Дисертації з теми "Algebraic number theory"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Algebraic number theory".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Röttger, Christian Gottfried Johannes. "Counting problems in algebraic number theory." Thesis, University of East Anglia, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327407.
Повний текст джерелаSwanson, Colleen M. "Algebraic number fields and codes /." Connect to online version, 2006. http://ada.mtholyoke.edu/setr/websrc/pdfs/www/2006/172.pdf.
Повний текст джерелаHughes, Garry. "Distribution of additive functions in algebraic number fields." Title page, contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09SM/09smh893.pdf.
Повний текст джерелаMcCoy, Daisy Cox. "Irreducible elements in algebraic number fields." Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/39950.
Повний текст джерелаGaertner, Nathaniel Allen. "Special Cases of Density Theorems in Algebraic Number Theory." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/33153.
Повний текст джерелаMaster of Science
PASINI, FEDERICO WILLIAM. "Classifying spaces for knots: new bridges between knot theory and algebraic number theory." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/129230.
Повний текст джерелаRozario, Rebecca. "The Distribution of the Irreducibles in an Algebraic Number Field." Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/RozarioR2003.pdf.
Повний текст джерелаNyqvist, Robert. "Algebraic Dynamical Systems, Analytical Results and Numerical Simulations." Doctoral thesis, Växjö : Växjö University Press, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-1142.
Повний текст джерелаYan, Song Yuan. "On the algebraic theories and computations of amicable numbers." Thesis, University of York, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284133.
Повний текст джерелаHaydon, James Henri. "Étale homotopy sections of algebraic varieties." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:88019ba2-a589-4179-ad7f-1eea234d284c.
Повний текст джерелаGreen, Benjamin. "Galois representations attached to algebraic automorphic representations." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:77f01cbc-65d1-480d-ae3a-0a039a76671a.
Повний текст джерелаMeyer, Nicolas David. "Determination of Quadratic Lattices by Local Structure and Sublattices of Codimension One." OpenSIUC, 2015. https://opensiuc.lib.siu.edu/dissertations/1026.
Повний текст джерелаTrad, Mohamad. "The proof of Fermat's last theorem." CSUSB ScholarWorks, 2000. https://scholarworks.lib.csusb.edu/etd-project/1690.
Повний текст джерелаBlackhurst, Jonathan H. "Proven Cases of a Generalization of Serre's Conjecture." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1386.pdf.
Повний текст джерелаCobbe, Alessandro. "Steinitz classes of tamely rami ed Galois extensions of algebraic number fields." Doctoral thesis, Scuola Normale Superiore, 2009. http://hdl.handle.net/11384/85661.
Повний текст джерелаBriggs, Matthew Edward. "An Introduction to the General Number Field Sieve." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36618.
Повний текст джерелаMaster of Science
Suresh, Arvind. "On the Characterization of Prime Sets of Polynomials by Congruence Conditions." Scholarship @ Claremont, 2015. http://scholarship.claremont.edu/cmc_theses/993.
Повний текст джерелаBanaszak, Grzegorz. "Algebraic K-theory of number fields and rings of integers and the Stickelberger ideal /." The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487676261012829.
Повний текст джерелаKaplan, Elliot. "Initial Embeddings in the Surreal Number Tree." Ohio University Honors Tutorial College / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors1429615758.
Повний текст джерелаHsu, Catherine. "Higher Congruences Between Modular Forms." Thesis, University of Oregon, 2018. http://hdl.handle.net/1794/23742.
Повний текст джерелаSilberstein, Aaron. "Anabelian Intersection Theory." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10141.
Повний текст джерелаMathematics
Dang, Vinh Xuan. "Three-Dimensional Galois Representations and a Conjecture of Ash, Doud, and Pollack." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2697.
Повний текст джерелаMunoz, Susana L. "A Fundamental Unit of O_K." CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/133.
Повний текст джерелаHarper, John-Paul. "The class number one problem in function fields." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53619.
