclusion
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Saito, Bunnai, and Gregory C. Fu. "Enantioselective Alkyl−Alkyl Suzuki Cross-Couplings of Unactivated Homobenzylic Halides." Journal of the American Chemical Society 130, no. 21 (May 2008): 6694–95. http://dx.doi.org/10.1021/ja8013677.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kunze, Udo, and Rolf Tittmann. "Phosphinsubstituierte Chelatliganden, XXIII [1] Darstellung und NMR-Spektren von Alkyl-arylphosphinothioformamiden, R(Ph)PC(S)NHMe / Phosphine-Substituted Chelate Ligands, XXIII [1] Synthesis and NMR Spectra of Alkyl-arylphosphinothioformamides, R(Ph)PC(S)NHMe." Zeitschrift für Naturforschung B 42, no. 1 (January 1, 1987): 77–83. http://dx.doi.org/10.1515/znb-1987-0115.

Повний текст джерела
Анотація:
Abstract A series of alkyl-arylsubstituted N-methyl phosphinothioformamides, R(Ph)PC(S)NHMe (2 a-g), with varying bulkiness of the alkyl rest was synthesized from the racemic secondary phosphines 1a-g and methyl isothiocyanate. 1H and 13C NMR spectra of 2a−g reveal signal sets of diastereotopic nuclei due to the asymmetry of the molecule. The chemical shift and coupling constants were confirmed by simulation in case of 2b, c. The vicinal 31P−13C couplings of the menthyl and neomenthyl compounds 2f, g show an "anti-Karplus" behaviour (3J(gauche) > 3J(trans)) and allow the conformational assignment of the alicyclic group. The 31P chemical shifts of 2a−d give a linear correlation with the cone angle of the alkyl substituents quoted from literature.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Plunkett, Shane, Corey H. Basch, Samantha O. Santana, and Mary P. Watson. "Harnessing Alkylpyridinium Salts as Electrophiles in Deaminative Alkyl–Alkyl Cross-Couplings." Journal of the American Chemical Society 141, no. 6 (January 25, 2019): 2257–62. http://dx.doi.org/10.1021/jacs.9b00111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bernauer, Josef, Guojiao Wu, and Axel Jacobi von Wangelin. "Iron-catalysed allylation–hydrogenation sequences as masked alkyl–alkyl cross-couplings." RSC Advances 9, no. 54 (2019): 31217–23. http://dx.doi.org/10.1039/c9ra07604b.

Повний текст джерела
Анотація:
An iron-catalysed allylation of organomagnesium reagents (alkyl, aryl) with simple allyl acetates proceeds under mild conditions (Fe(OAc)2 or Fe(acac)2, Et2O, r.t.) to furnish various alkene and styrene derivatives.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Achonduh, George T., Niloufar Hadei, Cory Valente, Stephanie Avola, Christopher J. O'Brien, and Michael G. Organ. "On the role of additives in alkyl–alkyl Negishi cross-couplings." Chemical Communications 46, no. 23 (2010): 4109. http://dx.doi.org/10.1039/c002759f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Baker, Kristen M., Diana Lucas Baca, Shane Plunkett, Mitchell E. Daneker, and Mary P. Watson. "Engaging Alkenes and Alkynes in Deaminative Alkyl–Alkyl and Alkyl–Vinyl Cross-Couplings of Alkylpyridinium Salts." Organic Letters 21, no. 23 (November 25, 2019): 9738–41. http://dx.doi.org/10.1021/acs.orglett.9b03899.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Owston, Nathan A., and Gregory C. Fu. "Asymmetric Alkyl−Alkyl Cross-Couplings of Unactivated Secondary Alkyl Electrophiles: Stereoconvergent Suzuki Reactions of Racemic Acylated Halohydrins." Journal of the American Chemical Society 132, no. 34 (September 2010): 11908–9. http://dx.doi.org/10.1021/ja105924f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Alkyl-Alkyl couplings"

1

Chen, Donghuang. "Well-defined iron(II) catalysts for alkyl-aryl and alkyl-alkyl Suzuki-Miyaura and Kumada cross-couplings." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF081.

