Добірка наукової літератури з теми "Algebraic kernel"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Algebraic kernel".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Algebraic kernel":

1

Klos, Basia. "Kernels of Algebraic Curvature Tensors of Symmetric and Skew-Symmetric Builds." PUMP Journal of Undergraduate Research 6 (August 26, 2023): 301–16. http://dx.doi.org/10.46787/pump.v6i0.3456.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The kernel of an algebraic curvature tensor is a fundamental subspace that can be used to distinguish between different algebraic curvature tensors. Kernels of algebraic curvature tensors built only of canonical algebraic curvature tensors of a single build have been studied in detail. We consider the kernel of an algebraic curvature tensor R that is a sum of canonical algebraic curvature tensors of symmetric and skew-symmetric build. An obvious way to ensure that the kernel of R is nontrivial is to choose the involved bilinear forms such that the intersection of their kernels is nontrivial. We present a construction wherein this intersection is trivial but the kernel of R is nontrivial. We also show how many bilinear forms satisfying certain conditions are needed in order for R to have a kernel of any allowable dimension.
2

Chen, Hung-Yuan. "Kernel Inclusions of Algebraic Automorphisms." Communications in Algebra 39, no. 4 (March 21, 2011): 1365–71. http://dx.doi.org/10.1080/00927871003705567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Altschuler, Jason M., and Pablo A. Parrilo. "Kernel Approximation on Algebraic Varieties." SIAM Journal on Applied Algebra and Geometry 7, no. 1 (February 17, 2023): 1–28. http://dx.doi.org/10.1137/21m1425050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hulle, Marc M. Van. "Edgeworth-Expanded Gaussian Mixture Density Modeling." Neural Computation 17, no. 8 (August 1, 2005): 1706–14. http://dx.doi.org/10.1162/0899766054026657.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Instead of increasing the order of the Edgeworth expansion of a single gaussian kernel, we suggest using mixtures of Edgeworth-expanded gaussian kernels of moderate order. We introduce a simple closed-form solution for estimating the kernel parameters based on weighted moment matching. Furthermore, we formulate the extension to the multivariate case, which is not always feasible with algebraic density approximation procedures.
5

Altürk, Ahmet. "Application of the Bernstein polynomials for solving Volterra integral equations with convolution kernels." Filomat 30, no. 4 (2016): 1045–52. http://dx.doi.org/10.2298/fil1604045a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this article, we consider the second-type linear Volterra integral equations whose kernels based upon the difference of the arguments. The aim is to convert the integral equation to an algebraic one. This is achieved by approximating functions appearing in the integral equation with the Bernstein polynomials. Since the kernel is of convolution type, the integral is represented as a convolution product. Taylor expansion of kernel along with the properties of convolution are used to represent the integral in terms of the Bernstein polynomials so that a set of algebraic equations is obtained. This set of algebraic equations is solved and approximate solution is obtained. We also provide a simple algorithm which depends both on the degree of the Bernstein polynomials and that of monomials. Illustrative examples are provided to show the validity and applicability of the method.
6

Kim, Hee Sik, Choonkil Park, and Eun Hwa Shim. "Function kernels and divisible groupoids." AIMS Mathematics 7, no. 7 (2022): 13563–72. http://dx.doi.org/10.3934/math.2022749.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
<abstract><p>In this paper, we introduce the notion of a function kernel which was motivated from the kernel in group theory, and we apply this notion to several algebraic structures, e.g., groups, groupoids, $ BCK $-algebras, semigroups, leftoids. Using the notions of left and right cosets in groupoids, we investigate some relations with function kernels. Moreover, the notion of an idenfunction in groupoids is introduced, which is a generalization of an identity axiom in algebras by functions, and we discuss it with function kernels.</p></abstract>
7