Повний текст джерелаENGLISH ABSTRACT: In this dissertation I investigate the class number one problem in function fields. More precisely I give a survey of the current state of research into extensions of a rational function field over a finite field with principal ring of integers. I focus particularly on the quadratic case and throughout draw analogies and motivations from the classical number field situation. It was the "Prince of Mathematicians" C.F. Gauss who first undertook an in depth study of quadratic extensions of the rational numbers and the corresponding rings of integers. More recently however work has been done in the situation of function fields in which the arithmetic is very similar. I begin with an introduction into the arithmetic in function fields over a finite field and prove the analogies of many of the classical results. I then proceed to demonstrate how the algebra and arithmetic in function fields can be interpreted geometrically in terms of curves and introduce the associated geometric language. After presenting some conjectures, I proceed to give a survey of known results in the situation of quadratic function fields. I present also a few results of my own in this section. Lastly I state some recent results regarding arbitrary extensions of a rational function field with principal ring of integers and give some heuristic results regarding class groups in function fields.
AFRIKAANSE OPSOMMING: In hierdie tesis ondersoek ek die klasgetal een probleem in funksieliggame. Meer spesifiek ondersoek ek die huidige staat van navorsing aangaande uitbreidings van 'n rasionale funksieliggaam oor 'n eindige liggaam sodat die ring van heelgetalle 'n hoofidealgebied is. Ek kyk in besonder na die kwadratiese geval, en deurgaans verwys ek na die analoog in die klassieke getalleliggaam situasie. Dit was die beroemde wiskundige C.F. Gauss wat eerste kwadratiese uitbreidings van die rasionale getalle en die ooreenstemende ring van heelgetalle in diepte ondersoek het. Onlangs het wiskundiges hierdie probleme ook ondersoek in die situasie van funksieliggame oor 'n eindige liggaam waar die algebraïese struktuur baie soortgelyk is. Ek begin met 'n inleiding tot die rekenkunde in funksieliggame oor 'n eindige liggaam en bewys die analogie van baie van die klassieke resultate. Dan verduidelik ek hoe die algebra in funksieliggame geometries beskou kan word in terme van kurwes en gee 'n kort inleiding tot die geometriese taal. Nadat ek 'n paar vermoedes bespreek, gee ek 'n oorsig van wat alreeds vir quadratiese funksieliggame bewys is. In hierdie afdeling word 'n paar resultate van my eie ook bewys. Dan vermeld ek 'n paar resultate aangaande algemene uitbreidings van 'n rasionale funksieliggaam oor 'n eindige liggaam waar die van ring heelgetalle 'n hoofidealgebied is. Laastens verwys ek na 'n paar heurisitiese resultate aangaande klasgroepe in funksieliggame.
Massold, Heinrich. "Labile und relative Reduktionstheorie über Zahlkörpern." Bonn : Mathematisches Institut der Universität, 2003. http://catalog.hathitrust.org/api/volumes/oclc/54890700.html.
Повний текст джерелаMasters, Joseph David. "Lengths and homology of hyperbolic 3-manifolds /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Повний текст джерелаVonk, Jan Bert. "The Atkin operator on spaces of overconvergent modular forms and arithmetic applications." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:081e4e46-80c1-41e7-9154-3181ccb36313.
Повний текст джерелаSalt, Brittney M. "MONOID RINGS AND STRONGLY TWO-GENERATED IDEALS." CSUSB ScholarWorks, 2014. https://scholarworks.lib.csusb.edu/etd/31.
Повний текст джерелаLavallee, Melisa Jean. "Dihedral quintic fields with a power basis." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2788.
Повний текст джерелаRosca, Georgiana-Miruna. "On algebraic variants of Learning With Errors." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN063.