Повний текст джерела
Анотація:
Ce travail de thèse vise à réaliser la formation de liaisons C(sp³)-C(sp²) et C(sp³)-C(sp³) par couplages croisés de Suzuki-Miyaura (S-M) et de Kumada à l'aide de catalyseurs de fer, nouvellement développés, et en mettant l'accent sur l'étude du potentiel applicative de ces catalyseurs en synthèse. Ce travail se concentre aussi sur la mise au point d'une méthode efficace et sélective de 1,2-dicarbofonctionnalisation d'alcènes promue par ces catalyseurs. Le chapitre 1 présente les premières découvertes des couplages croisés médiés par le fer et le développement de catalyseurs de fer pour les couplages croisés de S-M et de Kumada. Les formations de liaisons C(sp²)-C(sp²), C(sp²)-C(sp³) et C(sp³)-C(sp³) seront couvertes. La conception de ligands adaptés et les études mécanistiques ont joués un rôle crucial dans le développement du domaine. La section suivante présente l'état de l'art de la méthode de 1,2-dicarbofonctionnalisation des oléfines catalysées par les métaux abondants, en soulignant les stratégies développées pour surmonter les réactions secondaires indésirables. Le chapitre 2 traite de la réaction de S-M, dont l'utilisation s'est largement répandue en raison de sa large applicabilité, ainsi que de la stabilité, de la disponibilité et de la faible toxicité des réactifs organoborés. Tant en recherche académique qu'en l'industrie, la plupart des couplages de S-M sont dominés par des catalyseurs à base de palladium et de nickel. Récemment, le fer a fait l'objet d'une attention particulière en raison de sa forte abondance et de sa nature respectueuse de l'environnement. Malgré le rôle crucial du fer dans l'offre d'une catalyse plus durable pour le couplage de S-M, ce dernier impliquant des partenaires hybridés sp³ reste rare et se heurte à d'importantes limitations en termes de champ d'applications. Ce chapitre présente le développement d'un catalyseur de fer(II), versatile et de structure bien définie, qui réalise avec succès les couplages alkyle-aryle et alkyle-alkyle de S-M entre des halogénures d'alkyle et des esters boroniques (hétéro)arylés ou des dérivés boranes alkylés. Ces couplages ont été réalisés dans des conditions douces et ont montré une large compatibilité avec diverses fonctionnalités, y compris des N-, O- et S-hétérocycles importants en chimie médicinale. Les halogénures d'alkyle primaires, secondaires (Br, Cl, I) et tertiaires, ainsi que les esters boroniques neutres, riches et pauvres en électrons, de même que les boranes d'alkyle 1° et 2° sont compatibles et ont donné des rendements élevés à excellents. Des solvants plus écologiques ont été utilisés lors de la synthèse d'intermédiaires pharmaceutiques clés et d'un candidat médicament avec des rendements élevés, ce qui démontre un fort potentiel applicatif pour une production industrielle à grande échelle. Le chapitre 3 présente l'application du couplage croisé de S-M dans une méthode de 1,2-alkylarylation d'oléfines à trois composants, promue par un catalyseur de fer(II). Cette méthode facilite la formation de deux liaisons carbone-carbone en une seule étape de synthèse et représente le premier exemple de couplage de S-M combiné à une fonctionnalisation d'alcènes, conduisant sélectivement au produit de fonctionnalisation-1,2 alkyle-aryle. Bien que la méthodologie actuelle soit limitée par la nécessité d'un excès d'oléfines (10 équiv.) et d'esters boroniques donneurs en électrons, l'utilisation de réactifs borés démontre un potentiel pour des applications synthétiques plus larges. Le chapitre 4 étend l'application du catalyseur de fer(II) développé dans les chapitres 2 et 3, en démontrant son efficacité remarquable dans la réaction de couplage croisé de Kumada entre des halogénures d'alkyle hybridés sp³ et des réactifs organomagnésiens hybridés sp² et même sp³ dans des conditions douces. Cela souligne la grande polyvalence de ce catalyseur qui facilite le couplage de divers centres carbonés hybridés sp² et sp³, sans le besoin de conditions drastiques
This PhD research aims to achieve challenging C(sp³)-C(sp²) and C(sp³)-C(sp³) bond formations through Suzuki-Miyaura and Kumada cross-couplings using newly-designed iron-based catalysts, with an emphasis on their potential for synthetic applications. This work also focuses on achieving efficient and selective 1,2-dicarbofunctionalization of unactivated alkenes promoted by these catalysts. Chapter 1 primarily introduces the early discoveries of iron-mediated cross-couplings and the development of iron-based catalysts in Suzuki-Miyaura and Kumada cross-couplings, covering C(sp²)-C(sp²), C(sp²)-C(sp³), and C(sp³)-C(sp³) bond formations. The design of bespoke ligand and mechanistic investigations have played a crucial role in the development of this field. The following section introduces the state-of-the-art in earth-abundant metal-catalyzed 1,2-dicarbofunctionalization of olefins, highlighting strategies developed to overcome undesired side reactions. Chapter 2 covers the Suzuki-Miyaura reaction, which has gained widespread use due to its broad applicability, along with the stability, availability, and low toxicity of organoboron reagents. Most Suzuki-Miyaura couplings (SMC), both in academia and industry, are dominated by palladium and nickel catalysts. Recently, iron has garnered significant attentions due to its earth abundance and environmentally friendly nature. Despite the crucial role of iron in offering more sustainable catalysis for Suzuki-Miyaura coupling, iron-catalyzed SMC involving sp³-hybridized systems remains rare and faces significant scope limitations. This chapter reports on the development of a versatile, well-defined iron(II) catalyst that successfully facilitated C(sp3)-C(sp2) and C(sp3)-C(sp3) SMC of alkyl halide electrophiles with (hetero)aryl boronic esters and alkyl borane nucleophiles, respectively. These couplings were carried out under mild reaction conditions, exhibited broad functional group compatibility - including various medicinally important N-, O-, and S-based heterocycles. Primary, secondary alkyl halides (Br, Cl, I), and tertiary alkyl chlorides, as well as electron-neutral, electron-rich, and electron-poor boronic esters, alongside 1° and 2° alkyl boranes all were tolerated with high to excellent yields. Greener solvents were used in the synthesis of key intermediates relevant to pharmaceuticals and potential drug candidates with high yields, demonstrating significant potential for large-scale industrial production. Chapter 3 introduces the application of Suzuki-Miyaura cross-coupling in the three-component 1,2-alkylarylation of unactivated olefins, using a well-defined iron(II) catalyst. This method facilitates the formation of two carbon-carbon bonds in a single synthetic step and represents the first example of combining Suzuki-Miyaura cross-coupling and 1,2-functionalization of unactivated alkenes, selectively yielding the desired 1,2-alkylarylation product. Although the current methodology is limited by the requirement for an excess of olefins (10 equiv.) and electron-donating boronic esters, the use of boron reagents demonstrates a potential for broader synthetic applications. Chapter 4 extends the application of the iron(II) catalyst developed in Chapters 2 and 3, demonstrating its remarkable efficacy in catalyzing the Kumada cross-coupling reaction between C(sp³)-hybridized alkyl halides and either C(sp²)- or even C(sp³)-hybridized organomagnesium reagents under mild conditions. This achievement underscores the broad versatility of this catalyst in facilitating the coupling of diverse carbon centers, including both sp² and sp³ hybridizations, without requiring harsh conditions
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Firmansjah, Luke. "Intramolecular Heck couplings of unactivated alkyl electrophiles : synthetic and mechanistic studies." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/41773.

