Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Algebraic quantum theory.

Дисертації з теми "Algebraic quantum theory"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Algebraic quantum theory".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Comeau, Marc A. "Premonoidal *-Categories and Algebraic Quantum Field Theory." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22652.

Повний текст джерела
Анотація:
Algebraic Quantum Field Theory (AQFT) is a mathematically rigorous framework that was developed to model the interaction of quantum mechanics and relativity. In AQFT, quantum mechanics is modelled by C*-algebras of observables and relativity is usually modelled in Minkowski space. In this thesis we will consider a generalization of AQFT which was inspired by the work of Abramsky and Coecke on abstract quantum mechanics [1, 2]. In their work, Abramsky and Coecke develop a categorical framework that captures many of the essential features of finite-dimensional quantum mechanics. In our setting we develop a categorified version of AQFT, which we call premonoidal C*-quantum field theory, and in the process we establish many analogues of classical results from AQFT. Along the way we also exhibit a number of new concepts, such as a von Neumann category, and prove several properties they possess. We also establish some results that could lead to proving a premonoidal version of the classical Doplicher-Roberts theorem, and conjecture a possible solution to constructing a fibre-functor. Lastly we look at two variations on AQFT in which a causal order on double cones in Minkowski space is considered.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hart, A. C. D. "An algebraic approach to bound state quantum field theory." Thesis, University of Nottingham, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233666.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alcántara, Bode Julio, and J. Yngvason. "Algebraic quantum field theory and noncommutative moment problems I." Pontificia Universidad Católica del Perú, 2013. http://repositorio.pucp.edu.pe/index/handle/123456789/96072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lang, Benjamin. "Universal constructions in algebraic and locally covariant quantum field theory." Thesis, University of York, 2014. http://etheses.whiterose.ac.uk/8019/.

Повний текст джерела
Анотація:
The present work is concerned with the application of categorical methods in algebraic and locally covariant quantum field theory. Attention is particularly paid to colimits and left Kan extensions, understanding K. Fredenhagen’s universal algebra, which is a global (unital) (C)*-algebra associated with a not necessarily up-directed net of local (unital) (C)*-algebras, from the point of view of category theory. The main technical result centres on explicit expressions for the universal algebra and its non-triviality in the case that a net of local unital *-algebras is constructed from linear symplectic spaces via a functorial quantisation prescription. Non-up-directed nets of local (unital) (C)*-algebras typically arise for quantum field theories in a generic curved spacetime with an arbitrary topology. As an example the field strength tensor description of the classical and the quantised free Maxwell field in curved spacetimes is considered. Employing colimits and left Kan extensions, a universal classical and quantum field theory are constructed. Both fail local covariance and dynamical locality but can be reduced to locally covariant and dynamically local theories. To understand C.J. Isham’s twisted quantum fields from the point of view of algebraic and locally covariant quantum field theory, an abstract categorical framework is introduced, which utilises recent ideas of C.J. Fewster on the automorphisms of a locally covariant theory and the group of the global gauge transformations of a theory. The general formalism allows to consider twisted variants of generic locally covariant theories, which need not refer to (quantum) fields at all, on single curved spacetimes. It is argued that the general categorical scheme leads naturally to the classification of the twisted variants of a locally covariant theory by the isomorphism classes of flat smooth principal bundles over the fixed single curved spacetime the twisted variants are considered on. The general categorical scheme and the classification of twisted variants are illustrated by the example of twisted variants of multiple free and minimally coupled real scalar fields of the same mass. Finally, a new family of pure and quasifree states for the quantised free massive Dirac field on 4-dimensional, oriented and globally hyperbolic ultrastatic slabs with compact spatial section is constructed, arising from a recent description of F. Finster’s fermionic projector. These FP-states (“FP” for fermionic projector) are tested for the Hadamard property with some negative and some positive results.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nyman, Adam. "The geometry of points on quantum projectivizations /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/5727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cooney, Nicholas. "Quantum multiplicative hypertoric varieties and localization." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:17d0824f-e8f2-4cb7-9e84-dd3850a9e2a2.

Повний текст джерела
Анотація:
In this thesis, we consider q-deformations of multiplicative Hypertoric varieties, where q∈𝕂x for 𝕂 an algebraically closed field of characteristic 0. We construct an algebra Dq of q-difference operators as a Heisenberg double in a braided monoidal category. We then focus on the case where q is specialized to a root of unity. In this setting, we use Dq to construct an Azumaya algebra on an l-twist of the multiplicative Hypertoric variety, before showing that this algebra splits over the fibers of both the moment and resolution maps. Finally, we sketch a derived localization theorem for these Azumaya algebras.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lu, Weiyun. "Topics in Many-valued and Quantum Algebraic Logic." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35173.

Повний текст джерела
Анотація:
Introduced by C.C. Chang in the 1950s, MV algebras are to many-valued (Łukasiewicz) logics what boolean algebras are to two-valued logic. More recently, effect algebras were introduced by physicists to describe quantum logic. In this thesis, we begin by investigating how these two structures, introduced decades apart for wildly different reasons, are intimately related in a mathematically precise way. We survey some connections between MV/effect algebras and more traditional algebraic structures. Then, we look at the categorical structure of effect algebras in depth, and in particular see how the partiality of their operations cause things to be vastly more complicated than their totally defined classical analogues. In the final chapter, we discuss coordinatization of MV algebras and prove some new theorems and construct some new concrete examples, connecting these structures up (requiring a detour through effect algebras!) to boolean inverse semigroups.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Solanki, Vinesh. "Zariski structures in noncommutative algebraic geometry and representation theory." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:3fa23b75-9b85-4dc2-9ad6-bdb20d61fe45.

Повний текст джерела
Анотація:
A suitable subcategory of affine Azumaya algebras is defined and a functor from this category to the category of Zariski structures is constructed. The rudiments of a theory of presheaves of topological structures is developed and applied to construct examples of structures at a generic parameter. The category of equivariant algebras is defined and a first-order theory is associated to each object. For those theories satisfying a certain technical condition, uncountable categoricity and quantifier elimination results are established. Models are shown to be Zariski structures and a functor from the category of equivariant algebras to Zariski structures is constructed. The two functors obtained in the thesis are shown to agree on a nontrivial class of algebras.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

BRAGA, DE GOES E. VASCONCELLOS JOAO. "Thermal equilibrium states in perturbative Algebraic Quantum Field Theory in relation to Thermal Field Theory." Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/979745.

Повний текст джерела
Анотація:
In the first part, we analyse the properties of an interacting, massive scalar field in an equilibrium state over Minkowski spacetime. We compare the known real- and imaginary-time formalisms of Thermal Field Theory with the recent construction by Fredenhagen and Lindner of a KMS state for perturbative interacting theories in the context of perturbative Algebraic Quantum Field Theory, in the adiabatic limit. In particular, we show that the construction of Fredenhagen and Lindner reduces to the real-time formalism only if the cocycle which intertwines between the free and interacting dynamics can be neglected. Furthermore, the Fredenhagen and Lindner construction reduces to the ordinary imaginary-time formalism if one considers the expectation value of translation invariant observables. We thus conclude that a complete description of thermal equilibrium for interacting scalar fields is generally obtained only by means of the state constructed by Fredenhagen and Lindner, which combines both formalisms of Thermal Field Theory. We also discuss the properties of the expansion of the Fredenhagen and Lindner construction in terms of Feynman diagrams in the adiabatic limit. We finally provide examples showing that the real- and the imaginary-time formalisms fail to describe thermal equilibrium already at first or second order in perturbation theory. The results presented in this part are summarized in (BDP19). In the second part, we discuss the so-called secular effects, characterized by the appearance of polynomial divergences in the large time limit of truncated perturbative expansions of expectation values in Quantum Field Theory. We show that, although such effect is an artifact of perturbation theory, and thus may not be obtained via exactly solving the dynamical equation if possible, they do not represent the breakdown of perturbation theory itself. Instead, we show that the polynomial divergences follow from a bad choice of state, and we present examples of states which produce expectation values whose perturbative expansion does not present secular effects. In particular, we point that it is possible to obtain non time-divergent perturbative expressions from thermal equilibrium states for the interacting theory. This last part is based on a research project which, by the time this thesis was written, had not been concluded yet.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

FALDINO, FEDERICO MARIA. "Facets of Non-Equilibrium in Perturbative Quantum Field Theory : an Algebraic Approach." Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/933558.