Hasso, Mohammad Shami. "Algebraic Kernel Method for Solving Fredholm Integral Equations." International Frontier Science Letters 7 (March 2016): 25–33. http://dx.doi.org/10.18052/www.scipress.com/ifsl.7.25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, we study the exact solution of linear Fredholm integral equations using some classical methods including degenerate kernel method and Fredholm determinants method. We propose an analytical method for solving such integral equations. This work has some goals related to suggested technique for solving Fredholm integral equations. The primary goal gives analytical solutions of such equations with minimum steps. Another goal is to compare the suggested method used in this study with classical methods. The final goal is that the propose method is an explicit formula that can be studied in detail for non-algebraic function kernels by using Taylor series expansion and for system of Fredholm integral equations.
8

Wirsing, Martin. "Structured algebraic specifications: A Kernel language." Theoretical Computer Science 42 (1986): 123–249. http://dx.doi.org/10.1016/0304-3975(86)90051-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jan, A. R. "An Asymptotic Model for Solving Mixed Integral Equation in Position and Time." Journal of Mathematics 2022 (August 30, 2022): 1–11. http://dx.doi.org/10.1155/2022/8063971.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, we considered a mixed integral equation (MIE) of the second kind in the space L 2 − b , b × C 0 , T , T < 1. The kernel of position has a singularity and takes some different famous forms, while the kernels of time are positive and continuous. Using an asymptotic method of separating the variables, we have a Fredholm integral equation (FIE) in position with variable parameters in time. Then, using the Toeplitz matrix method (TMM), we obtain a linear algebraic system (LAS) that can be solved numerically. Some applications with the aid of the maple 18 program are discussed when the kernel takes Coleman function, Cauchy kernel, Hilbert kernel, and a generalized logarithmic function. Also the error estimate, in each case, is computed.
10

Miana, Pedro J., Juan J. Royo, and Luis Sánchez-Lajusticia. "Convolution Algebraic Structures Defined by Hardy-Type Operators." Journal of Function Spaces and Applications 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/212465.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The main aim of this paper is to show that certain Banach spaces, defined via integral kernel operators, are Banach modules (with respect to some known Banach algebras and convolution products onℝ+). To do this, we consider some suitable kernels such that the Hardy-type operator is bounded in weighted Lebesgue spacesLωpℝ+forp≥1. We also show new inequalities in these weighted Lebesgue spaces. These results are applied to several concrete function spaces, for example, weighted Sobolev spaces and fractional Sobolev spaces defined by Weyl fractional derivation.

Дисертації з теми "Algebraic kernel":

1

Bhattacharjee, Papiya. "Minimal Prime Element Space of an Algebraic Frame." Bowling Green State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1243364652.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Peñaranda, Luis. "Géométrie algorithmique non linéaire et courbes algébriques planaires." Electronic Thesis or Diss., Nancy 2, 2010. http://www.theses.fr/2010NAN23002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nous abordons dans cette thèse le problème du calcul de la topologie de courbes algébriques planes. Nous présentons un algorithme qui, grâce à l’application d’outils algébriques comme les bases de Gröbner et les représentations rationnelles univariées, ne nécessite pas de traitement particulier de cas dégénérés. Nous avons implanté cet algorithme et démontré son efficacité par un ensemble de comparaisons avec les logiciels similaires. Nous présentons également une analyse de complexité sensible a la sortie de cet algorithme. Nous discutons ensuite des outils nécessaires pour l’implantation d’algorithmes de géométrie non-linéaire dans CGAL, la bibliothèque de référence de la communauté de géométrie algorithmique. Nous présentons un noyau univarié pour CGAL, un ensemble de fonctions nécessaires pour le traitement d’objets courbes définis par des polynômes univariés. Nous avons validé notre approche en la comparant avec les implantations similaires
We tackle in this thesis the problem of computing the topology of plane algebraic curves. We present an algorithm that avoids special treatment of degenerate cases, based on algebraic tools such as Gröbner bases and rational univariate representations. We implemented this algorithm and showed its performance by comparing to simi- lar existing programs. We also present an output-sensitive complexity analysis of this algorithm. We then discuss the tools that are necessary for the implementation of non- linear geometric algorithms in CGAL, the reference library in the computational geom- etry community. We present an univariate algebraic kernel for CGAL, a set of functions aimed to handle curved objects defined by univariate polynomials. We validated our approach by comparing it to other similar implementations
3