Повний текст джерела
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Chemistry, September 2007.
"August 2007."
Includes bibliographical references.
A method for the palladium-catalyzed intramolecular Heck coupling of unactivated alkyl bromides and chlorides is described. The optimal catalyst system was composed of Pd2(MeO-dba)3 as the metal source and N-heterocyclic carbene SIMes as the ligand, and the influence of both parameters is discussed. Reaction of a diastereomerically pure, deuterium-labeled substrate gave only one diastereomer of product, suggesting that the reaction does not proceed through radical pathway, in contrast to processes currently described in the literature. Mechanistic studies involved the synthesis of novel complex Pd(SIMes)2 and a number of its oxidative addition adducts, which were thought to resemble intermediates along a postulated catalytic cycle. However, the alkylpalladium species thus obtained, which were characterized by X-ray crystallography and which bear freely accessible 3 hydrogen atoms, are air and moisture-stable compounds that display no tendency for P-hydride elimination, even upon heating. These complexes are therefore not thought to be part of the catalytic cycle. It was further demonstrated that while Pd(SIMes)2 is not itself catalytically competent in the reaction, it may serve as a catalyst precursor. Evidence is provided to suggest that the true active catalyst is composed of a mixed ligand complex involving both SIMes and dba ...
by Luke Firmansjah.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Choi, Junwon Ph D. Massachusetts Institute of Technology. "Nickel-catalyzed asymmetric cross-couplings of secondary alkyl electrophiles and photoinduced, copper-catalyzed C-N couplings." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/93033.