Повний текст джерела
Анотація:
In this thesis we study some non-equilibrium aspects of an interacting, massive scalar field theory treated perturbatively. This is done analysing some properties of the interacting KMS state constructed by Fredenhagen and Lindner [FL14] in the framework of perturbative Algebraic Quantum Field Theory. In the first part we treat the stability of KMS states, namely we check whether the free state evolved with the interacting dynamics converges to the interacting state. In the meantime we also analyse the return to equilibrium, that is the analogous property with the role of the free and interacting quantities exchanged. We prove that those two properties hold if the perturbation potential is of spatial compact support and that they fail otherwise, even if an adiabatic mean is considered. While the stability leads to non-curable divergencies, the analysis of return to equilibrium gives something finite, which is interpreted as a non-equilibrium steady state. The novelty of this non-equilibrium state drove us to try to characterise it in more details. To do so, in the second part we introduce relative entropy and entropy production for perturbative quantum field theory, justifying those definitions by proving their main properties. Furthermore, we showed that they are well-defined in the adiabatic limit if we consider densities. These two definitions allowed to prove that the non-equilibrium steady state is thermodynamically trivial, namely it has zero entropy production. The present thesis is based on [DFP18a, DFP18b].
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Van, De Ven Christiaan Jozef Farielda. "Quantum Systems and their Classical Limit A C*- Algebraic Approach." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/324358.

Повний текст джерела
Анотація:
In this thesis we develop a mathematically rigorous framework of the so-called ''classical limit'' of quantum systems and their semi-classical properties. Our methods are based on the theory of strict, also called C*- algebraic deformation quantization. Since this C*-algebraic approach encapsulates both quantum as classical theory in one single framework, it provides, in particular, an excellent setting for studying natural emergent phenomena like spontaneous symmetry breaking (SSB) and phase transitions typically showing up in the classical limit of quantum theories. To this end, several techniques from functional analysis and operator algebras have been exploited and specialised to the context of Schrödinger operators and quantum spin systems. Their semi-classical properties including the possible occurrence of SSB have been investigated and illustrated with various physical models. Furthermore, it has been shown that the application of perturbation theory sheds new light on symmetry breaking in Nature, i.e. in real, hence finite materials. A large number of physically relevant results have been obtained and presented by means of diverse research papers.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Roquefeuil, Alexis. "Confluence of quantum K-theory to quantum cohomology for projective spaces." Thesis, Angers, 2019. http://www.theses.fr/2019ANGE0019/document.

Повний текст джерела
Анотація:
En géométrie algébrique, les invariants de Gromov—Witten sont des invariants énumératifs qui comptent le nombre de courbes complexes dans une variété projective lisse qui vérifient des conditions d’incidence. En 2001, A. Givental et Y.P. Lee ont défini de nouveaux invariants, dits de Gromov—Witten K-théoriques, en remplaçant les définitions cohomologiques dans la construction des invariants de Gromov—Witten par leurs analogues K-théoriques. Une question essentielle est de comprendre comment sont reliées ces deux théories. En 2013, Iritani- Givental-Milanov-Tonita démontrent que les invariants K-théoriques peuvent être encodés dans une fonction qui vérifie des équations aux q-différences. En général, ces équations fonctionnelles vérifient une propriété appelée “confluence”, selon laquelle on peut dégénérer ces équations pour obtenir une équationdifférentielle. Dans cette thèse, on propose de comparer les deux théories de Gromov— Witten à l’aide de la confluence des équations aux q-différences. On montre que, dans le cas des espaces projectifs complexes, que ce principe s’adapte et que les invariants Kthéoriques peuvent être dégénérés pour obtenir leurs analogues cohomologiques. Plus précisément, on montre que la confluence de la petite fonction J de Givental K-théorique permet de retrouver son analogue cohomologique après une transformation par le caractère de Chern
In algebraic geometry, Gromov— Witten invariants are enumerative invariants that count the number of complex curves in a smooth projective variety satisfying some incidence conditions. In 2001, A. Givental and Y.P. Lee defined new invariants, called Ktheoretical Gromov—Witten invariants. These invariants are obtained by replacing cohomological objects used in the definition of the usual Gromov—Witten invariants by their Ktheoretical analogues. Then, an essential question is to understand how these two theories are related. In 2013, Iritani-Givental- Milanov-Tonita show that K-theoretical Gromov—Witten invariants can be embedded in a function which satisfies a q-difference equation. In general, these functional equations verify a property called “confluence”, which guarantees that we can degenerate these equations to obtain a differential equation. In this thesis, we propose to compare our two Gromov—Witten theories through the confluence of q-difference equations. We show that, in the case of complex projective spaces, this property can be adapted to degenerate Ktheoretical invariants into their cohomological analogues. More precisely, we show that theconfluence of Givental’s small K-theoretical Jfunction produces its cohomological analogue after applying the Chern character
Стилі APA, Harvard, Vancouver, ISO та ін.
13

SURIANO, LUCA. "A Quantum distance for noncommutative measure spaces and an application to quantum field theory." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2010. http://hdl.handle.net/2108/1326.

Повний текст джерела
Анотація:
Nella prima parte della Tesi, presentiamo una versione "puntata" della topologia di Gromov-Hausdorff quantistica introdotta da Rieffel per spazi metrici quantistici compatti (cioè, spazi con unità d'ordine e una seminorma Lipschitz che metrizza la topologia *-debole sullo spazio dei funzionali positivi normalizzati). In particolare, proporremo una nozione di cono tangente quantistico di uno spazio metrico quantistico, come analogo noncommutativo del cono tangente di Gromov in un punto di uno spazio metrico ordinario, basata su una opportuna procedura di riscalamento della seminorma Lipschitz definita su uno spazio metrico quantistico. Tale costruzione estende effettivamente la corrispondente costruzione valida per spazi metrici ordinari. Infine, a titolo di esempio, descriveremo il cono tangente quantistico del toro noncommutativo bidimensionale. Nella seconda parte, invece, introduciamo una particolare distanza quantistica sull'insieme delle algebre di von Neumann Lip-normate (cioè, dotate di una ulteriore norma che metrizza la topologia debole sui sottoinsiemi limitati nella norma C*). Come avviene per le distanze di tipo Gromov-Hausdorff, anche questa distanza G.-H. duale è una pseudo-distanza, e diviene una vera distanza solo sulle classi di equivalenza isometrica (rispetto alla norma Lip) delle algebre di von Neumann Lip-normate. Inoltre, dimostreremo un criterio di precompatteza per famiglie di algebre di vN Lip-normate (fortemente) uniformemente limitate, utilizzando la nozione di ultraprodotto (ristretto) di algebre di vN Lip-normate. Infine, nell'ambito del'approccio algebrico alla teoria quantistica dei campi, applicheremo tale costruzione allo studio del limite di scala (cioè, quando si fanno tendere a un punto le regioni dello spaziotempo su cui sono definiti gli osservabili della teoria) di una rete locale di algebre di vN (le algebre degli osservabili), confrontando l'approccio tramite ultraprodotti (e con la convergenza nella distanza quantistica) con la costruzione delle algebre "limite di scala" di Buchholz e Verch, mostrando che nel caso del campo libero bosonico le due procedure forniscono lo stesso risultato.
In the first part of this dissertation, we study a pointed version of Rieffel's quantum Gromov-Hausdorff topology for compact quantum metric spaces (i.e, order-unit spaces with a Lipschitz-like seminorm inducing a distance on the space of positive normalized linear functionals which metrizes the w*-topology). In particular, in analogy with Gromov's notion of metric tangent cone at a point of an (abstract) proper metric space, we propose a similar construction for (compact) quantum metric spaces, based on a suitable procedure of rescaling the Lipschitz seminorm on a given quantum metric space. As a result, we get a quantum analogue of the Gromov tangent cone, which extends the classical (say, commutative) construction. As a case study, we apply this procedure to the two-dimensional noncommutative torus, and we obtain what we call a noncommutative solenoid. In the second part, we introduce a quantum distance on the set of dual Lip-von Neumann algebras (i.e., vN algebras with a dual Lip-norm which metrizes the w*-topology on bounded subset). As for the other G.-H. distances (classical or quantum), this dual quantum Gromov-Hausdorff (pseudo-)distance turns out to be a true distance on the (Lip-)isometry classes of Lip-vN algebras. We give also a precompactness criterion, relating the limit of a (strongly) uniform sequence of Lip-vN algebras to the (restricted) ultraproduct, over an ultrafilter, of the same sequence. As an application, we apply this construction to the study of the Buchholz-Verch scaling limit theory of a local net of (algebras of) observables in the algebraic quantum field theory framework, showing that the two approaches lead to the same result for the (real scalar) free field model.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Thiang, Guo Chuan. "Topological phases of matter, symmetries, and K-theory." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:53b10289-8b59-46c2-a0e9-5a5fb77aa2a2.

Повний текст джерела
Анотація:
This thesis contains a study of topological phases of matter, with a strong emphasis on symmetry as a unifying theme. We take the point of view that the "topology" in many examples of what is loosely termed "topological matter", has its origin in the symmetry data of the system in question. From the fundamental work of Wigner, we know that topology resides not only in the group of symmetries, but also in the cohomological data of projective unitary-antiunitary representations. Furthermore, recent ideas from condensed matter physics highlight the fundamental role of charge-conjugation symmetry. With these as physical motivation, we propose to study the topological features of gapped phases of free fermions through a Z2-graded C*-algebra encoding the symmetry data of their dynamics. In particular, each combination of time reversal and charge conjugation symmetries can be associated with a Clifford algebra. K-theory is intimately related to topology, representation theory, Clifford algebras, and Z2-gradings, so it presents itself as a powerful tool for studying gapped topological phases. Our basic strategy is to use various K
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Rosca, Georgiana-Miruna. "On algebraic variants of Learning With Errors." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN063.