Повний текст джерелаLattice-based cryptography relies in great parts on the use of the Learning With Errors (LWE) problemas hardness foundation. This problem is at least as hard as standard worst-case lattice problems, but the primitives based on it usually have big key sizes and slow algorithms. Polynomial Learning With Errors (PLWE), dual Ring Learning With Errors (dual-RLWE) and primal Ring Learning WithErrors (primal-RLWE) are variants of LWE which make use of extra algebraic structures in order to fix the above drawbacks. The PLWE problem is parameterized by a polynomial f, while dual-RLWE andprimal-RLWE are defined using the ring of integers of a number field. These problems, which we call algebraic, also enjoy reductions from worst-case lattice problems, but in their case, the lattices involved belong to diverse restricted classes. In this thesis, we study relationships between algebraic variants of LWE.We first show that for many defining polynomials, there exist (non-uniform) reductions betweendual-RLWE, primal-RLWE and PLWE that incur limited parameter losses. These results could be interpretedas a strong evidence that these problems are qualitatively equivalent.Then we introduce a new algebraic variant of LWE, Middle-Product Learning With Errors (MP-LWE). We show that this problem is at least as hard as PLWE for many defining polynomials f. As a consequence,any cryptographic system based on MP-LWE remains secure as long as one of these PLWE instances remains hard to solve.Finally, we illustrate the cryptographic relevance of MP-LWE by building a public-key encryption scheme and a digital signature scheme that are proved secure under the MP-LWE hardness assumption
Carlos, Tatiana Bertoldi. "Abordagem algebrica e geometrica de reticulados." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306605.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-10T04:41:55Z (GMT). No. of bitstreams: 1 Carlos_TatianaBertoldi_D.pdf: 779190 bytes, checksum: d0ff8f53ff44a5f19c7edb1427cd1a82 (MD5) Previous issue date: 2007
Resumo: Neste trabalho abordamos a construção de reticulados usando propriedades da teoria dos números algébricos. Enfocamos particularmente a construção, como reticulado ideal, de rotações do reticulado n-dimensional dos inteiros, usando corpos ciclotômicos. Reticulados desta forma tem se mostrado uma eficiente ferramenta para obtenção de bons esquemas de codificação para canais com desvanecimento, pois permitem estimativas da distância produto e diversidade, parâmetros que controlam a probabilidade de erro no envio de informações por estes canais. Apresentamos uma nova construção de tais reticulados no caso em que n é uma potência de 2, através do subcorpo maximal real do n-ésimo corpo ciclotômico. Estabelecemos também condições para que um reticulado ideal seja rotação do reticulado n-dimensional dos inteiros, usando algoritmos de redução de base, LLL (Lenstra-Lenstra- Lovász) e Minkowski. Outros resultados incluem caracterizações geométricas de grafos circulantes e de alguns reticulados construídos algebricamente.
Abstract: In this work we approach lattice constructions using properties of algebraic number theory. One focus is on the construction of ideal lattices via cyclotomic fields. Those lattices have been used as an efficient tool for designing coding strategies for the Rayleigh fading channels since it is possible to estimate the product distance and the diversity, parameters which control the error probability transmission for those channels. A special case, due to "shaping gain", is when those lattices are rotations of the n-dimensional integer lattice. We present a new construction of such lattices when n is a power of 2, via the maximal sub-field of the n-cyclotomic field. We also establish conditions for an ideal lattice to be a Zn-lattice using the Minkowski and the LLL (Lenstra-Lenstra-Lovasz) reductions. Other results include geometric characterizations of circulant graphs and of some algebraic lattices.
Doutorado
Doutor em Matemática
Backman, Spencer Christopher Foster. "Combinatorial divisor theory for graphs." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51908.
Повний текст джерелаTruman, Paul James. "Hopf-Galois module structure of some tamely ramified extensions." Thesis, University of Exeter, 2009. http://hdl.handle.net/10036/71817.
Повний текст джерелаRezola, Nolberto. "Unique Prime Factorization of Ideals in the Ring of Algebraic Integers of an Imaginary Quadratic Number Field." CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/205.
Повний текст джерелаUsatine, Jeremy. "Arithmetical Graphs, Riemann-Roch Structure for Lattices, and the Frobenius Number Problem." Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/hmc_theses/57.
Повний текст джерелаTenório, Wanderson [UNESP]. "Reticulados modulares em espaços euclidianos." Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/86492.
Повний текст джерелаFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
O objetivo deste trabalho é apresentar resultados sobre modularidade de reticulados. Mais especificamente, apresentamos as propriedades de um reticulado modular num espaço euclidiano arbitrário e a relação entre as theta séries de reticulados modulares pares e formas modulares. Além disso, apresentamos o estudo de modularidade em reticulados ideais fornecendo condições de existência, construções e caracterização de reticulados ideais modulares para graus especiais em corpos ciclotômicos
The aim of this work is to show results about modularity of lattices. More specifically, we show the properties of a modular lattice in an arbitrary Euclidean space and the relationship between theta series of even modular lattices and modular forms. Moreover, we show the study of modularity in ideal lattices giving existence conditions, constructions and characterization of modular ideal lattices for special levels over cyclotomic fields
Tenório, Wanderson. "Reticulados modulares em espaços euclidianos /." São José do Rio Preto, 2013. http://hdl.handle.net/11449/86492.