Повний текст джерела
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2014.
Cataloged from PDF version of thesis. Vita.
Includes bibliographical references.
Chapter 1 describes the development of three nickel-catalyzed asymmetric Negishi cross-couplings of secondary alkyl electrophiles via a stereoconvergent process. In Section 1.1, asymmetric Negishi arylations and alkenylations of [alpha]-bromonitriles with arylzinc and alkenylzinc reagents are achieved using a nickel/bis(oxazoline) catalyst. Section 1.2 describes stereoconvergent cross-couplings of secondary unactivated alkyl electrophiles, specifically, Negishi arylations and alkenylations of [alpha]-bromosulfonamides and abromosulfones with arylzinc reagents and alkenylzirconium reagents, respectively. Section 1.3 details progress toward asymmetric cross-couplings between [alpha]-haloboronate esters and alkylzinc reagents using a nickel/diamine catalyst. Chapter 2 describes the development of photoinduced, copper-catalyzed C-N couplings between N-heterocycles and aryl halides. In particular, a variety of N-heterocycles, such as indoles, benzimidazoles, imidazoles, and carbazoles, undergo Ullmann couplings under mild conditions (room temperature) with an inexpensive catalyst (Cul, without an added ligand).
by Junwon Choi.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zultanski, Susan L. (Susan Lyn). "Nickel-catalyzed cross-couplings of unactivated secondary and tertiary alkyl halides and photoinduced copper-mediated asymmetric C-N cross-couplings." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84380.

Повний текст джерела
Анотація:
Thesis (Ph. D. in Organic Chemistry)--Massachusetts Institute of Technology, Dept. of Chemistry, 2013.
Cataloged from PDF version of thesis. Vita.
Includes bibliographical references.
Chapter 1 describes the development of two nickel-catalyzed Suzuki cross-coupling methodologies that employ alkyl halides as electrophiles. In Section 1.1, asymmetric [gamma]-alkylation relative to a carbonyl group is achieved via the stereoconvergent cross-coupling of racemic secondary [gamma]-chloroamides with primary alkylboranes. Section 1.2 describes the first Suzuki carbon-carbon bond-forming reaction using tertiary alkyl halides as electrophiles; specifically, unactivated tertiary alkyl bromides are cross-coupled with arylboranes. Chapter 2 describes the establishment of photoinduced asymmetric copper-mediated C-N Ullmann-type coupling processes between racemic secondary alkyl halides and N-heterocycles. Preliminary yields and enantioselectivities for a reaction between secondary benzylic halides and carbazoles, with the use of a monodentate chiral phosphine ligand, are presented. The methodology is then extended to secondary [alpha]-haloamides, including [alpha]-halolactams, which are found to afford very promising yields and enantioselectivities.
by Susan L. Zultanski.
Ph.D.in Organic Chemistry
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhou, Jianrong (Jianrong Steve). "Cross-coupling reactions of unactivated alkyl halides." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33655.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2005.
Vita.
Includes bibliographical references.
My graduate research at MIT has been focused on the development of palladium- or nickel-catalyzed cross-coupling reactions using unactivated alkyl electrophiles (e.g., halides and sulfonates). Although aryl and alkenyl electrophiles have been commonly used in such processes, the utility of alkyl substrates has been underdeveloped, and merits further exploration. We have developed the first palladium-based catalyst that is effective for Negishi couplings of primary alkyl electrophiles. A single protocol (2%Pd₂(dba)₃/8%P(Cyp)₃/NMI in THF/NMP at 80⁰C) can be applied to a broad spectrum of electrophiles, including chlorides, bromides, iodides, and tosylates. Concerning the scope of the nucleophilic components, an array of alkyl-, alkenyl-, and arylzinc halides can be coupled. The process is tolerant of a variety of functional groups, including esters, amides, imides, nitriles, and heterocycles. Furthermore, geometrically- defined alkenylzinc species, generated from titanium-mediated hydrozincation of internal alkynes, can be directly used in the process. Despite the progress in nickel- and palladium-catalyzed C(sp³)-C(sp³) bond formation, the methods had been limited to primary alkyl electrophiles.
(cont.) No doubt, the ability to use more challenging, secondary ones will further augment the usefulness of these metal- catalyzed processes. To this end, we have determined that Ni(cod)₂/s-Bu-Pybox can catalyze room-temperature Negishi couplings of an array of functionalized alkyl bromides and iodides. To the best of our knowledge, this is the first nickel- or palladium- catalyzed cross-coupling procedure for unactivated, [beta]-hydrogen-containing secondary alkyl halides. In addition, preliminary studies using substrate-based probes suggest that the oxidative addition proceeds through a radical pathway. This may explain the unparalleled reactivity of the nickel catalyst. As an extension of the nickel catalysis, we have established that the combination of Ni(cod)₂ and bathophenanthroline can effect Suzuki reactions of secondary halides and organoboronic acids. These organoboron reagents are particularly widely used in the cross-coupling chemistry, owing to their chemical stability, biological non-toxicity, and commercial availability. Again, mechanistic evidence has been collected to support the involvement of organic radicals during the oxidative addition step.
by Jianrong (Steve) Zhou.
Ph.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ursinyova, Nina. "Cyclic sulfamidates as pseudo-alkyl halides in Sp3 -based cross-coupling chemistry." Thesis, University of Bristol, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.680108.