Повний текст джерела
Анотація:
La cryptographie à base de réseaux euclidiens repose en grande partie sur l’utilisation du problème Learning With Errors (LWE) comme fondation de sécurité. Ce problème est au moins aussi difficile que les problèmes standards portant sur les réseaux, mais les primitives cryptographiques qui l’utilisent sont inefficaces en termes de consommation en temps et en espace. Les problèmes Polynomial Learning WithErrors (PLWE), dual Ring Learning With Errors (dual-RLWE) et primal Ring Learning With Errors(primal-RLWE) sont trois variantes de LWE qui utilisent des structures algébriques supplémentaires afin de pallier les inconvénients ci-dessus. Le problème PLWE est paramétré par un polynôme f, alors que dual-RLWE et primal-RLWE sont définis à l’aide de l’anneau d’entiers d’un corps de nombres.Ces problèmes, dits algébriques, sont eux-mêmes au moins aussi difficiles que des problèmes standards portant sur les réseaux, mais, dans leur cas, les réseaux impliqués appartiennent à des classes restreintes.Dans cette thèse, nous nous intéressons aux liens entre les variantes algébriques de LWE.Tout d’abord, nous montrons que pour une vaste classe de polynômes de définition, il existe des réductions (non-uniformes) entre dual-RLWE, primal-RLWE et PLWE pour lesquelles l’amplification des paramètres peut être contrôlée. Ces résultats peuvent être interprétés comme une indication forte de l’équivalence calculatoire de ces problèmes.Ensuite, nous introduisons une nouvelle variante algébrique de LWE, Middle-Product Learning WithErrors (MP-LWE). On montre que ce problème est au moins aussi difficile que PLWE pour beaucoup de polynômes de définition f. Par conséquent, un système cryptographique reposant sur MP-LWE reste sûr aussi longtemps qu’une de ces instances de PLWE reste difficile à résoudre.Enfin, nous montrons la pertinence cryptographique de MP-LWE en proposant un protocole de chiffrement asymétrique et une signature digitale dont la sécurité repose sur la difficulté présumée de MP-LWE
Lattice-based cryptography relies in great parts on the use of the Learning With Errors (LWE) problemas hardness foundation. This problem is at least as hard as standard worst-case lattice problems, but the primitives based on it usually have big key sizes and slow algorithms. Polynomial Learning With Errors (PLWE), dual Ring Learning With Errors (dual-RLWE) and primal Ring Learning WithErrors (primal-RLWE) are variants of LWE which make use of extra algebraic structures in order to fix the above drawbacks. The PLWE problem is parameterized by a polynomial f, while dual-RLWE andprimal-RLWE are defined using the ring of integers of a number field. These problems, which we call algebraic, also enjoy reductions from worst-case lattice problems, but in their case, the lattices involved belong to diverse restricted classes. In this thesis, we study relationships between algebraic variants of LWE.We first show that for many defining polynomials, there exist (non-uniform) reductions betweendual-RLWE, primal-RLWE and PLWE that incur limited parameter losses. These results could be interpretedas a strong evidence that these problems are qualitatively equivalent.Then we introduce a new algebraic variant of LWE, Middle-Product Learning With Errors (MP-LWE). We show that this problem is at least as hard as PLWE for many defining polynomials f. As a consequence,any cryptographic system based on MP-LWE remains secure as long as one of these PLWE instances remains hard to solve.Finally, we illustrate the cryptographic relevance of MP-LWE by building a public-key encryption scheme and a digital signature scheme that are proved secure under the MP-LWE hardness assumption
Стилі APA, Harvard, Vancouver, ISO та ін.
16

PUERTO, AUBEL ADRIAN. "Algebraic Structures for the Analysis of Distributability of Elementary Systems and their Processes." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241253.

Повний текст джерела
Анотація:
In questa tesi studio in che modi si possono distribuire i sistemi e i processi che quei sistemi eseguono. La nozione centrale per raggiungere l'obiettivo è che, quando un sistema è distribuito, una sua osservazione "da lontano" richiede uno scambio d'informazioni con le diverse parti del sistema. Questo approccio si caratterizza per il fatto che la "sincronizzazione" (o "handshaking") è il modo fondamentale di interazione. I formalismi impiegati sono presi dalla teoria delle reti di Petri. I sistemi elementari e i sistemi di condizioni ed eventi in quella teoria costituiscono le specificazioni di sistemi. Le reti causali e gli insiemi parzialmente ordinati permettono di modellare processi. In questi modelli, lo stato dell'arte offre una nozione di sottoprocesso, cui si può associare una struttura che porta l'informazione su come distribuire il processo. Formalmente, questa struttura è un reticolo ortomodulare. Nella tesi mostro che gli elementi minimali non banali di quel reticolo (sottoprocessi minimali) possono essere ordinati in modo da formare un'astrazione del processo dato. La natura di questa nozione di sottoprocesso consente di mostrare che l'astrazione rappresenta le componenti del processo, cioè le parti che possono operare indipendentemente. Il comportamento dei sistemi elementari e dei sistemi di condizioni e eventi è modellato per mezzo di sistemi di transizioni etichettate. Nella tesi si applica un'interpretazione delle regioni elementari come proprietà localmente osservabili del sistema, motivata dalla sintesi di reti elementari. Secondo questa interpretazione, le regioni elementari offrono una specificazione adeguata dell'infrastruttura su cui si può distribuire un sistema. Era già noto che l'insieme delle regioni di un sistema elementare o di condizioni ed eventi forma un insieme ortomodulare, da cui si può ricavare un sistema di transizioni etichettate canonico, che contiene tutte le regioni dell'insieme ortomodulare dato. Stabilire se il sistema canonico ha più regioni di quelle specificate è un problema aperto. Il sistema canonico è il più "grande" che si può ottenere dall'insieme ortomodulare, nel senso che ogni altro sistema conforme alla specificazione è un suo sottosistema. D'altra parte, non tutti i sottosistemi hanno la stessa struttura regionale. Definisco una condizione sufficiente per avere l'isomorfismo. Il risultato si ottiene dotando di un'opportuna struttura l'insieme degli eventi, o delle etichette, del sistema canonico, così da riflettere la concorrenza. Un insieme ortomodulare si dice stabile quando è isomorfo all'insieme delle regioni del sistema di transizioni canonico derivato. Erano già note condizioni sotto le quali il primo insieme si immerge nel secondo. Si congettura che tutti gli insiemi parzialmente ordinati ottenuti come insiemi di regioni di sistemi elementari (insiemi regionali) sono stabili. Nella tesi si dà una nuova condizione necessaria perché un insieme ortomodulare sia regionale, e si mostra che in quel caso l'immersione è forte. Non tutte le immersioni sono forti, ma tutti gli isomorfismi sono immersioni forti. Dal risultato segue che l'immersione mappa regioni minimali su regioni minimali.
This work studies systems, and the processes they execute, in the way they can be distributed. To this aim, the central notion is that when a system is distributed, a remote observation requires an exchange of information from the different locations of the system. This approach is characterised by the fact that handshaking is the basic mode of interaction. The chosen formalisms are taken in the framework Petri net theory. Elemen- tary net systems, and condition/event net systems provide specifications for the systems. Causal nets and partially ordered sets allow for modelling processes. With these last formalisations, the state of the art provides a notion of subpro- cesses that can be structured so as to carry information on how a process can be distributed. This structure is formalised as an orthomodular lattice. This work shows that the minimal non trivial elements of this lattice, the minimal subprocesses, can be ordered so as to provide an abstraction of the process. The nature of this notion of subprocess permits to show that this abstraction depicts the localities of the process, parts of the process which can run independently from each other. The behaviour of elementary, and condition/event net systems, is modelled with labelled transition systems. This work adheres to an interpretation of the set of elementary regions, as the one of locally observable properties of the sys- tem, motivated by elementary net synthesis. According to this interpretation, elementary regions represent a suitable specification of the available infrastruc- ture on which to distribute a system. The state of the art shows that the set of regions of an elementary, or condition/event system, forms an orthomodular poset, and a way to retrieve a canonical labelled transition system such that all regions of the orthomodular poset are also regions of it. The question of whether this canonical transition system has more regions than the specified ones is an open problem. The canonical transition system is the largest one can obtain from an orthomodular poset, in the sense that systems complying with the specification, can be found as subsystems of it. However, not all its subsystems display the same regional structure. This work presents a sufficient condition for this to happen. This is achieved by providing a structure to the set of events, or labels, of the canonical system, which reflects concurrency. An orthomodular poset is called stable when it is isomorphic to the set of regions of its canonical transition system. The state of the art shows that when the first poset is of a given class, it embeds in the second. It is conjectured that all posets that arise as the set of elementary regions of an elementary system, regional posets, are stable. This work provides a condition necessary for an orthomodular poset to be regional, and shows that when it holds, the embedding is strong. Not every embedding is strong, but all isomorphisms are, in particular, strong embeddings. This result implies that the embedding maps minimal regions to minimal regions.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Juer, Rosalinda. "1 + 1 dimensional cobordism categories and invertible TQFT for Klein surfaces." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:b9a8fc3b-4abd-49a1-b47c-c33f919a95ef.