Повний текст джерелаBanca: Edson Donizete de Carvalho
Banca: Clotilzio Moreira dos Santos
Resumo: O objetivo deste trabalho é apresentar resultados sobre modularidade de reticulados. Mais especificamente, apresentamos as propriedades de um reticulado modular num espaço euclidiano arbitrário e a relação entre as theta séries de reticulados modulares pares e formas modulares. Além disso, apresentamos o estudo de modularidade em reticulados ideais fornecendo condições de existência, construções e caracterização de reticulados ideais modulares para graus especiais em corpos ciclotômicos
Abstract: The aim of this work is to show results about modularity of lattices. More specifically, we show the properties of a modular lattice in an arbitrary Euclidean space and the relationship between theta series of even modular lattices and modular forms. Moreover, we show the study of modularity in ideal lattices giving existence conditions, constructions and characterization of modular ideal lattices for special levels over cyclotomic fields
Mestre
Aeal, Wemedh. "K-theory, chamber homology and base change for the p-ADIC groups SL(2), GL(1) and GL(2)." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/ktheory-chamber-homology-and-base-change-for-the-lowercasepadic-groups-sl2-gl1-and-gl2(974c74a7-83ff-4cb2-bbb8-e15cfbb8e2e1).html.
Повний текст джерелаMyerson, Simon L. Rydin. "Systems of forms in many variables." Thesis, University of Oxford, 2016. http://ora.ox.ac.uk/objects/uuid:a9932e90-4784-466a-a694-d387c1228533.
Повний текст джерелаSilva, Alexsandro BelÃm da. "FamÃlias infinitas de corpos quadrÃticos imaginÃrios." Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5664.
Повний текст джерелаCoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
Seja ℓ > 3 um primo Ãmpar. Sejam So, S+, S_ conjuntos finitos mutuamente disjuntos de primos racionais. Para qualquer nÃmero real suficientemente grande X > 0, baseando-nos em [16], damos neste trabalho, um limite inferior do nÃmero de corpos quadrÃticos imaginÃrios k que satisfazem as seguintes condiÃÃes: o discriminante de k à maior que -X o nÃmero de classe de k à nÃo divisÃvel por ℓ, todo q â So se ramifica, todo q â S+ se decompÃe e todo q â S_ à inerte em k, respectivamente.
Let ℓ > 3 be an odd prime. Let So, S+, S_ be mutually disjoint finite sets of rational primes. For any suficiently large real number X > 0, basing ourselves on [16], we give this paper a lower bound of the number of imaginary quadratic fields k which satisfy the following conditions: the discriminant of k is greater than -X, the class number ok is not divisible by ℓ, every q â So ramifies, every q â S+ splits and every q â S_ is inert in k, respectively.
Santos, Jefferson Marques. "Altura e equidistribuição de pontos algébricos." Universidade Federal de Goiás, 2017. http://repositorio.bc.ufg.br/tede/handle/tede/7564.
Повний текст джерелаApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-07-10T14:31:22Z (GMT) No. of bitstreams: 2 Dissertação - Jefferson Marques Santos - 2017.pdf: 1510253 bytes, checksum: fa6dbf92bac6614d3ce705a47bbe41b8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-07-10T14:31:23Z (GMT). No. of bitstreams: 2 Dissertação - Jefferson Marques Santos - 2017.pdf: 1510253 bytes, checksum: fa6dbf92bac6614d3ce705a47bbe41b8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-06-20
The concept of roots of a polynomial is quite simple but has several applications. This concept extends more generally to the case of "small" algebraic points sequences in a curve. This dissertation aims to estimate the size of algebraic numbers by means of Weil height. In addition to showing that they are distributed evenly around the unit circle, through Bilu Equidistribution Theorem.
O conceito de raízes de um polinômio é bastante simples mas possui várias aplicações. Este conceito se estende de forma mais geral para o caso de sequências de pontos algébricos “pequenos” em uma curva. Esta dissertação tem por objetivo estimar o tamanho de números algébricos por meio da altura de Weil. Além de mostrar que os mesmos se distribuem uniformemente em torno do círculo unitário, por meio do Teorema de Equidistribuição de Bilu.
Tyler, Michael Peter. "On the birational section conjecture over function fields." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/31600.
Повний текст джерелаCox, Robert F. "Case studies of employee participation programs in construction and their effects on absenteeism." Diss., Virginia Tech, 1994. http://hdl.handle.net/10919/40050.
Повний текст джерелаWeinstein, Madeleine. "Adinkras and Arithmetical Graphs." Scholarship @ Claremont, 2016. http://scholarship.claremont.edu/hmc_theses/85.