Повний текст джерела
Анотація:
The use of cyclic sulfamidates as pseudo-alkyl halides in Sp3 -based cross-coupling chemistry has been studied and two approaches were explored. The first approach involved a transition metal-mediated cross-coupling of cyclic sulfamidates, including studies into the oxidative addition step of the catalytic cycle. Various transition metal catalysts (palladium, nickel and iron) and nucleophiles (zinc, boron, magnesium and tin reagents) were investigated. After extensive screening, the desired cross-coupling was achieved under palladium-catalysed Suzuki-Miyaura conditions, albeit in a low yield (20%) and with poor mass recovery. The second approach, via enantiomerically pure f3- and y-aminoalkyl boronic esters, required development of efficient conditions for borylation of cyclic sulfamidates. A range of known and novel 1,2- and 1,3-cyclic sulfamidates was synthesised and subjected to the optimised borylation conditions to determine the scope of this transformation. Mechanism of the copper-catalysed borylation process was also explored, together with the utility of boronic esters in sp3 _Sp2 and Sp3 _sp3 cross-coupling reactions. Aminoalkyl boronic esters (from borylation of cyclic sulfamidates) were also assessed as possible substrates for Matteson homologation. After extensive screening, it was found that f3-aminoalkyl boronic esters (from 1,2-cyclic sulfamidates) can be homologated in a 50% yield, while y-aminoalkyl boronic esters are completely unreactive to a range of homologation conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nakajima, Sho. "Mechanistic and Synthetic Studies on Iron-Bisphosphine-Catalyzed Cross-Coupling Reactions of Alkyl Halides." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225616.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhou, Edouard. "Nouveaux systèmes catalytiques appliqués aux formations de liaisons C—C par couplage croisé catalysé par des sels de fer : applications, mécanismes." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEC008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vuoti, S. (Sauli). "Syntheses and catalytic properties of palladium (II) complexes of various new aryl and aryl alkyl phosphane ligands." Doctoral thesis, University of Oulu, 2007. http://urn.fi/urn:isbn:9789514286483.