Повний текст джерела
Анотація:
We discuss a method of classifying 2-dimensional invertible topological quantum field theories (TQFTs) whose domain surface categories allow non-orientable cobordisms. These are known as Klein TQFTs. To this end we study the 1+1 dimensional open-closed unoriented cobordism category K, whose objects are compact 1-manifolds and whose morphisms are compact (not necessarily orientable) cobordisms up to homeomorphism. We are able to compute the fundamental group of its classifying space BK and, by way of this result, derive an infinite loop splitting of BK, a classification of functors K → Z, and a classification of 2-dimensional open-closed invertible Klein TQFTs. Analogous results are obtained for the two subcategories of K whose objects are closed or have boundary respectively, including classifications of both closed and open invertible Klein TQFTs. The results obtained throughout the paper are generalisations of previous results by Tillmann [Til96] and Douglas [Dou00] regarding the 1+1 dimensional closed and open-closed oriented cobordism categories. Finally we consider how our results should be interpreted in terms of the known classification of 2-dimensional TQFTs in terms of Frobenius algebras.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Almeida, Ricardo Costa de. "Topological order in three-dimensional systems and 2-gauge symmetry." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-05122017-094209/.

Повний текст джерела
Анотація:
Topological order is a new paradigm for quantum phases of matter developed to explain phase transitions which do not fit the symmetry breaking scheme for classifying phases of matter. They are characterized by patterns of entanglement that lead to topologically depended ground state degeneracy and anyonic excitations. One common approach for studying such phases in two-dimensional systems is through exactly solvable lattice Hamiltonian models such as quantum double models and String-Net models. The former can be understood as the Hamiltonian formulation of lattice gauge theories and, as such, it is defined by a finite gauge group. However, not much is known about topological phases in tridimensional systems. Motivated by this we develop a new class of three-dimensional exactly solvable models which go beyond quantum double models by using finite crossed modules instead of gauge groups. This approach relies on a lattice implementation of 2-gauge theory to obtain models with a richer topological structure. We construct the Hamiltonian model explicitly and provide a rigorous proof that the ground state degeneracy is a topological invariant and that the ground states can only be characterized with nonlocal order parameters.
Ordem topológica é um novo paradigma para fases quânticas da matéria desenvolvido para explicar transições de fase que não se encaixam no esquema de classificação de fases da matéria por quebra de simetria. Estas fases são caracterizadas por padrões de emaranhamento que levam a uma degenerescência de estado fundamental topológica e a excitações anyonicas. Uma abordagem comum para o estudo de tais fases em sistemas bidimensionais é através de modelos Hamiltonianos exatamente solúveis de rede como os modelos duplos quânticos e modelos de String-Nets. O primeiro pode ser entendido como a formulação Hamiltoniana de teorias de gauge na rede e, desta maneira, é definido por um group de gauge finito. Entretanto, pouco é conhecido a respeito de fases topológicas em sistemas tridimensionais. Motivado por isso nós desenvolvemos uma nova classe de modelos tridimensionais exatamente solúveis que vai alem de modelos duplos quânticos pelo uso de módulos cruzados finitos no lugar de grupos de gauge. Esta abordagem se baseia numa implementação em redes de teoria de 2-gauge para obter modelos com uma estrutura topológica mais rica. Nós construímos o modelos Hamiltoniano explicitamente e fornecemos uma demonstração rigorosa de que a degenerescência de estado fundamental é um invariante topológico e que os estados fundamentais só podem ser caracterizados por parâmetros de ordem não locais.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Diaz, Caro Alejandro. "Du typage vectoriel." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENM038/document.

Повний текст джерела
Анотація:
L'objectif de cette thèse est de développer une théorie de types pour le λ-calcul linéaire-algébrique, une extension du λ-calcul motivé par l'informatique quantique. Cette extension algébrique comprend tous les termes du λ-calcul plus leurs combinaisons linéaires, donc si t et r sont des termes, α.t+β.r est aussi un terme, avec α et β des scalaires pris dans un anneau. L'idée principale et le défi de cette thèse était d'introduire un système de types où les types, de la même façon que les termes, constituent un espace vectoriel, permettant la mise en évidence de la structure de la forme normale d'un terme. Cette thèse présente le système Lineal , ainsi que trois systèmes intermédiaires, également intéressants en eux-même : Scalar, Additive et λCA, chacun avec leurs preuves de préservation de type et de normalisation forte
The objective of this thesis is to develop a type theory for the linear-algebraic λ-calculus, an extension of λ-calculus motivated by quantum computing. This algebraic extension encompass all the terms of λ-calculus together with their linear combinations, so if t and r are two terms, so is α.t + β.r, with α and β being scalars from a given ring. The key idea and challenge of this thesis was to introduce a type system where the types, in the same way as the terms, form a vectorial space, providing the information about the structure of the normal form of the terms. This thesis presents the system Lineal, and also three intermediate systems, however interesting by themselves: Scalar, Additive and λCA, all of them with their subject reduction and strong normalisation proofs
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Lechner, Gandalf. "On the construction of quantum field theories with factorizing S-matrices." Doctoral thesis, [S.l.] : [s.n.], 2006. http://webdoc.sub.gwdg.de/diss/2006/lechner.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Silva, Anderson Alves da. "Construção de uma teoria quântica dos campos topológica a partir do invariante de Kuperberg." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26102015-133218/.

Повний текст джерела
Анотація:
Resumo Neste trabalho apresentamos, em detalhes, a construção de uma teoria quântica dos campos topológica (TQCT). Podemos definir uma TQCT como um funtor simétrico monoidal da categoria dos cobordismos para a categoria dos espaços vetoriais. Em duas dimensões podemos encontrar uma descrição completa da categoria dos cobordismos e classificar todas as TQCT\'s. Em três dimensões é possível estender alguns invariantes para 3-variedades e construir uma TQCT 3D. Nossa construção é baseada no invariante para 3-variedades de Kuperberg, o qual envolve diagramas de Heegaard e álgebras de Hopf. Começamos com a apresentação do invariante de Kuperberg definido para toda variedade 3D compacta, orientável e sem bordo. Para cada álgebra de Hopf de dimensão finita constrói-se um invariante. Por fim, apresentamos a TQCT associada com o invariante de Kuperberg. Isto é feito usando-se o fato de que o invariante de Kuperberg é definido como uma soma de pesos locais tal qual uma função de partição. A TQCT decorre dos operadores advindos de variedades com bordo.
Abstract In this work we present in detail a construction of a topological quantum field theory (TQFT). We can define a TQFT as a symmetric monoidal functor from cobordism categories to category of vector spaces. In two dimension, we can give a complete description of cobordism categories and classify all TQFT\'s. In three dimension it is possible to extend some specific 3-manifold invariants and to construct a TQFT 3D. Our construction is based on the Kuperberg 3-manifold invariant which involves Heegaard diagrams and Hopf algebras. We start with the presentation of the Kuperberg invariant defined for every orientable compact 3-manifold without boundary. For each finite-dimensional Hopf algebra we can construct a invariant. Finally we presente the TQFT associated with the Kuperberg invariant. This is made using the fact that the Kuperberg invariant is defined like a sum of local weights in the same way as a partition function. The TQFT is constructed from the operators given by manifolds with boundary.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Javelle, Jérôme. "Cryptographie Quantique : Protocoles et Graphes." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENM093/document.

Повний текст джерела
Анотація:
Je souhaite réaliser un modèle théorique optimal pour les protocoles de partage de secret quantique basé sur l'utilisation des états graphes. Le paramètre représentatif d'un partage de secret à seuil est, entre autres la taille du plus grand ensemble de joueurs qui ne peut pas accéder au secret. Je souhaite donc trouver un famille de protocoles pour laquelle ce paramètre est le plus petit possible. J'étudie également les liens entre les protocoles de partage de secret quantique et des familles de courbes en géométrie algébrique
I want to realize an optimal theoretical model for quantum secret sharing protocols based on graph states. The main parameter of a threshold quantum secret sharing scheme is the size of the largest set of players that can not access the secret. Thus, my goal is to find a collection of protocols for which the value of this parameter is the smallest possible. I also study the links between quantum secret sharing protocols and families of curves in algebraic geometry
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Schultka, Konrad. "Microlocal analyticity of Feynman integrals." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20161.