Laske, Michael. "Le K1 des courbes sur les corps globaux : conjecture de Bloch et noyaux sauvages." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13861/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Pour X une courbe sur un corps global k, lisse, projective et géométriquement connexe, nous déterminons la Q-structure du groupe de Quillen K1(X) : nous démontrons que dimQ K1(X) ? Q =2r, où r désigne le nombre de places archimédiennes de k (y compris le cas r = 0 pour un corps de fonctions). Cela con?rme une conjecture de Bloch annoncée dans les années 1980. Dans le langage de la K-théorie de Milnor, que nous dé?nissons pour les variétés algébriques via les groupes de Somekawa, le premier K-groupe spécial de Milnor SKM1 (X) est de torsion. Pour la preuve, nous développons une théorie des hauteurs applicable aux K-groupes de Milnor, et nous généralisons l’approche de base de facteurs de Bass-Tate. Une structure plus ?ne de SKM 1 (X) émerge en localisant le corps de base k, et une description explicite de la décomposition correspondante est donnée. En particulier, nous identi?ons un sous-groupe WKl(X):= ker (SKM 1 (X) ? Zl ? Lv SKM 1 (Xv) ? Zl) pour chaque entier rationnel l, nommé noyau sauvage, dont nous croyons qu’il est ?ni
For a smooth projective geometrically connected curve X over a global ?eld k, we determine the Q-structure of its ?rst Quillen K-group K1(X) by showing that dimQ K1(X) ? Q =2r, where r denotes the number of archimedean places of k (including the case r = 0 for k a function ?eld). This con?rms a conjecture of Bloch. In the language of Milnor K-theory, which we de?ne for varieties via Somekawa groups, the ?rst special Milnor K-group SKM 1 (X) is torsion. For the proof, we develop a theory of heights applicable to Milnor K-groups, and generalize the factor basis approach of Bass-Tate. A ?ner structure of SKM 1 (X) emerges when localizing the ground ?eld k, and we give an explicit description of the resulting decomposition. In particular, we identify a potentially ?nite subgroup WKl(X):= ker (SKM 1 (X) ? Zl ? Lv SKM 1 (Xv) ? Zl) for each rational prime l, named wild kernel
4

Sondecker, Victoria L. "Kernel-trace approach to congruences on regular and inverse semigroups." Instructions for remote access. Click here to access this electronic resource. Access available to Kutztown University faculty, staff, and students only, 1994. http://www.kutztown.edu/library/services/remote_access.asp.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (M.A.)--Kutztown University of Pennsylvania, 1994.
Source: Masters Abstracts International, Volume: 45-06, page: 3173. Abstract precedes thesis as [2] preliminary leaves. Typescript. Includes bibliographical references (leaves 52-53).
5