Повний текст джерела
Анотація:
Abstract Thirty three aryl and aryl alkyl phosphane ligands were prepared and characterized for catalytic purposes. The aryl groups in both types of ligands were modified with alkyl substituents (methyl, ethyl, isopropyl, cyclohexyl, phenyl) or hetero substituents (methoxy, N,N-dimethylaniline, thiomethyl). The alkyl groups directly attached to the phosphorous atom were ethyl, isopropyl or cyclohexyl. Mono- and in some cases also dinuclear palladium (II) complexes of the ligands were prepared and characterized. The syntheses of the palladium complexes are solvent-dependent and afford either mono- or dinuclear complexes depending on the choice of the solvent. Additionally, two 2-mercaptobenzothiazole palladium complexes were synthesized and characterized. A rare distorted lantern-type structure was presented for the first time. The ligands were characterized by 1H, 13C, 31P NMR spectroscopy and mass spectrometry. The palladium complexes were characterized by 31P NMR spectroscopy, X-ray crystallography and elemental analysis. Links between the NMR data of the palladium complexes and ligands and their catalytic activity was screened and correlation found. The crystal structures of the palladium complexes were studied for possible attractive interactions between two ligands. Such interactions were found from two examples. There is an attractive interaction between the phenyl and quinolinyl moieties of 2-quinolinyldiphenyl phosphane. A similar interaction was found between the methyl substitute and phenyl ring of o-tolylphosphane. The ligands and palladium complexes presented in this thesis were prepared in hope of finding suitable catalysts for Suzuki coupling reactions of various bulky aryl halides and phenyl boronic acids to prepare sterically hindered bi- and triaryls under microwave irradiation. A selection of aryl alkyl phosphane ligands catalyzed the couplings of bulky aryl bromides and even unactivated aryl chlorides efficiently and produced high yields. The reaction conditions of a new catalyst system were optimized, and it was noticed that the addition of a small amount of water enhanced the purity and yield of the coupling products further.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Someya, Hidenori. "Studies on Coupling Reactions of Alkyl Halides with Organomagnesium and Organolithium Reagents by Cobalt and Silver Catalysts." 京都大学 (Kyoto University), 2011. http://hdl.handle.net/2433/142231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Alkyl-Alkyl couplings"

1

Iwasaki, Takanori, and Nobuaki Kambe. "Ni-Catalyzed C–C Couplings Using Alkyl Electrophiles." In Topics in Current Chemistry Collections, 1–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49784-6_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Eisenberg, R., and C. Kubiak. "To Alkyl, Hydroxyalkyl, and Alkoxyl Ligands and Reductive Coupling." In Inorganic Reactions and Methods, 389–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145319.ch164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yamamoto, Arisa, Yugo Nishimura, and Yasushi Nishihara. "Recent Advances in Cross-Coupling Reactions with Alkyl Halides." In Lecture Notes in Chemistry, 203–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32368-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Netherton, Matthew R., and Gregory C. Fu. "Palladium-Catalyzed Cross-Coupling Reactions of Unactivated Alkyl Electrophiles with Organometallic Compounds." In Topics in Organometallic Chemistry, 85–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b104127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pedersen, Steen Uttrup, Torben Lund, Kim Daasbjerg, Mihaela Pop, Ingrid Fussing, and Henning Lund. "Investigation of the Coupling Reaction between Aromatic Radical Anions and Alkyl Radicals." In Novel Trends in Electroorganic Synthesis, 283–86. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-65924-2_85.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sibille, S., J. Y. Nedelec, and J. Perichon. "Nickel-Catalyzed Electrochemical Coupling Reaction Between Alkyl Chlorides and Carbonyl Compounds in the Presence of Sacrificial Zinc Anode. Evidence for Ni-Zn Transmetalation." In Electroorganic Synthesis, 361–67. Boca Raton: Routledge, 2023. http://dx.doi.org/10.1201/9780203758571-49.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kantchev, E. A. B., and M. G. Organ. "Couplings of Other Alkyl Organometallic Compounds." In Alkanes, 1. Georg Thieme Verlag KG, 2009. http://dx.doi.org/10.1055/sos-sd-048-00020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Panda, S. P., S. K. Hota, A. Jindal, and S. Murarka. "2.1 Base-Metal-Mediated Cross Couplings Using N-(Acyloxy)phthalimides." In Base-Metal Catalysis 2. Stuttgart: Georg Thieme Verlag KG, 2023. http://dx.doi.org/10.1055/sos-sd-239-00056.

Повний текст джерела
Анотація:
AbstractDecarboxylative radical cross couplings involving N-(acyloxy)phthalimides as alkyl halide surrogates have evolved as a powerful strategy to forge a variety of C(sp3)—C and C(sp3)—X (X = B, Si, etc.) bonds. Such single-electron-transfer-induced couplings are robust, chemoselective, and scalable, and are generally mediated by base metals such as nickel, iron, cobalt, and copper. This chapter delineates the significant developments made in this area, including accompanying mechanistic discussions and representative procedures, with an organization that is based on the type of bond formation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kantchev, E. A. B., and M. G. Organ. "Couplings of Alkyl Boron Compounds (Suzuki–Miyaura Reaction) Mediated by Palladium and Nickel." In Alkanes, 1. Georg Thieme Verlag KG, 2009. http://dx.doi.org/10.1055/sos-sd-048-00019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kantchev, E. A. B., and M. G. Organ. "Couplings of Alkyl Grignard Reagents (Kumada–Tamao–Corriu Reaction) Mediated by Copper, Silver, Nickel, Palladium, Iron, and Cobalt." In Alkanes, 1. Georg Thieme Verlag KG, 2009. http://dx.doi.org/10.1055/sos-sd-048-00017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Alkyl-Alkyl couplings"