Повний текст джерела
Анотація:
Wir geben eine rigorose Konstruktion von analytisch-regularisierten Feynman-Integralen im D-dimensionalen Minkowski-Raum als meromorphe Distributionen in den externen Impulsen, sowohl in der Impuls- als auch in der parametrischen Darstellung. Wir zeigen, dass ihre Pole durch die üblichen Power-counting Formeln gegeben sind, und dass ihr singulärer Träger in mikrolokalen Verallgemeinerungen der (+alpha)-Landauflächen enthalten ist. Als weitere Anwendungen geben wir eine Konstruktion von dimensional regularisierten Integralen im Minkowski-Raum und beweisen Diskontinuitätsformeln für parametrische Amplituden.
We give a rigorous construction of analytically regularized Feynman integrals in D-dimensional Minkowski space as meromorphic distributions in the external momenta, both in the momentum and parametric representation. We show that their pole structure is given by the usual power-counting formula and that their singular support is contained in a microlocal generalization of the alpha-Landau surfaces. As further applications, we give a construction of dimensionally regularized integrals in Minkowski space and prove discontinuity formula for parametric amplitudes.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Eltzner, Benjamin. "Local Thermal Equilibrium on Curved Spacetimes and Linear Cosmological Perturbation Theory." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-117472.

Повний текст джерела
Анотація:
In this work the extension of the criterion for local thermal equilibrium by Buchholz, Ojima and Roos to curved spacetime as introduced by Schlemmer is investigated. Several problems are identified and especially the instability under time evolution which was already observed by Schlemmer is inspected. An alternative approach to local thermal equilibrium in quantum field theories on curved spacetimes is presented and discussed. In the following the dynamic system of the linear field and matter perturbations in the generic model of inflation is studied in the view of ambiguity of quantisation. In the last part the compatibility of the temperature fluctuations of the cosmic microwave background radiation with local thermal equilibrium is investigated
In dieser Arbeit wird die von Schlemmer eingeführte Erweiterung des Kriteriums für lokales thermisches Gleichgewicht in Quantenfeldtheorien von Buchholz, Ojima und Roos auf gekrümmte Raumzeiten untersucht. Dabei werden verschiedene Probleme identifiziert und insbesondere die bereits von Schlemmer gezeigte Instabilität unter Zeitentwicklung untersucht. Es wird eine alternative Herangehensweise an lokales thermisches Gleichgewicht in Quantenfeldtheorien auf gekrümmten Raumzeiten vorgestellt und deren Probleme diskutiert. Es wird dann eine Untersuchung des dynamischen Systems der linearen Feld- und Metrikstörungen im üblichen Inflationsmodell mit Blick auf Uneindeutigkeit der Quantisierung durchgeführt. Zuletzt werden die Temperaturfluktuationen der kosmischen Hintergrundstrahlung auf Kompatibilität mit lokalem thermalem Gleichgewicht überprüft
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Olbermann, Heiner. "Quantum field theory via vertex algebras." Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/54994/.

Повний текст джерела
Анотація:
We investigate an alternative formulation of quantum field theory that elevates the Wilson- Zimmermann operator product expansion (OPE) to an axiom of the theory. We observe that the information contained in the OPE coefficients may be straightforwardly repackaged into "vertex operators". This way of formulating quantum field theory has quite obvious similarities to the theory of vertex algebras. As examples of this framework, we discuss the free massless boson in D dimensions and the massless Thirring model. We set up perturbation theory for vertex algebras. We discuss a general theory of perturbations of vertex algebras, which is similar to the Hochschild cohomology describing the deformation theory of ordinary algebras. We pass on to a more explicit discussion by looking at perturbations of the free massless boson in D dimensions. The perturbations we consider correspond to some interaction Lagrangian P(
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Ribeiro, Pedro Lauridsen. "Aspectos estruturais e dinâmicos da correspondência AdS/CFT: Uma abordagem rigorosa." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-14012008-131931/.

Повний текст джерела
Анотація:
Elaboramos um estudo detalhado de alguns aspectos d(e uma versão d)a correspondência AdS/CFT, conjeturada por Maldacena e Witten, entre teorias quânticas de campo num fundo gravitacional dado por um espaço-tempo assintoticamente anti-de Sitter (AAdS), e teorias quânticas de campos conformalmente covariantes no infinito conforme (no sentido de Penrose) deste espaço-tempo, aspectos estes: (a) independentes d(o par d)e modelos específicos em Teoria Quântica de Campos, e (b) suscetíveis a uma reformulação em moldes matematicamente rigorosos. Adotamos como ponto de partida o teorema demonstrado por Rehren no contexto da Física Quântica Local (também conhecida como Teoria Quântica de Campos Algébrica) em espaços-tempos anti-de Sitter (AdS), denominado holografia algébrica ou dualidade de Rehren. O corpo do presente trabalho consiste em estender o resultado de Rehren para uma classe razoavelmente geral de espaços-tempos AAdS d-dimensionais (d>3), escrutinar como as propriedades desta extensão são enfraquecidas e/ou modificadas em relação ao espaço-tempo AdS, e como efeitos gravitacionais não-triviais se manifestam na teoria quântica no infinito conforme. Dentre os resultados obtidos, citamos: condições razoavelmente gerais sobre geodésicas nulas no interior (cuja plausibilidade justificamos por meio de resultados de rigidez geométrica) não só garantem que a nossa generalização é geometricamente consistente com causalidade, como também permite uma reconstrução ``holográfica\'\' da topologia do interior na ausência de horizontes e singularidades; a implementação das simetrias conformes na fronteira, que associamos explicitamente a uma família de isometrias assintóticas do interior construída de maneira intrínseca, ocorre num caráter puramente assintótico e é atingida dinamicamente por um processo de retorno ao equilíbrio, mediante condições de contorno adequadas no infinito; efeitos gravitacionais podem eventualmente causar obstruções à reconstrução da teoria quântica no interior, ou por torná-la trivial em regiões suficientemente pequenas ou devido à existência de múltiplos vácuos inequivalentes, que por sua vez levam à existência de excitações solitônicas localizadas ao redor de paredes de domínio no interior, similares a D-branas. As demonstrações fazem uso extensivo de geometria Lorentziana global. A linguagem empregada para as teorias quânticas relevantes para nossa generalização da dualidade de Rehren segue a formulação funtorial de Brunetti, Fredenhagen e Verch para a Física Quântica Local, estendida posteriormente por Sommer para incorporar condições de contorno.
We elaborate a detailed study of certain aspects of (a version of) the AdS/CFT correspondence, conjectured by Maldacena and Witten, between quantum field theories in a gravitational background given by an asymptotically anti-de Sitter (AAdS) spacetime, and conformally covariant quantum field theories in the latter\'s conformal infinity (in the sense of Penrose), aspects such that: (a) are independent from (the pair of) specific models in Quantum Field Theory, and (b) susceptible to a recast in a mathematically rigorous mould. We adopt as a starting point the theorem demonstrated by Rehren in the context of Local Quantum Physics (also known as Algebraic Quantum Field Theory) in anti-de Sitter (AdS) spacetimes, called algebraic holography or Rehren duality. The main body of the present work consists in extending Rehren\'s result to a reasonably general class of d-dimensional AAdS spacetimes (d>3), scrutinizing how the properties of such an extension are weakened and/or modified as compared to AdS spacetime, and probing how non-trivial gravitational effects manifest themselves in the conformal infinity\'s quantum theory. Among the obtained results, we quote: not only does the imposition of reasonably general conditions on bulk null geodesics (whose plausibility we justify through geometrical rigidity techniques) guarantee that our generalization is geometrically consistent with causality, but it also allows a ``holographic\'\' reconstruction of the bulk topology in the absence of horizons and singularities; the implementation of conformal symmetries in the boundary, which we explicitly associate to an intrinsically constructed family of bulk asymptotic isometries, have a purely asymptotic character and is dynamically attained through a process of return to equilibrium, given suitable boundary conditions at infinity; gravitational effects may cause obstructions to the reconstruction of the bulk quantum theory, either by making the latter trivial in sufficiently small regions or due to the existence of multiple inequivalent vacua, which on their turn lead to the existence of solitonic excitations localized around domain walls, similar to D-branes. The proofs make extensive use of global Lorentzian geometry. The language employed for the quantum theories relevant for our generalization of Rehren duality follows the functorial formulation of Local Quantum Physics due to Brunetti, Fredenhagen and Verch, extended afterwards by Sommer in order to incorporate boundary conditions. (An English translation of the full text can be found at arXiv:0712.0401)
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Campos, Lissa de Souza. "Os teoremas de singularidade valem se considerarmos efeitos quânticos?" Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-03122018-144411/.