Повний текст джерелаMontes, Jesús. "Polígonos de Newton de orden superior y aplicaciones aritméticas." Doctoral thesis, Universitat de Barcelona, 1999. http://hdl.handle.net/10803/31929.
Повний текст джерелаGounelas, Frank. "Free curves on varieties." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:3a7f6dba-fad2-4517-994e-0b51ea311df8.
Повний текст джерелаSouza, Vera Lúcia Graciani de. "Fatoração de inteiros e grupos sobre conicas." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306147.
Повний текст джерелаDissertação (mestrado profissional) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-13T09:34:59Z (GMT). No. of bitstreams: 1 Souza_VeraLuciaGracianide_M.pdf: 1138543 bytes, checksum: 893a12834a41de0bedf2e0e1c71a3fc1 (MD5) Previous issue date: 2009
Resumo: Este trabalho tem por objetivo fatorar número inteiro utilizando pontos racionais sobre o círculo unitário. Igualmente pretende determinar alguns grupos sobre cônicas. A pesquisa inicia com os conceitos básicos de Álgebra e Teoria dos Números, que fundamentam que o conjunto de pontos racionais sobre o círculo unitário tem uma estrutura de grupo. Desse conjunto é possível estender a idéia de grupo de pontos racionais sobre o círculo para pontos racionais sobre cônicas. Para encontrar os pontos racionais sobre o círculo foi usada uma parametrização do círculo por funções trigonométricas. Para cada ponto sobre o círculo unitário está associado um ângulo com o eixo positivo das abscissas, portanto adicionar pontos sobre o círculo equivale adicionar seus ângulos correspondentes. Com a operação "adição" de pontos sobre o círculo é possível definir uma estrutura de grupo que é utilizada para fatorar números inteiros. Para a cônica, a operação "adição" é determinada algebricamente ao calcular o coeficiente angular da reta que passa por dois pontos dados e o elemento neutro dessa cônica, também justificada geometricamente. No trabalho foram determinados os grupos de pontos racionais sobre cônicas e demonstrado alguns resultados sobre esses grupos usando os resíduos quadráticos e finalizando com a dedução de alguns resultados sobre a soma das coordenadas dos pontos sobre uma cônica.
Abstract: The objective of this paper is to factorize integer number using rational points on the unitary circle. Also, it intends to determinate some groups on the conics. The research begins with the basic concepts of Algebra and Number Theory ensuring that the rational points set on the unitary circle has a structure of group. From this set is possible to extend the idea of rational points on the circle toward rational points on conics. In order to find the rational points on the circle a parametrization by trigonometric function on it was used. For each point on the unitary circle it is associated an angle with abscissa positive axis, therefore adding points on the circle equals to add its corresponding angles. With the operation of "addition" points on the circle it is possible to define a group structure that is used to factorize integer numbers. For the conic, the "addition" operation is algebraically determinated when the angle coeficient of the line is calculated that joins two given points and the neutral element of that conic, which is geometrically justified. In the research the rational points groups on the conics were determined, and some result on these groups using quadratic residues were demonstrated, and it was finalized with the deduction of some results concerning the coordinates sum of points on a conics.
