Зміст
Добірка наукової літератури з теми "Algues marines – Résistance au stress"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Algues marines – Résistance au stress".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Дисертації з теми "Algues marines – Résistance au stress"
Xing, Qikun. "Deciphering the oxylipin signaling pathways during defense responses in brown macroalgae." Thesis, Sorbonne université, 2021. http://www.theses.fr/2021SORUS536.
Повний текст джерелаOxylipins are oxygenated compounds derived from polyunsaturated fatty acids (PUFAs), found in many organisms. In land plants and animals, they are known to have regulating roles in growth and in response to various stresses. Brown algae have developed unique oxylipin pathways, using both C18- and C20- type PUFAs. However, the role and regulation of oxylipin pathways during defense responses are largely unclear in brown algae. In my PhD thesis, I conducted large transcriptomic analyses in order to decipher the molecular responses of two kelps species, Saccharina latissima and Laminaria digitata during biotic interactions, in relationships with the induction of oxylipin pathways. The transcriptomic analysis was performed on a kelp-endophyte co-cultivation bioassay and oligoguluronate elicitation. Among differentially expressed genes, several genes putatively involved in oxylipin pathways were identified with diverse expression patterns. During the elicitation, one putative cytochrome P450 (CYP)-encoding gene was induced at 1 h and 12 h, suggesting that oxylipin pathways in S. latissima might be induced at least two times. The result of metabolite profiling showed an early production of putative C18 oxylipins and the putative alternative role of C20 oxylipin pathways during the elicitation. Finally, the biological function of several oxylipins and aldehydes were tested on targeted gene or metabolite inductions in S. latissima and L. digitata. Altogether, these results led to the partial reconstruction of oxylipin pathways and provide a better understanding of their regulation during defense responses in kelps
Diab, Farès. "Influence du stress hyper-osmotique et des osmoprotecteurs sur la biodégradation des hydrocarbures par les pseudomonas." Rennes 1, 2006. http://www.theses.fr/2006REN1S045.
Повний текст джерелаStella, Giulio Rocco. "Light stress and photoprotection in green algae, mosses and diatoms." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066430/document.
Повний текст джерелаThe molecular bases of responses to light excess in photosynthetic organisms having different evolutionary histories and belonging to different lineages are still not completely characterized. Therefore I explored the functions of photoprotective antennae in green algae, mosses and diatoms, together with the role of the two xanthophyll cycles present in diatoms.I studied the Light Harvesting Complex Stress-Related (LHCSR) proteins in different organisms. In the green alga Chlamydomonas reinhardtii, LHCSR3 is a protein important for photoprotection. I used site-specific mutagenesis in vivo and in vitro and identified three residues of LHCSR3 that are responsible for its activation.With the moss Physcomitrella patens I studied the in vitro spectroscopic and quenching characteristics of different pigment-binding mutants of the protein LHCSR1, focusing in particular on chlorophylls A2 and A5.LHCSRs in diatoms are named LHCXs, and in Phaeodactylum tricornutum I found that multiple abiotic stress signals converge to regulate the LHCX content of cells, providing a way to fine-tune light harvesting and photoprotection.The other main driver of photoprotection in diatoms is the xanthophyll cycle. Here I found that the accumulation of viola- and zeaxanthin in P. tricornutum have a negative effect in the development of NPQ, showing that zeaxanthin does not participate in the enhancing of NPQ in diatoms.Thanks to these studies done on different organisms, we gained a deeper knowledge on the shared characteristics and on the peculiar features about photoprotection in green algae, mosses and diatoms
Creis, Emeline. "Etude de la voie de biosynthèse des phlorotannins chez les algues brunes, de la caractérisation biochimique d'enzymes recombinantes à l'étude des réponses écophysiologiques." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066095/document.
Повний текст джерелаPhlorotannins are polymers of phloroglucinol that are specific phenolic compounds of brown algae (Phaeophyceae). These metabolites present antioxidant activities and are potentially involved in the formation of cell-walls but their biosynthetic pathway is currently uncharacterized. The genome annotation of the brown algae Ectocarpus provided some information about conserved genes which are implicated in the synthesis of phenolics in terrestrial plants. One polyketide synthase of type III (PKSIII) has been successfully characterized: it produces phloroglucinol. The search for other targets has been pursued in brown algae focusing mainly on chalcone isomerase-like (CHI-like) genes, as well as on phenol-sulfotransferases, which are implicated in the sulfation of flavonoids. The characterization of CHIL has revealed their implication in fatty acid binding (FAP). However, the level of interest for this new family has led to their biochemical characterization and to functional studies by complementation of gene in the Arabidopsis thaliana FAP mutant. The progressive elucidation of the phlorotannin biosynthesis pathway has been used in order to discover mechanisms which regulate this metabolism in brown algae. By combining integrated approaches of gene expression profiling with the quantification and profiling of soluble phlorotannins, we have shown that these metabolites ensure the constitutive protection in Fucus vesiculosus against UV-B radiation and could also be induced as a very early response to grazing. The development of specific molecular tools for this metabolic pathway opens some news perspectives in ecophysiological and ecological studies
Breton, Solène. "Relation entre le métabolisme lipidique membranaire et l’adaptation à la température chez les picocyanobactéries marines du genre Synechococcus." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS503.
Повний текст джерелаMarine picocyanobacteria are the smallest, but also the most abundant photosynthetic organisms on Earth, responsible for nearly 20% of oceanic primary production. Among them, marine Synechococcus display a wide latitudinal distribution that is underpinned by the physiological specialization of phylogenetic lineages along the latitudinal gradient of temperature (i.e. temperature ecotypes). For these photosynthetic cells, the regulation of the membrane fluidity, where the photosynthetic complexes are located, is essential for the cell survival at different temperatures. However, very little data is available on the lipid composition of membranes and its thermoregulation in marine cyanobacteria. My PhD thesis is a comparative thermophysiology study of strains representative of the major clades of the natural communities in the oceans, inhabiting different thermal niches. We showed that the different temperature ecotypes have distinct thermal preferenda and adjust their photosynthetic apparatus depending on the growth temperature. A lipidomic study allowed evidencing the membrane specificities of these marine cyanobacteria. In addition, this study shows that, using nearly 30 molecular species of membrane lipids, the temperature ecotypes have implemented different thermoregulation strategies, which are based on the differential activities of lipid desaturase enzymes. My thesis work suggests that the regulation of membrane fluidity has been an important matter for the colonization of different thermal niches by marine Synechococcus during their evolutionary ecotypic microdiversification
Oliveira, Junior Raimundo Gonçalves de. "Sensibilisation de cellules de mélanome à la chimiothérapie par des flavonoïdes et caroténoïdes extraits de plantes du Brésil, de Nouvelle-Calédonie et de microalgues marines." Thesis, La Rochelle, 2020. http://www.theses.fr/2020LAROS007.
Повний текст джерелаMetastatic melanoma is an aggressive form of cancer that progresses rapidly due to resistance to anti-cancer drugs. This thesis studies the hypothesis that molecules purified from plants or marine microalgae can improve the efficacy of anti-melanoma drugs by sensitizing cancer cells to chemotherapy. After a review of studies devoted to chemosensitization by natural molecules, we selected plants from Brazil and New Caledonia (Bixa orellana and Gardenia oudiepe) as well as marine microalgae (Rhodomonas salina and Tisochrysis lutea) to purify original flavonoids and carotenoids and evaluate their chemosensitization potential in a melanoma cell model treated with dacarbazine and vemurafenib. Our work on B. orellana seeds allowed us to detail their phytochemical composition, to identify two novel apocarotenoids and to demonstrate the chemosensitizing potential of Z-bixin by ROS generation. We also show that 5,7-dihydroxy-3,6,4'-trimethoxyflavone, purified from G. oudiepe, sensitizes melanoma cells to dacarbazine by inducing cytoskeleton disruption. After redefining the pigment profile of R. salina and T. lutea, we developed a process for the purification of fucoxanthin by CPC and demonstrated its chemosensitizing potential as well as that of alloxanthin. These results validate in vitro the concept of sensitization to chemotherapy by cytostatic carotenoids and flavonoids and contribute to the understanding of the cellular and molecular mechanisms involved in this chemosensitization
Kleinjan, Hetty. "The influence of bacteria on the adaptation to changing environments in Ectocarpus : a systems biology approach." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS267.
Повний текст джерелаEctocarpus subulatus depends on its associated bacteria for growth in fresh water, which stresses the significance of the “holobiont” during abiotic stress. The aim of my thesis is to elucidate the molecular mechanisms that underlie this phenomenon. Targeted co-culture experiments require cultivable organisms. Therefore, I have cultivated and characterized 388 Ectocarpus-associated bacteria, which belong to 33 different genera. None of the cultivated bacteria tested had a beneficial effect on algal growth in fresh water. For functional studies, I continued to work with mild antibiotic-treated holobionts that differed in their response to fresh water. The metatranscriptome and metabolome of these holobionts were analyzed during acclimation. In-depth analysis is ongoing, but first indications point towards a change in the microbiome regarding nitrogen assimilation and virulence. In parallel and complementary to the above, potentially beneficial algal-bacterial cross-talk was predicted in silico using metabolic network analysis on a subset of cultivated bacteria, and the predictions were experimentally verified using co-culture experiments. Together, these results contribute to a better understanding of how the Ectocarpus holobiont responds during abiotic stress and especially how bacteria are involved in this process