1

Brown, Ashlena M., Andria L. Pace, and David W. C. MacMillan. "Photoredox-Catalyzed SH2 Cross-Coupling of Alkyl Chlorides Via Silyl-Radical Mediated Chlorine Atom Abstraction." In 2024 IEEE Integrated STEM Education Conference (ISEC), 1. IEEE, 2024. http://dx.doi.org/10.1109/isec61299.2024.10665109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Park, N. S., and D. H. Waldeck. "Evidence for Multidimensional Stilbene Isomerization." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/up.1990.mc5.

Повний текст джерела
Анотація:
Different functional groups and their positions in the phenyl ring of stilbene and different solvents cause differences in the dipole moment, mass, volume and the surrounding environment of the solute during isomerization. These different properties of solute and solvent effect the isomerization rate in two ways, one is through the internal activation barrier and the other is the friction experienced by the solute while undergoing isomerization. Because the transition state has significant charge transfer character the dielectric coupling of the reaction coordinate with the solvent can modify the internal activation barrier [1]. In the case of alkyl substituted stilbenes in nonpolar solvents such effects are small. Such reasoning is why the system of alkyl-substituted stilbene in n-alkanes has been chosen for our studies addressing the dimensionality of photoisomerization in stilbenes.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nunes, Vanessa Lóren, (PG) Ingryd Cristina de Oliveira, and Olga S. do Rêgo Barros. "Copper(I)-Senelenophene-2-carboxylate Catalyzed Cross- Coupling of Aryl or alkyl Thiols And Aryl Halides." In 14th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-14bmos-r0177-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"XPS Analysis of Corona-Treated PVdF Films with Air and Alkyl Methacrylate Monomer as a Coupling Agent." In International Institute of Engineers. International Institute of Engineers, 2015. http://dx.doi.org/10.15242/iie.e0415069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cowart, Jim, Terrence Dickerson, Andy McDaniel, and Dianne Luning Prak. "Using Machine Learning to Predict Derived Cetane Number and Fuel Similarity." In ASME 2022 ICE Forward Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icef2022-89295.

Повний текст джерела
Анотація:
Abstract Nearly four hundred different samples of jet and diesel fuels were used to train and test Machine Learning (ML) models for Derived Cetane Number (DCN – ASTM D6890) prediction using eight of the fuels’ physical properties as model inputs. Linear Regression (LR), Artificial Neural Networks (ANNs) and Gaussian based models all showed good performance predicting DCN with nominal prediction errors of 1 to 1.7 cetane numbers (CN). Shallow ANNs showed comparable prediction results as compared to LR, with the Gaussian Exponential Model yielding the best results overall. The DCN prediction models were exercised to observe the most critical-sensitive properties in the DCN prediction. Fuel density and T50 were seen to be the most important for both jet and diesel fuels. This result supports the usage of these two properties in cetane number prediction via the Cetane Index (CI) calculation (ASTM D976). Flash point and Tend of the distillation curve were of secondary importance. Additionally, jet fuel chemical composition data from 8 chemical fuel classes were applied to predict DCN. Adding the chemical composition data to the physical property data did not provide for improved DCN prediction. This result supports the coupling and connection between a fuel’s physical and chemical properties. An analysis of the most important (to DCN) fuel classes shows alkanes (high cetane) and alkyl-benzene (low cetane) components to be the most influential. Finally, fuel similarity was characterized using Self Organizing Maps (SOMs). The SOM map was trained for both jet and diesel fuels using physical properties alone. Different fuels (e.g. alternative Alcohol-to-Jet) were then applied to the SOM to test similarity. SOM Position and Quantization Error are shown to accurately characterize these fuels as significantly different than the conventional jet and diesel fuels used to establish the SOM.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії