Дисертації з теми "Algèbre de Hopf tordue"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-44 дисертацій для дослідження на тему "Algèbre de Hopf tordue".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Ayadi, Mohamed. "Propriétés algébriques et combinatoires des espaces topologiques finis." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2022. http://www.theses.fr/2022UCFAC106.
Повний текст джерелаAubriot, Thomas. "Classification des objets galoisiens d'une algèbre de Hopf." Phd thesis, Université Louis Pasteur - Strasbourg I, 2007. http://tel.archives-ouvertes.fr/tel-00151368.
Повний текст джерела$$ \beta (x\otimes y ) = \delta (x) (y\otimes 1)$$ est une bijection. Les objets galoisiens forment une classe importante d'extensions de Hopf-Galois ; ce sont celles dont la sous-algèbre des co\"\i nvariants se réduit à l'anneau de base. Bien qu'une littérature abondante ait été consacrée aux extensions de Hopf-Galois, on a peu de résultats sur leur classification à isomorphisme près. Pour contourner la difficulté de classer les extensions de Hopf-Galois à isomorphisme près, Kassel a introduit et développé avec Schneider une relation d'équivalence sur les extensions de Hopf-Galois qu'il a appelée homotopie.
Dans cette thèse nous donnons des résultats de classification à homotopie et à isomorphisme près. Notre approche de la classification des objets galoisiens tourne autour de trois axes.
\begin{itemize}
\item[a)] La construction explicite de représentants des classes d'homotopie des objets galoisiens de l'algèbre $U_q(\mathfrak{g})$ associée par Drinfeld et Jimbo à une algèbre de Lie $\mathfrak{g}$, explicitant ainsi un théorème de Kassel et Schneider.
\item[b)] Une étude des objets galoisiens de l'alg\` ebre quantique $O_q (SL(2))$ des fonctions sur le groupe $SL (2)$, et donc un résultat de classification en dimension infinie; nous donnons la classification à isomorphisme près et des résultats partiels pour la classification à homotopie près.
\item[c)] Une étude systématique de la classification à isomorphisme et à homotopie près pour les algèbres de Hopf de dimension $\leq 15$ ; nous synthétisons des résultats éparpillés dans la littérature, portant sur des familles d'algèbres de Hopf pointées ou semisimples et nous complétons ces résultats en donnant la classification des objets galoisiens d'une algèbre de Hopf de dimension $8$ qui n'est ni semisimple ni
pointée.
\end{itemize}
Saidi, Abdellatif. "Algèbres de Hopf d'arbres et structures pré-Lie." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011. http://tel.archives-ouvertes.fr/tel-00720201.
Повний текст джерелаSaïdi, Abdellatif. "Algèbres de Hopf d'arbres et structures pré-Lie." Thesis, Clermont-Ferrand 2, 2011. http://www.theses.fr/2011CLF22208/document.
Повний текст джерелаWe investigate in this thesis the Hopf algebra structure on the vector space H spanned by the rooted forests, associated with the pre-Lie operad. The space of primitive elements of the graded dual of this Hopf algebra is endowed with a left pre-Lie product denoted by ⊲, defined in terms of insertion of a tree inside another. In this thesis we retrieve the “derivation” relation between the pre-Lie structure ⊲ and the left pre-Lie product → on the space of primitive elements of the graded dual H0CK of the Connes-Kreimer Hopf algebra HCK, defined by grafting. We also exhibit a coproduct on the tensor product H⊗HCK, making it a Hopf algebra the graded dual of which is isomorphic to the enveloping algebra of the semidirect product of the two (pre-)Lie algebras considered. We prove that the span of the rooted trees with at least one edge endowed with the pre-Lie product ⊲ is generated by two elements. It is not free : we exhibit two families of relations. Moreover we prove a similar result for the pre-Lie algebra associated with the NAP operad. Finally, we introduce current preserving operads and prove that the pre-Lie operad can be obtained as a deformation of the NAP operad in this framework
Saracco, Paolo. "Hopf Structures and Duality." Doctoral thesis, Università degli Studi di Torino, Torino, Italy, 2018. http://hdl.handle.net/2318/1664506.
Повний текст джерелаSaracco, Paolo. "Hopf Structures and Duality." Doctoral thesis, Università degli Studi di Torino, Torino, Italy, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/298350.
Повний текст джерелаTAILLEFER, Rachel. "Théories homologiques des algèbres de Hopf." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2001. http://tel.archives-ouvertes.fr/tel-00001150.
Повний текст джерелаDans un premier temps, nous unifions diverses théories cohomologiques pour les algèbres de Hopf. Deux d'entre elles ont été introduites par M. Gerstenhaber et S.D. Schack; l'une est sans coefficients et elle est liée à la cohomologie qui permet d'étudier les déformations d'une algèbre de Hopf, l'autre est une théorie à coefficients (qui sont des bimodules de Hopf). La troisième est une généralisation de la cohomologie qui a été définie par C. Ospel, il s'agit aussi d'une théorie à coefficients. Pour unifier ces théories, nous les identifions au foncteur Ext sur une algèbre associative définie par C. Cibils et M. Rosso qui est une ``algèbre enveloppante'' associée à l'algèbre de Hopf. Nous établissons ensuite des formules explicites pour un cup-produit sur deux de ces cohomologies, et montrons que ce produit correspond au produit de Yoneda des extensions. Nous montrons aussi la Morita invariance de ces cohomologies.
La deuxième partie de la thèse est consacrée à l'étude d'une homologie cyclique pour les algèbres de Hopf. Il s'agit d'une version duale de la cohomologie qu'ont introduite A. Connes et H. Moscovici. Nous en étudions des propriétés, puis considérons le cas des algèbres de groupe. Nous interprétons certaines décompositions (de Burghelea et de Karoubi-Villamayor) de l'homologie cyclique classique d'une algèbre de groupe en termes d'homologie cyclique de Connes et Moscovici. Nous établissons ensuite une formule de décomposition (semblable à celle de Karoubi-Villamayor) de l'homologie cyclique d'une algèbre de Hopf cocommutative (qui généralise un résultat de Khalkhali et Rangipour).
Enfin, nous calculons quelques exemples d'homologies: l'homologie cyclique classique des algèbres de carquois tronquées, ainsi que l'homologie cyclique de Connes et Moscovici dans le cas particulier des algèbres de Taft. Nous calculons aussi l'homologie de Hochschild et l'homologie cyclique classique des algèbres d'Auslander des algèbres de Taft.
Bellier, Olivia. "Propriétés algébriques et homotopiques des opérades sur une algèbre de Hopf." Phd thesis, Université Nice Sophia Antipolis, 2012. http://tel.archives-ouvertes.fr/tel-00756113.
Повний текст джерелаZanasi, Fabio. "Interacting Hopf Algebras- the Theory of Linear Systems." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL1020/document.
Повний текст джерелаWe present by generators and equations the algebraic theory IH whose free model is the category oflinear subspaces over a field k. Terms of IH are string diagrams which, for different choices of k, expressdifferent kinds of networks and graphical formalisms used by scientists in various fields, such as quantumcircuits, electrical circuits and Petri nets. The equations of IH arise by distributive laws between Hopfalgebras - from which the name interacting Hopf algebras. The characterisation in terms of subspacesallows to think of IH as a string diagrammatic syntax for linear algebra: linear maps, spaces and theirtransformations are all faithfully represented in the graphical language, resulting in an alternative, ofteninsightful perspective on the subject matter. As main application, we use IH to axiomatise a formalsemantics of signal processing circuits, for which we study full abstraction and realisability. Our analysissuggests a reflection about the role of causality in the semantics of computing devices
Lebed, Victoria. "Objets tressés : une étude unificatrice de structures algébriques et une catégorification des tresses virtuelles." Phd thesis, Université Paris-Diderot - Paris VII, 2012. http://tel.archives-ouvertes.fr/tel-00775857.
Повний текст джерелаMaurice, Rémi. "Algèbres de Hopf combinatoires." Thesis, Paris Est, 2013. http://www.theses.fr/2013PEST1196/document.
Повний текст джерелаThis thesis is in the field of algebraic combinatorics. In other words, the idea is to use algebraic structures, in this case of combinatorial Hopf algebras, to better study and understand the combinatorial objects and algorithms for composition and decomposition about these objects. This research is based on the construction and study of algebraic structure of combinatorial objects generalizing permutations. After recalling the background and notations of various objects involved in this research, we propose, in the second part, the study of the Hopf algebra introduced by Aguiar and Orellana based on uniform block permutations. By focusing on a description of these objects via well-known objects, permutations and set partitions, we propose a polynomial realization and an easier study of this algebra. The third section considers a second generalization interpreting permutations as matrices. We define and then study the families of square matrices on which we define algorithms for composition and decomposition. The fourth part deals with alternating sign matrices. Having defined the Hopf algebra of these matrices, we study the statistics and the behavior of the algebraic structure with these statistics. All these chapters rely heavily on computer exploration, and is the subject of an implementation using Sage software. This last chapter is dedicated to the discovery and manipulation of algebraic structures on Sage. We conclude by explaining the improvements to the study of algebraic structure through the Sage software
Leroux, Philippe. "Description algébrique des graphes orientés pondérés et applications." Rennes 1, 2003. https://tel.archives-ouvertes.fr/tel-00007375.
Повний текст джерелаZhang, Jiao. "Some aspects of cyclic homology and quantum quasi-shuffle algebras." Paris 7, 2010. http://www.theses.fr/2010PA077045.
Повний текст джерелаIn this thesis, we study three topics on cyclic homology theory: cyclic homology of strong smash product algebras, Hopf-cyclic homology of Bichon's algebra, and a "natural" graded Hopf algebra and its graded Hopf-cyclic cohomology. Also we study a relatively independent topic: quantum quasi shuffle algebras. This work is divided into four chapters. Each topic is discussed in one chapter. In Chapter 1, we define the strong smash product algebra SA\#J_R}BS of two algebras SAS and SBS with an invertible morphism SRS mapping from SB\otimes AS to SA\otimes BS. Then we construct a cylindrical module SA\natural BS whose diagonal cyclic module S\Delta__{\bullet}(A\natural B)S is graphically proven to be isomorphic to SC_{\bullet}(A\#_{_R}B)S the cyclic module of the algebra. A spectral sequence is stablished to converge to the cyclic homology of SA\#_{_R}BS. We apply our theorems to Majid's double crossproduct of Hopf algebras. In Chapter 2, we calculate the Hochschild homology of Bichon's algebra with coefficients in the ground field. And we provide sortie new SqS-identities on Gaussian polynomial. Using these SqS-identities, we obtain the Hopf-cyclic homology of Bichon's algebra. In Chapter 3, we prove that the category of differential graded algebras is monoidally equivalent to the category of left graded comodule algebras over a certain graded Hopf algebra. After calculating the graded Hopf-cyclic cohomology of that graded Hopf algebra, we construct cyclic cocycles on any graded differential algebra with closed graded trace by means of a characteristic homomorphism. In Chapter 4, we establish some properties of quantum quasi-shuffle algebras. They include the necessary and sufficient condition for the construction of the quantum quasi-shuffle product, the universal property, and the commutativity condition. As an application, we use the quantum quasi-shuffle product to construct a linear basis of ST(V)S, for a special kind of Yang-Baxter algebras S(V,m,\sigma)S
Bulgakova, Daria. "Some aspects of representation theory of walled Brauer algebras." Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0022.
Повний текст джерелаThe walled Brauer algebra is an associative unital algebra. It is a diagram algebra spanned by particular ‘walled’ diagrams with multiplication given by concatenation. This algebra can be defined in terms of generators, obeying certain relations. In the first part of the dissertation we construct the normal form of the walled Brauer algebra - a set of basis monomials (words) in generators. This set is constructed with the aid of the so-called Bergman’s diamond lemma: we present a set of rules which allows one to reduce any monomial in generators to an element from the normal form. We then apply the normal form to calculate the generating function for the numbers of words with a given minimal length.A fusion procedure gives a construction of the maximal family of pairwise orthogonal minimal idempotents in the algebra, and therefore, provides a way to understand bases in the irreducible representations. As a main result of the second part we construct the fusion procedure for the walled Brauer algebra and show that all primitive idempotents can be found by evaluating a rational function in several variables. In the third part we study the mixed tensor product of three-dimensional fundamental representations of the Hopf algebra U_q sl(2|1). One of the main results consists in the establishing of the explicit formulae for the decomposition of tensor products of any simple or any projective U_q sl(2|1)-module with the generating modules. Another important outcome consists in decomposing the mixed tensor product as a bimodule
Bui, Hoan-Phung. "Correspondence theorems in Hopf-Galois theory for separable field extensions." Doctoral thesis, Universite Libre de Bruxelles, 2020. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/312548.
Повний текст джерелаDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Nunge, Arthur. "Combinatoire énumérative et algébrique autour du PASEP." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1116/document.
Повний текст джерелаThis thesis comes within the scope of enumerative and algebraic combinatorics and studies the probabilities of the partially asymmetric exclusion process (PASEP).First, we bijectively prove a conjecture of Novelli-Thibon-Williams concerning the combinatorial interpretation of the entries of the transition matrices between some bases of the noncommutative symmetric functions algebra. More precisely, these matrices correspond to the transition matrices of, on the one hand the complete and ribbon bases and on the other hand the monomial and fundamental bases, both introduced by Tevlin. The coefficients of these matrices provide a refinement of the probabilities of the PASEP and are described using new statistics on permutations. This conjecture states that this refinement can also be described using classical statistics of the PASEP. In the second part, we study a generalization of the PASEP using two kinds of particles: the 2-PASEP. Hence, we give several combinatorial interpretations of the probabilities of this model. In order to do so, we define a new family of paths generalizing the Laguerre histories: the marked Laguerre histories. We also generalize the Françon-Viennot bijection between Laguerre histories and permutations to define partially signed permutations giving another combinatorial interpretation of these probabilities. In a third part, we generalize Tevlin's work in order to define a monomial basis and a fundamental basis on the algebra over segmented compositions. In order to describe the transition matrices between these bases and other bases already known in this algebra, we define an algebra indexed by partially signed permutations using the statistics previously defined to describe the combinatorics of the 2-PASEP. We also define some q-analogues of these bases related to the probabilities of the 2-PASEP according to the q parameter of this model. Finally, using the fact that partially signed permutations and segmented permutations are in bijection, we use the statistics defined previously to define descents on these objects and get a generalization of the Eulerian polynomials on segmented permutations. To study these polynomials, we use the algebraic tools introduced in the previous part
Priez, Jean-Baptiste. "Combinatoire des fonctions de parking : espèces, énumération d’automates et algèbres de Hopf." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS111/document.
Повний текст джерелаThis thesis comes within the scope of algebraic, bijective and enumerative combinatorics. It deals with the study of generalized parking functions following those axes.In the first part, we are interested in generalized parking as a species of combinatorial structures. We define this species from a functional equation involving the species of set sequences. We lift the cycle index serie to the non-commutative symmetric functions, express in several bases. By specialization, we obtain new enumeration formula of generalized parking and their isomorphism types.In the functional equation, the species of sets can be replaced by some other species. This defines new structures: the $chi$-parking tables. In particular cases with $chi : m mapsto a + b(m-1)$, we define a bijection between the $chi$-parking tables and new tree structures. This defines a generalization of the C. H. Yan bijection.In the second part, we are interested in the enumeration of automata. Firstly, we construct a simple bijection between (non-initial) automata and sequences of sets. From this bijection we extract a subfamily of quasi-distinguished automata. We obtain a better upper bound of the number of minimal automata than the one of M. Domaratzki.Then we construct a new bijection between $2m^k$-parking functions and (non-initial) acyclic automata over an alphabet of $k$ symbols. From this bijection we extract, from parking function, informations about automata structures. We deduce an enumeration formula of the minimal acyclic automata.In a third part, we formalize the common technique of polynomial realization of Hopf algebras: FQSym, WQSym, PQSym, etc.. We define a notion of type of alphabet and partitioning map. We highlight some operation which stabilizes these notions. Based on this, we define two constructions of dual combinatorial Hopf algebra; and we show that they are automatically endowed of dendriform coalgebra, and $#$-product.As an application, we define, for every family of $chi$-parking functions, a generalization of the parkization. We show that this is a partitionning map if and only if $chi : m mapsto 1 + b(m-1)$
Barbier, Rémi. "Algèbre quantique Uqp(u2) et application à la dynamique collective de rotation dans les noyaux." Lyon 1, 1995. http://www.theses.fr/1995LYO10198.
Повний текст джерелаGruson, Caroline. "Sur les super groupes de Lie." Paris 7, 1993. http://www.theses.fr/1993PA077056.
Повний текст джерелаBelhaj, Mohamed Mohamed. "Renormalisation dans les algèbres de HOPF graduées connexes." Thesis, Clermont-Ferrand 2, 2014. http://www.theses.fr/2014CLF22515/document.
Повний текст джерелаIn this thesis, we study the renormalization of Connes-Kreimer in the contex of specified Feynman graphs Hopf algebra. We construct a Hopf algebra structure $\mathcal{H}_\mathcal{T}$ on the space of specified Feynman graphs of a quantum field theory $\mathcal{T}$. We define also a doubling procedure for the bialgebra of specified Feynman graphs, a convolution product and a group of characters of this Hopf algebra with values in some suitable commutative algebra taking momenta into account. We then implement the renormalization described by A. Connes and D. Kreimer and the Birkhoff decomposition for two renormalization schemes: the minimal subtraction scheme and the Taylor expansion scheme.We recall the definition of Feynman integrals associated with a graph. We prove that these integrals are holomorphic in a complex variable D in the case oh Schwartz functions, and that they extend in a meromorphic functions in the case of a Feynman type functions. Finally, we determine the finite parts of Feynman integrals using the BPHZ algorithm after dimensional regularization procedure
Nguyen, Le Chi Quyet. "Une description fonctorielle des K-théories de Morava des 2-groupes abéliens élémentaires." Thesis, Angers, 2017. http://www.theses.fr/2017ANGE0032/document.
Повний текст джерелаThe aim of this PhD thesis is to study, from a functorial point of view, the mod 2 Morava K-theories of elementary abelian 2-groups. Namely, we study the covariant functors $V \mapsto K(n)^*(BV^{\sharp})$ for the prime p=2 and n a positive integer.The case n=1, which follows directly from the work of Atiyah on topological K-theory, gives us a coanalytic functor which contains no non-constant polynomial sub-functor. This is very different from the case n>1, where the above-mentioned functors are analytic.The theory of Henn-Lannes-Schwartz provides a correspondence between analytic functors and unstable modules over the Steenrod algebra. We determine the unstable module corresponding to the analytic functor $V \mapsto K(2)^*(BV^{\sharp})$, by studying the relation between this functor and the Hopf ring structure of the homology of the omega-spectrum associated to the theory K(2)
Abdou, Damdji Ahmed Zahari. "Etude et Classification des algèbres Hom-associatives." Thesis, Mulhouse, 2017. http://www.theses.fr/2017MULH0158/document.
Повний текст джерелаThe purpose of this thesis is to study the structure of Hom-associative algebras and provide classifications. Among the results obtained in this thesis, we provide 2-dimensional and 3-dimensional Hom-associative algebras and give a characterization of multiplicative simple Hom-associative algebras. Moreover we compute some invariants and discuss irreducible components of the corresponding algebraic varieties. The thesis is organized as follows. In the first chapter we give the basics about Hom-associative algebras and provide some new properties. Moreover, we discuss unital Hom-associative algebras. Chapter 2 deals with simple multiplicative Hom-associative algebras. We present one of the main results of this paper, that is a characterization of simple multiplicative Hom-associative algebras. Indeed, we show that they are all obtained by twistings of simple associative algebras. Chapter 3 is dedicated to describe algebraic varieties of Hom-associative algebras and provide classifications, up to isomorphism, of 2-dimensional and 3-dimensional Hom-associative algebras. In chapter 4, we compute their derivations and twisted derivations, whereas in chapter 5, we compute their Hom-Type Hochschild cohomology. In the last section of this chapter, we consider the geometric classification problem using one-parameter formel deformations, and describe the irreducible components. In chapter 6, we compute Rota-Baxter structures of weight k of Hom-associative algebras appearing in our classification. In chapter 7, We work out Hom-bialgebras structures as well as their invariants. Properties and classifications, as well as the calculation of certain invariants such as the first and second cohomology groups, were studied
Giraudo, Samuele. "Combinatoire algébrique des arbres." Phd thesis, Université Paris-Est, 2011. http://pastel.archives-ouvertes.fr/pastel-00674619.
Повний текст джерелаNgo, Quoc hoan. "Double régularisation des polyzêtas en les multi-indices négatifs et extensions rationnelles." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCD023/document.
Повний текст джерелаIn this memoir are studied the polylogarithms and the harmonic sums at non-positive (i.e. weakly negative) multi-indices. General results about these objects in relation with Hopf algebras are provided. The technics exploited here are based on the combinatorics of non commmutative generating series relative to the Hopf φ−Shuffle algebra. Our work will also propose a global process to renormalize divergent polyzetas. Finally, we will apply these ideas to non-linear dynamical systems with singular inputs
Quesney, Alexandre. "Un relèvement d'une structure d'algèbre de Batalin-Vilkovisky sur la double construction cobar." Phd thesis, Université de Nantes, 2014. http://tel.archives-ouvertes.fr/tel-00948997.
Повний текст джерелаTaipe, Huisa Frank. "Quantum transformation groupoids : an algebraic and analytical approach." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC258.
Повний текст джерелаThis thesis is concerned with the construction of a family of quantum transformation groupoids in the algebraic framework in the form of the measured multiplier Hopf *-algebroids in the sense of Timmermann and Van Daele and also in the context of operator algebras in the form of Hopf C*-bimodules on a C*-base in the sense of Timmermann.In the purely algebraic context, we first give a definition of a braided commutative Yetter-Drinfeld *-algebra over an algebraic quantum group in the sense of Van Daele and a Yetter-Drinfeld integral on it. Then, using these objects we construct a measured multiplier Hopf *-algebroid, we call to this new object an algebraic quantum transformation groupoid.In order to pass to the operator algebra framework, we give some conditions on the Yetter-Drinfeld integral inspired by the properties of KMS-weights on C*-algebras which will allow us to use the Gelfand–Naimark–Segal construction to extend all the purely algebraic objects to the C*-algebraic level. At this level, we construct in a similar way to that used in the work of Enock and Timmermann, a new mathematical object that we call a C*-algebraic quantum transformation groupoid, which is defined using the language of Hopf C*-bimodules on C*-bases
Riviere, Salim. "Sur l'isomorphisme entre les cohomologies de Hochschild et de Chevalley-Eilenberg." Phd thesis, Université de Nantes, 2012. http://tel.archives-ouvertes.fr/tel-00785201.
Повний текст джерелаQuesney, Alexandre. "Unrelèvement d'une structure d'algèbre de Batalin-Vilkovisky sur la double construction cobar." Nantes, 2014. http://archive.bu.univ-nantes.fr/pollux/show.action?id=4ed4c8b7-7df5-4927-87af-ed42f5245e4f.
Повний текст джерелаIn a first part we establish structural results on the cobar construction. The goal is to obtain a homotopy BV-algebra structure on the double cobar construction. In summary we have a criterion for obtaining of a homotopy BV-algebra (à la Gerstenhaber-Voronov) on the double cobar construction W2C of homotopy G-coalgebra C. This involves the structural co-operations of the homotopy G-coalgebra C. In a second part, we apply the previous criterion to the homotopy G-coalgebra C (X). The homotopy G-coalgebra structure on the simplicial chain complex C (X) is such that the resulting double cobar construction W2C (X) is a model for the double loop space W2jXj. Next, we give comparison results between the BV-algebra structure obtained on W2C (X) when X is a double suspension and the BV-algebra structure on H (W2jXj) given by the diagonal action of the circle. Finally, when Q is the coefficient ring, we deform the Hopf dg-algebra structure on the Baues cobar construction WC (X) into a involutive Hopf dg-algebra structure (r0 , S0). Then we obtain a homotopy BV-algebra structure on the double cobar construction W(WC (X),r0 , S0) for any simplicial set X
Palafox, Jordy. "Calcul Moulien, Arborification, Symétries et Applications." Thesis, Pau, 2018. http://www.theses.fr/2018PAUU3008/document.
Повний текст джерелаThis thesis work mainly focuses on the use of the mould calculus and the technic of arborification which had been introduced both by J.Ecalle in the seventies and theirs applications to the study of continuous or discrete systems.One of the contributions is the systematic study of conditions under which the arborification allows to reestablish the convergence of formal series via introduction of a notion of invariance of mould under arborification. These results allow to give a detailed proof of Brjuno Theorem of analytic linearizability of vector fields as it is proposed by J.Ecalle in his article "Singularité non abordable par la géométrie". These results were obtained jointly with Dominique Manchon (University of Clermont Ferrand) and Jacky Cresson.The power of the mould calculus is then illustrated by an almost complete resolution of the Jarque-Villadelprat's conjecture about Hamiltonian Isochronous centers. This conjecture states that there is not existing polynomial vector fields in the plane of odd degree which are Hamiltonian. The study of the algebraic structure of the correction, introduced in the nineties by G.Gallavotti and then generalized by J.Ecalle and B.Vallet and its explicit computation via mould calculus, enables us to obtain explicit conditions of obstruction to isochronicity. The algebraic and combinatoric aspect of these objects and methods brings naturally to the classification of center conditions through a notion of complexity. The arborification allows to the unification of different approaches and a simplicification of different works, especially those of J.C.Butcher about algebraic structures of Runge-kutta methods, who had introduced that is called B-series by numerical mathematicians. Studying the algebraic structure of the substitution operator associated to a diffeomorphism, especially the one related to a Runge-Kutta method and the one which is associated to the solution of the underlying differential equations, we present the Butcher's encoding as a special translation of a direct arborification of the substitution automorphism. We can conclude that this phenomenon is wide and allows to include more recent studies on the approach by rough path of stochastic differential equations.A second part of this thesis involves the research of Lie group of symmetries of planar webs following Hénaut's approach (University of Bordeaux).This work allows to precise the relation between the dimension of the groups of symmetries and the linearizability or hexagonal character of planar webs. In the the case of line arrangement, we obtain a depthful relation between the modulus of derivations of Saito associated to the line arrangement and the group of symmetries of the associated web
Thibault, de Chanvalon Manon. "Groupes quantiques : actions sur des modules hilbertiens et calculs différentiels." Thesis, Clermont-Ferrand 2, 2014. http://www.theses.fr/2014CLF22521/document.
Повний текст джерелаLópez, Neumann Daniel. "Kuperberg invariants for sutured 3-manifolds." Thesis, Université de Paris (2019-....), 2020. http://www.theses.fr/2020UNIP7036.
Повний текст джерелаIn this thesis, we study Kuperberg's Hopf algebra approach to quantum invariants of closed 3-manifolds. We show that, for involutive Hopf superalgebras, Kuperberg invariants extend to the more general class of balanced sutured 3-manifolds, and in particular, to link complements. To achieve this, we bring many aspects of Reidemeister torsion theory into the realm of quantum invar-iants, such as twisting, Fox calculus and Spin^c structures and we make clear to which aspects of Hopf algebra theory these correspond. When our construction is specialized to an exterior algebra, we show that it recovers the twisted Reidemeister torsion of sutured 3-manifolds
Glanois, Claire. "Periods of the motivic fundamental groupoid of P1\{0, μN,∞}". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066013/document.
Повний текст джерелаFollowing F. Brown's point of view, we look at the Hopf algebra structure of motivic cyclotomic multiple zeta values, which are motivic periods of the fundamental groupoid of the projective line minus 0, infinity and N roots of unity. By application of a surjective period map (conjectured isomorphism), we deduce results (generating families, identities, etc.) on cyclotomic multiple zeta values, which are complex numbers. The coaction of this Hopf algebra (explicit combinatorial formula) is the dual of the action of a so-called motivic Galois group on these specific motivic periods. This entire study was motivated by the hope of a Galois theory for periods, which should extend the usual one for algebraic numbers.(i)In the first part, we focus on the case of motivic multiple zeta values (N = 1) and Euler sums (N = 2). In particular, we present new bases for motivic multiple zeta values: one via motivic Euler sums, and another (depending on an analytic conjecture) which is known as the Hoffman star basis; under a general motivic identity that we conjecture, these bases are identical. (ii)In the second part, we apply some Galois descents ideas to the study of these periods, and examine how multiple zeta values relative to N' roots of unity are embedded into those relative to N roots, when N' divide N. After giving some general criteria for any N, we focus on the cases N=2,3,4, 6, 8, for which the motivic fundamental group generates the category of mixed Tate motives on the ring of integer of the N cyclotomic field ramified in N (unramified if N=6). For those N, we are able to construct Galois descents explicitly, and extend P. Deligne's results
Kohli, Ben-Michael. "Les invariants de Links-Gould comme généralisations du polynôme d’Alexander." Thesis, Dijon, 2016. http://www.theses.fr/2016DIJOS062/document.
Повний текст джерелаIn this thesis we focus on the connections that exist between two link invariants: first the Alexander-Conway invariant ∆ that was the first polynomial link invariant to be discovered, and one of the most thoroughly studied since alongside with the Jones polynomial, and on the other hand the family of Links-Gould invariants LGn,m that are quantum link invariants derived from super Hopf algebras Uqgl(n|m). We prove a case of the De Wit-Ishii-Links conjecture: in some cases we can recover powers of the Alexander polynomial as evaluations of the Links-Gould invariants. So the LG polynomials are generalizations of the Alexander invariant. Moreover we give evidence that these invariants should still have some of the most remarkable properties of the Alexander polynomial: they seem to offer a lower bound for the genus of links and a criterion for fiberedness of knots
Pons, Viviane. "Combinatoire algébrique liée aux ordres sur les permutations." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00952773.
Повний текст джерелаMrozinski, Colin. "Semi-anneau de fusion des groupes quantiques." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-00948512.
Повний текст джерелаDelcroix-Oger, Bérénice. "Hyperarbres et Partitions semi-pointées : aspects combinatoires, algébriques et homologiques." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10243/document.
Повний текст джерелаThis thesis is dedicated to the combinatorial, algebraic and homological study of hypertrees and semi-pointed partitions. More precisely, we study algebraic and homological structures built from hypertrees and semi-pointed partitions. After recalling briefly the notions needed, we use the theory of species of structures to compute the action of the symmetric group on the homology of the hypertree posets. This action is the same as the action of the symmetric group linked with the anticyclic structure of the PreLie operad. We refine our computations on a grading of the homology : Whitney homology. This study is a motivation for the introduction of the notion of edge-decorated hypertrees. A one-to-one correspondence of decorated hypertrees with box trees and decorated partitions enables us to compute a close formula for the cardinality of decorated hypertrees, thanks to a Prüfer code. Moreover, we adapt computation methods of characters on incidence Hopf algebras, introduced by W. Schmitt for families of bounded posets, to families of unbounded posets satisfying some additional properties, called triangle and diamond posets. We apply these results to the hypertree posets. Finally, we unveil a new family of posets : the semi-pointed partition posets, which generalize both partition posets and pointed partition posets. We show the Cohen-Macaulayness of these posets and obtain, thanks to species theory, a closed formula for the dimension of its unique homology group, which extend the ones established for partition posets and pointed partition posets
Schieber, Gil. "L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D." Phd thesis, Université de Provence - Aix-Marseille I, 2003. http://tel.archives-ouvertes.fr/tel-00007545.
Повний текст джерелаFischler, Stéphane. "Contributions à l'étude diophantienne des polylogarithmes et des groupes algébriques." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00002988.
Повний текст джерелаChatel, Grégory. "Combinatoire algébrique liée aux ordres sur les arbres." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1136/document.
Повний текст джерелаThis thesis comes within the scope of algebraic combinatorics and studies of order structures on multiple tree families. We first look at the Tamari lattice on binary trees. This structure is obtained as a quotient of the weak order on permutations : we associate with each tree the interval of the weak order composed of its linear extensions. Note that there exists a bijection between intervals of the Tamari lattice and a family of poset that we callinterval-posets. The set of linear extensions of these posets is the union of the sets of linear extensions of the trees of the corresponding interval. We give a characterization of the posets satisfying this property and then we use this new family of objet on a large variety of applications. We first build another proof of the fact that the generating function of the intervals of the Tamari lattice satisfies a functional equation described by F. Chapoton. Wethen give a formula to count the number of trees smaller than or equal to a given tree in the Tamari order and in the $m$-Tamari order. We then build a bijection between interval-posets and flows that are combinatorial objects that F. Chapoton introduced to study the Pre-Lieoperad. To conclude, we prove combinatorially symmetry in the two parameters generating function of the intervals of the Tamari lattice. In the next part, we give a Cambrian generalization of the classical Hopf algebra of Loday-Ronco on trees and we explain their connection with Cambrian lattices. We first introduce our generalization of the planar binary tree Hopf algebra in the Cambrian world. We call this new structure the Cambrian algebra. We build this algebra as a Hopf sub algebra of a permutation algebra. We then study multiple properties of this objet such as its dual, its multiplicative basis and its freeness. We then generalize the Baxter algebra of S. Giraudo to the Cambrian world. We call this structure the Baxter-Cambrian Hopf algebra. The Baxter numbers being well-studied, we then explored their Cambrian counter parts, the Baxter-Cambrian numbers. To conclude this part, we give a generalization of the Cambrian algebra using a packed word algebra instead of a permutation algebra as a base for our construction. We call this new structure the Schröder-Cambrian algebra
Yao, Yi-Jun. "Autour des déformations de Rankin-Cohen." Phd thesis, Ecole Polytechnique X, 2007. http://pastel.archives-ouvertes.fr/pastel-00002414.
Повний текст джерелаBruned, Yvain. "Equations Singulières de type KPZ." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066517/document.
Повний текст джерелаIn this thesis, we investigate the existence and the uniqueness of the solution of the generalised KPZ equation. We use the recent theory of regularity structures inspired from the rough path and introduced by Martin Hairer in order to give a meaning to this singular equation. The procedure contains an algebraic part through the renormalisation group and a stochastic part with the computation of renormalised stochastic processes. One major improvement in the theory of the regularity structures is the definition of the renormalisation group using a Hopf algebra on some labelled trees. This new construction paves the way to simple formulas very useful for the renormalised stochastic processes. Then the convergence is obtained by an efficient treatment of some Feynman diagrams
Gilliers, Nicolas. "Non-commutative gauge symmetry and pseudo-unitary diffusions." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS113.
Повний текст джерелаThis thesis is devoted to the study of two quite different questions, which are related by the tools that we use to study them. The first question is that of the definition of lattice gauge theories with a non-commutative structure group. Here, by non-commutative, we do not mean non-Abelian, but instead non-commutative in the general sense of non-commutative geometry. The second question is that of the behaviour of Brownian diffusions on non-compact matrix groups of a specific kind, namely groups of pseudo-orthogonal, pseudo-unitary or pseudo-symplectic matrices. In the first chapter, we investigate lattice and continuous quantum gauge theories on the Euclidean plane with a structure group that is replaced by a Zhang algebra. Zhang algebras are non-commutative analogues of groups and contain the class of Voiculescu’s dual groups. We are interested in non-commutative analogues of random gauge fields, which we describe through the random holonomy that they induce. We propose a general definition of a holonomy field with Zhang gauge symmetry, and construct such a field starting from a quantum Lévy process on a Zhang algebra. As an application, we define higher dimensional generalizations of the so-called master field. In the second chapter, we study matricial approximations of higher dimensional master fields constructed in the previous chapter. These approximations (in non-commutative distribution) are obtained by extracting blocks of a Brownian unitary diffusion (with entries in the algebras of real, complex or quaternionic numbers) and letting the dimension of these blocks tend to infinity. We divide our study into two parts: in the first one, we extract square blocks while in the second one we allow rectangular blocks. In both cases, free probability theory appears as the natural framework in which the limiting distributions are most accurately described. In the last two chapters, we use tools introduced (Zhang algebras and coloured Brauer diagrams) in the first two ones to study Brownian motion on pseudo-unitary matrices in high dimensions. We prove convergence in non-commutative distribution of the pseudo-unitary Brownian motions we consider to free with amalgamation semi-groups under the hypothesis of convergence of the normalized signature of the metric. In the split case, meaning that at least asymptotically the metric has as much negative directions as positive ones, the limiting distribution is that of a free Lévy process, which is a solution of a free stochastic differential equation. We leave open the question of such a realization of the limiting distribution in the general case. In addition we provide (intriguing) numerical evidences for the convergence of the spectral distribution of such random matrices and make two conjectures. At the end of the thesis, we prove asymptotic normality for the fluctuations
Basbois, Nicolas. "La naissance de la cohomologie des groupes." Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00430204.
Повний текст джерелаBergeron, Geoffroy. "Coefficients de Clebsch-Gordan de la super-algèbre osp(1|2)." Thèse, 2015. http://hdl.handle.net/1866/13477.
Повний текст джерелаThe generating functions for the osp(1|2) Lie superalgebra Clebsch-Gordan coefficients are derived using two approaches. The first one consists of generalizing a method first proposed by Granovskii and Zhedanov to apply it to the case of osp(1|2), an algebra with a twisted coproduct. The second one is based on the realization of the osp(1|2) as the dynamical algebra for a parabosonic oscillator and used an equivalence in this realization between a change of basis from polar to cartesian coordinates and the Clebsch-Gordan problem. A less formal chapter precedes those derivations and present how the Clebsch-Gordan problem can be interpreted as a realization of a fusion algebra. The abstract notion of fusion is introduced, mentionning its importance in physics, and leads to the particular case of the Clebsch-Gordan problem. A brief review of the problem for the osp(1|2) algebra and its uses in mathematical physics concludes this chapter.