Mestrado
Mestre em Matemática
Jorge, Grasiele Cristiane 1983. "Reticulados q-ários e algébricos." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306602.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Cientifica
Made available in DSpace on 2018-08-19T16:10:47Z (GMT). No. of bitstreams: 1 Jorge_GrasieleCristiane_D.pdf: 3823740 bytes, checksum: 772a88bd2136b4afb884a6e824f37bce (MD5) Previous issue date: 2012
Resumo: O uso de códigos e reticulados em teoria da informação e na "chamada criptografia pós-quântica" vem sendo cada vez mais explorado. Neste trabalho estudamos temas relacionados a estas duas vertentes. A análise de reticulados foi feita via as métricas euclidiana e da soma. Para a métrica euclidiana, estudamos um algoritmo que procura pela treliça mínima de um reticulado com sub-reticulado ortogonal. No caso bidimensional foi possível caracterizar todos os sub-reticulados ortogonais de um reticulado racional qualquer. No estudo de reticulados via métrica da soma, trabalhamos com duas relações entre códigos e reticulados, conhecidas como "Construção A" e "Construção B". Generalizamos a Construção B para uma classe de códigos q-ários... Observação: O resumo, na íntegra, poderá ser visualizado no texto completo da tese digital
Abstract: The use of codes and lattices in Information Theory and in the so-called "Post-quantum Cryptography" has been increasingly explored. In this work we have studied topics related to these two aspects. The analysis of lattices was made via Euclidean and sum metrics. For the Euclidean metric we studied an algorithm that searches for a minimum trellis of a lattice with orthogonal sublattice. In the two-dimensional case it has been possible to characterize all orthogonal sublattices of any rational lattice. In the study of lattices via sum metric, we worked with two relations between codes and lattices, the so-called "Construction A " and "Construction B". We generalized Construction B for the class of q-ary codes...Note: The complete abstract is available with the full electronic document
Doutorado
Matematica
Doutor em Matemática
Benedito, Cintya Wink de Oliveira 1985. "Construção de grupos fuchsianos aritméticos provenientes de álgebras dos quatérnios e ordens maximais dos quatérnios associados a reticulados hiperbólicos." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261092.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-25T14:53:45Z (GMT). No. of bitstreams: 1 Benedito_CintyaWinkdeOliveira_D.pdf: 1485856 bytes, checksum: 50adbb3cffa1343c4a0cd9b3d7586173 (MD5) Previous issue date: 2014
Resumo: Na busca por novos sistemas de comunicações muitos trabalhos têm sido realizados com o objetivo de obter constelações de sinais e códigos geometricamente uniformes no plano hiperbólico. Neste contexto, nossa proposta é identificar uma estrutura algébrica e geométrica para que códigos e reticulados possam ser construídos neste espaço. O problema central deste trabalho consiste em construir grupos fuchsianos provenientes de tesselações hiperbólicas regulares {p,q} utilizando diversos tipos de emparelhamentos e identificá-los com álgebras e ordens dos quatérnios, definindo-os assim como aritmético. Desta forma, propomos um algoritmo para construir grupos fuchsianos aritméticos provenientes de tesselações hiperbólicas regulares {p,q} cujo polígono hiperbólico regular gera uma superfície orientada de gênero maior ou igual a dois. Para isso, fornecemos uma condição necessária para que estes grupos possam ser obtidos, esta condição será denominada condição de Fermat devido a sua identificação com os números de Fermat. Através da construção destes grupos, mostramos que existe um isomorfismo entre dois grupos fuchsianos aritméticos provenientes de uma tesselação {p,q} a partir de emparelhamentos diferentes. Além disso, descrevemos alguns dos corpos de números que utilizamos para construir grupos fuchsianos aritméticos, como subcorpos maximais reais de corpos ciclotômicos, a fim de propor uma relação entre os reticulados hiperbólicos e os reticulados euclidianos. Reticulados hiperbólicos completos obtidos através da identificação de grupos fuchsianos com ordens maximais dos quatérnios também são apresentados. Desta forma, obtemos um rotulamento completo dos pontos da constelação de sinal associada
Abstract: In the search for new communications systems many studies have been conducted with the goal of obtaining signal constellations and geometrically uniform codes in the hyperbolic plane. In this context, our proposal is to identify an algebraic and geometric structures for constructing codes and lattices in this space. The central problem of this work is to construct fuchsian groups derived from hyperbolic tessellations {p,q} using different edge-pairings sets and identify them with quaternion algebras and quaternion orders, by setting it as arithmetic. We also propose an algorithm to construct arithmetic fuchsian groups from a tessellation {p,q} whose regular hyperbolic polygon generates an oriented and compact surface with genus greater or equal than 2. For that we provide a necessary condition for these groups to be obtained, this necessary condition is called Fermat condition due to its identification with the Fermat numbers. By the construction of these groups, it is also shown an isomorphism between two arithmetic fuchsian groups derived from a tessellation {p,q} via different edge-pairings sets. Furthermore, we will describe some of the number fields that we use to construct arithmetic fuchsian groups as maximal real subfields of cyclotomic fields in order to propose a relationship between hyperbolic lattices and euclidean lattices. Complete hyperbolic lattices obtained by identifying fuchsian groups with maximal quaternion orders will also be presented. In this way we have a complete labeling of the points of the corresponding signal constellation
Doutorado
Telecomunicações e Telemática
Doutora em Engenharia Elétrica
Amorós, Carafí Laia. "Images of Galois representations and p-adic models of Shimura curves." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/471452.
Повний текст джерела