Повний текст джерела
Анотація:
Há duas brechas quânticas nos Teoremas da Singularidade em Relatividade Geral: violações das condições clássicas de energia e flutuações quânticas da geometria do espaço-tempo. Nesta dissertação, estudamos a primeira brecha e abordamos os Teoremas da Singularidade através da condição de energia. Revisamos a abordagem algébrica de Teoria Quântica de Campos para o campo de Klein-Gordon e, neste formalismo, revisamos a derivação de uma desigualdade quântica de energia para os estados de Hadamard em espaços-tempos globalmente hiperbólicos. Apesar das desigualdades quânticas de energia não poderem ser aplicadas diretamente nos Teoremas de Singularidade, mostramos que generalizações dos Teoremas de Hawking e Penrose são provadas considerando condições de energia enfraquecidas inspiradas por elas. Assim sendo, os Teoremas de Singularidade continuam valendo se considerarmos efeitos quânticos sutis. A questão de se efeitos de interação ou efeitos de ``backreaction\'\' poderiam quebrá-los ainda está em aberto; há razões para se esperar ambas as respostas.
There are two quantum loopholes in the Singularity Theorems of General Relativity: violations of the classical energy conditions and quantum fluctuations of the spacetime geometry. In this dissertation, we study the first loophole and approach Singularity Theorems through the energy condition. We review the algebraic approach of Quantum Field Theory for the Klein-Gordon field and, within it, we review the derivation of a quantum energy inequality for Hadamard states on globally hyperbolic spacetimes. However quantum energy inequalities cannot be directly applied to Singularity Theorems, we show that generalized Hawking and Penrose Theorems are proven considering weakened energy conditions inspired by them. Hence, Singularity Theorems do hold under subtle quantum effects. The question of whether interaction or backreaction effects could break them is still open; there are reasons to expect both answers.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Fernandes, Marco Cezar Barbosa. "Geometric algebras and the foundations of quantum theory." Thesis, Birkbeck (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283390.

Повний текст джерела
Анотація:
The difficulties associated with the quantization of the gravitational field suggests a modification of space-time is needed. For example at suffici~ly small length scales the geometry of space-time might better discussed in terms of a noncommutative algebra. In this thesis we discuss a particular example of a noncommutative algebra, namely the symplectic Schonberg algebra, which we treat as a geometric algebra. Thus our investigation has some features in common with recent work that explores how geometry can be formulated in terms of noncommutative structures. The symplectic Schonberg algebra is a geometric algebra associated with the covariant and the contravariant vectors of a general affine space. The "embedding" of this space in a noncommutative algebra leads us to a structure which we regard as a noncommutative affine geometry. The theory in question takes us naturally to stochastic elements without the usual ad-hoc assumptions concerning measurements in physical ensembles that are made in the usual interpretation of quantum mechanics. The probabilistic nature of space is obtained purely from the structure of this algebra. As a consequence, geometric objects like points, lines and etc acquire a kind of fuzzy character. This allowed us to construct the space of physical states within the algebra in terms of its minimum left-ideals as was proposed by Hiley and Frescura [1J. The elements of these ideals replace the ordinary point in the Cartesian geometry. The study of the main inner-automorphisms of the algebra gives rise to the representation of the symplectic group of linear classical canonical transformations. We show that this group acts on the minimum left-ideal of the algebra and in this case manifests itself as the metaplectic group, i.e the double covering of the symplectic group. Thus we are lead to the theory of symplectic spinors as minimum left-ideals in exactly the same way as the orthogonal spinors can be formulated in terms of minimum left-ideals in the Clifford algebra .. The theory of the automorphisms of the symplectic Schonberg algebra allows us to give a geometrical meaning to integral transforms such as: the Fourier transform, the real and complex Gauss Weierstrass transform, the Bargmann (3) transform and the Bilateral Laplace transform. We construct a technique for obtaining a realization of these algebraic transformations in terms of integral kernels. This gives immediately the Feynmann propagators of conventional non-relativistic quantum mechanics for Hamiltonians quadratic in momentum and position. This then links our approach to those used in quantum mechanics and optics. The link between the theory of this noncommutative geometric algebra and the theory of vector bundles is also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Gordon, Iain. "Representation theory of quantised function algebras at roots of unity." Thesis, Connect to electronic version, 1998. http://hdl.handle.net/1905/177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Satchell, Marcel John Francis. "Geometric algebra & the quantum theory of fields." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Somaroo, Shyamal Sewlal. "Applications of the geometric algebra to relativistic quantum theory." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627593.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Brzezinski, Tomasz. "Differential geometry of quantum groups and quantum fibre bundles." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Shiri-Garakani, Mohsen. "Finite Quantum Theory of the Harmonic Oscillator." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5078.

Повний текст джерела
Анотація:
We apply the Segal process of group simplification to the linear harmonic oscillator. The result is a finite quantum theory with three quantum constants instead of the usual one. We compare the classical (CLHO), quantum (QLHO), and finite (FLHO) linear harmonic oscillators and their canonical or unitary groups. The FLHO is isomorphic to a dipole rotator with N=l(l+1) states where l is very large for physically interesting case. The position and momentum variables are quantized with uniform finite spectra. For fixed quantum constants and large N there are three broad classes of FLHO: soft, medium, and hard corresponding respectively to cases where ratio of the of potential energy to kinetic energy in the Hamiltonian is very small, almost equal to one, or very large The field oscillators responsible for infra-red and ultraviolet divergences are soft and hard respectively. Medium oscillators approximate the QLHO. Their low-lying states have nearly the same zero-point energy and level spacing as the QLHO, and nearly obeying the Heisenberg uncertainty principle and the equipartition principle. The corresponding rotators are nearly polarized along the z-axis. The soft and hard FLHO's have infinitesimal 0-point energy and grossly violate equipartition and the Heisenberg uncertainty principle. They do not resemble the QLHO at all. Their low-lying energy states correspond to rotators polaroizd along x-axis or y-axis respectively. Soft oscillators have frozen momentum, because their maximum potential energy is too small to produce one quantum of momentum. Hard oscillators have frozen position, because their maximum kinetic energy is too small to produce one quantum of momentum. Hard oscillators have frozen position, because their maximum kinetic energy is too small to excite one quantum of position.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Sotelo-Campos, J. "An application of operator *-algebras to the theory of quantum measurement." Thesis, Open University, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379797.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Kleeman, R. "Generalized quantization and colour algebras /." Title page, table of contents and abstract only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09phk635.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Rubensson, Emanuel H. "Matrix Algebra for Quantum Chemistry." Doctoral thesis, Stockholm : Bioteknologi, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Laugwitz, Robert. "Braided Hopf algebras, double constructions, and applications." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:ddcb459f-c3b4-40dd-9936-6bad6993ce8c.

Повний текст джерела
Анотація:
This thesis contains four related papers which study different aspects of double constructions for braided Hopf algebras. The main result is a categorical action of a braided version of the Drinfeld center on a Heisenberg analogue, called the Hopf center. Moreover, an application of this action to the representation theory of rational Cherednik algebras is considered. Chapter 1 : In this chapter, the Drinfeld center of a monoidal category is generalized to a class of mixed Drinfeld centers. This gives a unified picture for the Drinfeld center and a natural Heisenberg analogue. Further, there is an action of the former on the latter. This picture is translated to a description in terms of Yetter-Drinfeld and Hopf modules over quasi-bialgebras in a braided monoidal category. Via braided reconstruction theory, intrinsic definitions of braided Drinfeld and Heisenberg doubles are obtained, together with a generalization of the result of Lu (1994) that the Heisenberg double is a 2-cocycle twist of the Drinfeld double for general braided Hopf algebras. Chapter 2 : In this chapter, we present an approach to the definition of multiparameter quantum groups by studying Hopf algebras with triangular decomposition. Classifying all of these Hopf algebras which are of what we call weakly separable type, we obtain a class of pointed Hopf algebras which can be viewed as natural generalizations of multiparameter deformations of universal enveloping algebras of Lie algebras. These Hopf algebras are instances of a new version of braided Drinfeld doubles, which we call asymmetric braided Drinfeld doubles. This is a generalization of an earlier result by Benkart and Witherspoon (2004) who showed that two-parameter quantum groups are Drinfeld doubles. It is possible to recover a Lie algebra from these doubles in the case where the group is free and the parameters are generic. The Lie algebras arising are generated by Lie subalgebras isomorphic to sl2. Chapter 3 : The universal enveloping algebra U(trn) of a Lie algebra associated to the classical Yang-Baxter equation was introduced in 2006 by Bartholdi-Enriquez-Etingof-Rains where it was shown to be Koszul. This algebra appears as the An-1 case in a general class of braided Hopf algebras in work of Bazlov-Berenstein (2009) for any complex reection group. In this chapter, we show that the algebras corresponding to the series Bn and Dn, which are again universal enveloping algebras, are Koszul. This is done by constructing a PBW-basis for the quadratic dual. We further show how results of Bazlov-Berenstein can be used to produce pairs of adjoint functors between categories of rational Cherednik algebra representations of different rank and type for the classical series of Coxeter groups. Chapter 4 : Quantum groups can be understood as braided Drinfeld doubles over the group algebra of a lattice. The main objects of this chapter are certain braided Drinfeld doubles over the Drinfeld double of an irreducible complex reflection group. We argue that these algebras are analogues of the Drinfeld-Jimbo quantum enveloping algebras in a setting relevant for rational Cherednik algebra. This analogy manifests itself in terms of categorical actions, related to the general Drinfeld-Heisenberg double picture developed in Chapter 2, using embeddings of Bazlov and Berenstein (2009). In particular, this work provides a class of quasitriangular Hopf algebras associated to any complex reflection group which are in some cases finite-dimensional.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Bittmann, Léa. "Quantum Grothendieck rings, cluster algebras and quantum affine category O." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC024.

Повний текст джерела
Анотація:
L'objectif de cette thèse est de construire et d'étudier une structure d'anneau de Grothendieck quantique pour une catégorie O de représentations de la sous-algèbre de Borel Uq(b) d'une algèbre affine quantique Uq(g). On s'intéresse dans un premier lieu à la construction de modules standards asymptotiques pour la catégorie O, qui sont des analogues des modules standards existant dans la catégorie des représentations de dimension finie de Uq(^g). Une construction complète de ces modules est proposée dans le cas où l'algèbre de Lie simple sous-jacente g est sl2. Ensuite, nous définissons un tore quantique qui étend le tore quantique contenant l'anneau de Grothendieck quantique de la catégorie des représentations de dimension finie.Nous utilisons pour cela des notions liées aux algèbres amassées quantiques. Dans le même esprit, nous proposons une construction d'une structure d'algèbre amassée quantique sur l'anneau de Grothendieck quantique Kt(Cz) d'une sous-catégorie monoïdale Cz de la catégorie des représentations de dimension finie. Puis, nous définissons un anneau de Grothendieck quantique Kt(O+Z) d'une sous catégorie O+Z de la catégorie O, comme une algèbre amassée quantique. Nous établissons ensuite que cet anneau de Grothendieck quantique contient celui de la catégorie des représentations de dimension finie. Ce résultat est montré directement en type A, puis en tout type simplement lacé en utilisant la structure d'algèbre amassée quantique de Kt(CZ).Enfin, nous définissons des (q,t)-caractères pour des représentations simples de dimension infinie remarquables de la catégorie O. Ceci nous permet d'écrire des versions t-déformées de relations importantes dans l'anneau de Grothendieck classique de la catégorie O+Z qui ont des liens avec les systèmes intégrables quantiques associés
The aim of this thesis is to construct and study some quantum Grothendieck ring structure for the category O of representations of the Borel subalgebra Uq(^b) of a quantum affine algebra Uq(^g). First of all, we focus on the construction of asymptotical standard modules, analogs in the context of the category O of the standard modules in the category of finite-dimensional Uq(^g)-modules. A construction of these modules is given in the case where the underlying simple Lie algebra g is sl2. Next, we define a new quantum torus, which extends the quantum torus containing the quantum Grothendieck ring of the category of finite-dimensional modules. In order todo this, we use notions linked to quantum cluster algebras. In the same spirit, we build a quantum cluster algebra structure on the quantum Grothendieck ring of a monoidal subcategory CZ of the category of finite-dimensional representations. With this quantum torus, we de_ne the quantum Grothendieck ring Kt(O+Z) of a subcategory O+Z of the category O as a quantum cluster algebra. Then, we prove that this quantum Grothendieck ring contains that of the category of finite-dimensional representation. This result is first shown directly in type A, and then in all simply-laced types using the quantum cluster algebra structure of Kt(CZ). Finally, we define (q,t)-characters for some remarkable infinite-dimensional simple representations in the category O+Z. This enables us to write t-deformed analogs of important relations in the classical Grothendieck ring of the category O, which are related to the corresponding quantum integrable systems
Стилі APA, Harvard, Vancouver, ISO та ін.
39

De, Buyl Sophie. "Kac-Moody Algebras in M-theory." Doctoral thesis, Universite Libre de Bruxelles, 2006. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210850.

Повний текст джерела
Анотація:
Ma thèse s'inscrit dans le cadre de l'unification des interactions fondamentales, dans lequel la théorie quantique de la gravitation devrait trouver une formulation cohérente. La piste la plus prometteuse dans cette voie semble être celle de la théorie M dont le groupe de symétrie a été conjecturé être le groupe de Kac-Moody. Diverses indications reliant cette théorie à des algèbres de Kac-Moody de type g++ proviennent de l’étude des théories de la gravitation couplée à des p-formes et des dilatons. En particulier, la dynamique du champs de gravitation à l’approche d’une singularité de type espace est contrôlée par le groupe de Weyl de ces algèbres (et interprétée comme le mouvement d’une particule libre sans masse sur un billard).

Nous avons étudié la limite BKL dans le contexte des cosmologies homogènes en terme de billard einsteiniens. Notre analyse confirme la restauration du comportement chaotique du champ gravitationnel lorsque la métrique est non – diagonale, en toutes les dimensions D d’espace-temps telles que 4

En utilisant les propriétés des billards, nous avons déterminé la dimension maximale ainsi que le contenu en champs des théories de la gravitation qui, en D=3, se réduisent à la gravité couplée à une réalisation non linéaire du quotient G/K où G est un groupe de Lie simple non maximalement déployé et K son sous-groupe compact maximal.

Les billards peuvent être de volume fini ou infini. Dans ce dernier cas, la dynamique asymptotique du champ de gravitation (et des dilatons) est chaotique. Si le billard est identifiable à la chambre fondamentale de Weyl d’une algèbre de Kac-Moody, le critère pour que la dynamique asymptotique soit chaotique est que l’algèbre de Kac-Moody soit hyperbolique. Nous avons identifié toutes les algèbres hyperboliques résultant d’une théorie de la gravitation couplée à des p-formes et des dilatons. Pour chacune de ces algèbres, nous avons écrit un Lagrangien en dimension maximale.

On obtient des actions explicitement invariantes sous les groupes de Kac-Moody G++ (ou G+++) en copiant les modèles sigma décrivant un mouvement géodésique sur une variété homogène de type G++/K(G++) où K(G++) est le sous-groupe compact maximal de G++. Le lien entre cette construction et les théories de la gravitation couplée à des p-formes et dilatons n'est pas encore établi mais certaines connexions ont été mises en évidence.

- Nous avons inclus les fermions dans les actions invariantes sous G++. De plus, nous nous sommes intéressés à vérifier la compatibilité des fermions avec les symétries cachées en D=3. Nous avons étudié le comportement des fermions la limite BKL dans le langage des billards.

- Dans le cadre des théories invariantes sous G+++, les réflexions de Weyl peuvent s’interpréter comme des dualités entre théorie des cordes. Ces dualités peuvent changer la signature de l’espace-temps en des signatures exotiques ;nous avons obtenu toutes les signatures provenant ainsi d’une signature Lorentzienne.


Doctorat en sciences, Spécialisation physique
info:eu-repo/semantics/nonPublished

Стилі APA, Harvard, Vancouver, ISO та ін.
40

Wong, Ming Lai. "Q-Fourier transform, q-Heisenberg algebra and quantum group actions /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?MATH%202003%20WONG.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Schopieray, Andrew. "Relations in the Witt Group of Nondegenerate Braided Fusion Categories Arising from the Representation Theory of Quantum Groups at Roots of Unity." Thesis, University of Oregon, 2017. http://hdl.handle.net/1794/22630.

Повний текст джерела
Анотація:
For each finite dimensional Lie algebra $\mathfrak{g}$ and positive integer $k$ there exists a modular tensor category $\mathcal{C}(\mathfrak{g},k)$ consisting of highest weight integrable $\hat{\mathfrak{g}}$-modules of level $k$ where $\hat{\mathfrak{g}}$ is the corresponding affine Lie algebra. Relations between the classes $[\mathcal{C}(\mathfrak{sl}_2,k)]$ in the Witt group of nondegenerate braided fusion categories have been completely described in the work of Davydov, Nikshych, and Ostrik. Here we give a complete classification of relations between the classes $[\mathcal{C}(\mathfrak{sl}_3,k)]$ relying on the classification of conncted \'etale alegbras in $\mathcal(\mathfrak_3,k)$ ($SU(3)$ modular invariants) given by Gannon. We then give an upper bound on the levels for which exceptional connected \'etale algebras may exist in the remaining rank 2 cases ($\mathcal{C}(\mathfrak{so}_5,k)$ and $\mathcal{C}(\mathfrak{g}_2,k)$) in hopes of a future classification of Witt group relations among the classes $[\mathcal{C}(\mathfrak{so}_5,k)]$ and $[\mathcal{C}(\mathfrak{g}_2,k)]$. This dissertation contains previously published material.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Boixeda, Alvarez Pablo. "Affine Springer fibers and the representation theory of small quantum groups and related algebras." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/126920.

Повний текст джерела
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, May, 2020
Cataloged from the official PDF of thesis.
Includes bibliographical references (pages 125-128).
This thesis deals with the connections of Geometry and Representation Theory. In particular we study the representation theory of small quantum groups and Frobenius kernels and the geometry of an equivalued affine Springer fiber Fl[subscript ts] for s a regular semisimple element. In Chapter 2 we relate the center of the small quantum group with the cohomology of the above affine Springer fiber. This includes joint work with Bezrukavnikov, Shan and Vaserot. In Chapter 3 we study the geometry of the affine Springer fiber and in particular understand the fixed points of a torus action contained in each component. In Chapter 4 we further have a collection of algebraic results on the representation theory of Frobenius kernels. In particular we state some results pointing towards some construction of certain partial Verma functors and we compute this in the case of SL₂. We also compute the center of Frobenius kernels in the case of SL₂ and state a conjecture on a possible inductive construction of the general center.
by Pablo Boixeda Alvarez.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Mathematics
Стилі APA, Harvard, Vancouver, ISO та ін.
43

HILLIER, ROBIN. "Spectral triples and an index pairing for conformal quantum field theory." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2010. http://hdl.handle.net/2108/202295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Lagro, Matthew Patrick. "A Perron-Frobenius Type of Theorem for Quantum Operations." Diss., Temple University Libraries, 2015. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/339694.

Повний текст джерела
Анотація:
Mathematics
Ph.D.
Quantum random walks are a generalization of classical Markovian random walks to a quantum mechanical or quantum computing setting. Quantum walks have promising applications but are complicated by quantum decoherence. We prove that the long-time limiting behavior of the class of quantum operations which are the convex combination of norm one operators is governed by the eigenvectors with norm one eigenvalues which are shared by the operators. This class includes all operations formed by a coherent operation with positive probability of orthogonal measurement at each step. We also prove that any operation that has range contained in a low enough dimension subspace of the space of density operators has limiting behavior isomorphic to an associated Markov chain. A particular class of such operations are coherent operations followed by an orthogonal measurement. Applications of the convergence theorems to quantum walks are given.
Temple University--Theses
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Diemer, Tammo. "Conformal geometry, representation theory and linear fields." Bonn : Mathematisches Institut der Universität, 2004. http://catalog.hathitrust.org/api/volumes/oclc/62770144.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Kartsaklis, Dimitrios. "Compositional distributional semantics with compact closed categories and Frobenius algebras." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:1f6647ef-4606-4b85-8f3b-c501818780f2.

Повний текст джерела
Анотація:
The provision of compositionality in distributional models of meaning, where a word is represented as a vector of co-occurrence counts with every other word in the vocabulary, offers a solution to the fact that no text corpus, regardless of its size, is capable of providing reliable co-occurrence statistics for anything but very short text constituents. The purpose of a compositional distributional model is to provide a function that composes the vectors for the words within a sentence, in order to create a vectorial representation that re ects its meaning. Using the abstract mathematical framework of category theory, Coecke, Sadrzadeh and Clark showed that this function can directly depend on the grammatical structure of the sentence, providing an elegant mathematical counterpart of the formal semantics view. The framework is general and compositional but stays abstract to a large extent. This thesis contributes to ongoing research related to the above categorical model in three ways: Firstly, I propose a concrete instantiation of the abstract framework based on Frobenius algebras (joint work with Sadrzadeh). The theory improves shortcomings of previous proposals, extends the coverage of the language, and is supported by experimental work that improves existing results. The proposed framework describes a new class of compositional models thatfind intuitive interpretations for a number of linguistic phenomena. Secondly, I propose and evaluate in practice a new compositional methodology which explicitly deals with the different levels of lexical ambiguity (joint work with Pulman). A concrete algorithm is presented, based on the separation of vector disambiguation from composition in an explicit prior step. Extensive experimental work shows that the proposed methodology indeed results in more accurate composite representations for the framework of Coecke et al. in particular and every other class of compositional models in general. As a last contribution, I formalize the explicit treatment of lexical ambiguity in the context of the categorical framework by resorting to categorical quantum mechanics (joint work with Coecke). In the proposed extension, the concept of a distributional vector is replaced with that of a density matrix, which compactly represents a probability distribution over the potential different meanings of the specific word. Composition takes the form of quantum measurements, leading to interesting analogies between quantum physics and linguistics.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Vougalter, Vitali. "Diamagnetic behavior of sums of Dirichlet eigenvalues." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/28034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Katona, Gregory. "Field Theoretic Lagrangian From Off-Shell Supermultiplet Gauge Quotients." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5958.

Повний текст джерела
Анотація:
Recent efforts to classify off-shell representations of supersymmetry without a central charge have focused upon directed, supermultiplet graphs of hypercubic topology known as Adinkras. These encodings of Super Poincare algebras, depict every generator of a chosen supersymmetry as a node-pair transformtion between fermionic / bosonic component fields. This research thesis is a culmination of investigating novel diagrammatic sums of gauge quotients by supersymmetric images of other Adinkras, and the correlated building of field theoretic worldline Lagrangians to accommodate both classical and quantum venues. We find Ref [40], that such gauge quotients do not yield other stand alone or ”proper” Adinkras as afore sighted, nor can they be decomposed into supermultiplet sums, but are rather a connected ”Adinkraic network”. Their iteration, analogous to Weyl's construction for producing all finite-dimensional unitary representations in Lie algebras, sets off chains of algebraic paradigms in discrete-graph and continuous-field variables, the links of which feature distinct, supersymmetric Lagrangian templates. Collectively, these Adiankraic series air new symbolic genera for equation to phase moments in Feynman path integrals. Guided in this light, we proceed by constructing Lagrangians actions for the N = 3 supermultiplet YI /(iDI X) for I = 1, 2, 3, where YI and X are standard, Salam-Strathdee superfields: YI fermionic and X bosonic. The system, bilinear in the component fields exhibits a total of thirteen free parameters, seven of which specify Zeeman-like coupling to external background (magnetic) fluxes. All but special subsets of this parameter space describe aperiodic oscillatory responses, some of which are found to be surprisingly controlled by the golden ratio, ? ? 1.61803, Ref [52]. It is further determined that these Lagrangians allow an N = 3 ? 4 supersymmetric extension to the Chiral-Chiral and Chiral-twisted- Chiral multiplet, while a subset admits two inequivalent such extensions. In a natural progression, a continuum of observably and usefully inequivalent, finite-dimensional off-shell representations of worldline N = 4 extended supersymmetry are explored, that are variate from one another but in the value of a tuning parameter, Ref [53]. Their dynamics turns out to be nontrivial already when restricting to just bilinear Lagrangians. In particular, we find a 34-parameter family of bilinear Lagrangians that couple two differently tuned supermultiplets to each other and to external magnetic fluxes, where the explicit parameter dependence is unremovable by any field redefinition and is therefore observable. This offers the evaluation of X-phase sensitive, off-shell path integrals with promising correlations to group product decompositions and to deriving source emergences of higher-order background flux-forms on 2-dimensional manifolds, the stacks of which comprise space-time volumes. Application to nonlinear sigma models would naturally follow, having potential use in M- and F- string theories.
Ph.D.
Doctorate
Physics
Sciences
Physics
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Albouy, Olivier. "Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theory." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00612229.

Повний текст джерела
Анотація:
Pour d non puissance d'un nombre premier, le nombre maximal de bases deux à deux décorrélées d'un espace de Hilbert de dimension d n'est pas encore connu. Dans ce mémoire, nous commençons par donner une construction de bases décorrélées en lien avec une famille de représentations irréductibles de l'algèbre de Lie su(2) et faisant appel aux sommes de Gauss.Puis nous étudions de façon systématique la possibilité de construire de telle bases au moyen des opérateurs de Pauli. 1) L'étude de la droite projective sur Zdm montre que, pour obtenir des ensembles maximaux de bases décorrélées à l'aide d'opérateurs de Pauli, il est nécessaire de considérer des produits tensoriels de ces opérateurs. 2) Les sous-modules lagrangiens de Zd2n, dont nous donnons une classification complète, rendent compte des ensembles maximalement commutant d'opérateurs de Pauli. Cette classification permet de savoir lesquels de ces ensembles sont susceptibles de donner des bases décorrélées : ils correspondent aux demi-modules lagrangiens, qui s'interprètent encore comme les points isotropes de la droite projective (P(Mat(n, Zd)²),ω). Nous explicitons alors un isomorphisme entre les bases décorrélées ainsi obtenues et les demi-modules lagrangiens distants, ce qui précise aussi la correspondance entre sommes de Gauss et bases décorrélées. 3) Des corollaires sur le groupe de Clifford et l'espace des phases discret sont alors développés.Enfin, nous présentons quelques outils inspirés de l'étude précédente. Nous traitons ainsi du rapport anharmonique sur la sphère de Bloch, de géométrie projective en dimension supérieure, des opérateurs de Pauli continus et nous comparons l'entropie de von Neumann à une mesure de l'intrication par calcul d'un déterminant.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Russell, Neil Eric. "Aspects of the symplectic and metric geometry of classical and quantum physics." Thesis, Rhodes University, 1993. http://hdl.handle.net/10962/d1005237.

Повний текст джерела
Анотація:
I investigate some algebras and calculi naturally associated with the symplectic and metric Clifford algebras. In particular, I reformulate the well known Lepage decomposition for the symplectic exterior algebra in geometrical form and present some new results relating to the simple subspaces of the decomposition. I then present an analogous decomposition for the symmetric exterior algebra with a metric. Finally, I extend this symmetric exterior algebra into a new calculus for the symmetric differential forms on a pseudo-Riemannian manifold. The importance of this calculus lies in its potential for the description of bosonic systems in Quantum Theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!