Speck, Robert [Verfasser]. "Generalized Algebraic Kernels and Multipole Expansions for massively parallel Vortex Particle Methods / Robert Speck." Wuppertal : Universitätsbibliothek Wuppertal, 2011. http://d-nb.info/1018299866/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kumar, Suraj. "Scheduling of Dense Linear Algebra Kernels on Heterogeneous Resources." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0572/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Du fait des énormes capacités de calculs des accélérateurs tels que les GPUs et les Xeon Phi, l’utilisation de machines multicoques pourvues d’accélérateurs est devenue commune dans le domaine du calcul haute performance (HPC). La complexité induite par ces accélérateurs a suscité le développement de systèmes d’exécution à base de tâches, dans lesquels les dépendances entre les applications sont exprimées sous la forme de graphe de tâches et où les tâches sont ordonnancées dynamiquement sur les ressources de calcul. La difficulté est alors de concevoir des stratégies d’ordonnancement qui font une utilisation efficace des ressources de calculs et le développement de telles stratégies, même pour un unique noeud hybride, est un enjeu essentiel de la performance des systèmes HPC. Nous considérons dans cette thèse l’ordonnancement de noyaux d’algèbre linéaire dense sur des noeuds complètement hétérogènes et constitués de CPUs et de GPUs. Les performances relatives des accélérateurs par rapport aux coeurs classique dépend très fortement du noyau considéré. Par exemple, les accélérateurs sont beaucoup plus efficaces pour les produits de matrices, par exemple, que pour les factorisations. Dans cette thèse, nous analysons les performances de stratégies statiques et dynamiques d’ordonnancement et nous proposons un ensemble de stratégies intermédiaires, en ajoutant des composantes statiques (respectivement dynamiques) à des stratégies d’ordonnancements dynamique (respectivement statiques). Récemment, une stratégie appelée HeteroPrio a été proposée, qui s’appuie sur les affinités entre les tâches et les ressources pour un petit ensemble de tâches différentes s’exécutant sur deux types de ressources. Nous avons étendu cette stratégie d’ordonnancement pour des graphes de tâches généraux pour deux types de ressources puis pour plus de deux types. De manière complémentaire, nous avons également démontré des facteurs d’approximation et des pires cas pour HeteroPrio dans le cas d’un ensemble de tâches indépendantes sur différents types de plates-formes
Due to massive computation power of accelerators such as GPU, Xeon phi, multicore machines equipped with accelerators are becoming popular in High Performance Computing (HPC). The added complexity led to the development of different task-based runtime systems, which allow computations to be expressed as graphs of tasks and rely on runtime systems to schedule those tasks among all resources of the platform. The real challenge is to design efficient schedulers for such runtimes to make effective utilization of all resources. Developing good schedulers, even for a single hybrid node, and analyzing them can thus have a strong impact on the performance of current HPC systems. We consider the problem of scheduling dense linear algebra applications on fully hybrid platforms made of CPUs and GPUs. The relative performance of CPU and GPU highly depends on the sub-routine. For instance, GPUs are much more efficient to process matrix-matrix multiplications than matrix factorizations. In this thesis, we analyze the performance of static and dynamic scheduling strategies and we propose a set of intermediate strategies, by adding static (resp. dynamic) features into dynamic (resp. static) strategies. A resource centric dynamic scheduler, HeteroPrio, which is based on affinity between tasks and resources, has been proposed recently for a set of small independent tasks on two types of resources. We extend and analyze this scheduler for general task graphs first on two types of resources and then on more than two types of resources. Additionally, we provide approximation ratios and worst case examples of HeteroPrio for a set of independent tasks on different platform sizes
7

Tachibana, Kanta, Takeshi Furuhashi, Tomohiro Yoshikawa, Eckhard Hitzer, and MINH TUAN PHAM. "Clustering of Questionnaire Based on Feature Extracted by Geometric Algebra." 日本知能情報ファジィ学会, 2008. http://hdl.handle.net/2237/20676.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Session ID: FR-G2-2
Joint 4th International Conference on Soft Computing and Intelligent Systems and 9th International Symposium on advanced Intelligent Systems, September 17-21, 2008, Nagoya University, Nagoya, Japan
8

Good, Jennifer Rose. "Weighted interpolation over W*-algebras." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/1843.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An operator-theoretic formulation of the interpolation problem posed by Nevanlinna and Pick in the early twentieth century asks for conditions under which there exists a multiplier of a reproducing kernel Hilbert space that interpolates a specified set of data. Paul S. Muhly and Baruch Solel have shown that their theory for operator algebras built from W*-correspondences provides an appropriate context for generalizing this classic question. Their reproducing kernel W*-correspondences are spaces of functions that generalize the reproducing kernel Hilbert spaces. Their Nevanlinna-Pick interpolation theorem, which is proved using commutant lifting, implies that the algebra of multipliers of the reproducing kernel W*-correspondence associated with a certain W*-version of the classic Szegö kernel may be identified with their primary operator algebra of interest, the Hardy algebra. To provide a context for generalizing another familiar topic in operator theory, the study of the weighted Hardy spaces, Muhly and Solel have recently expanded their theory to include operator-valued weights. This creates a new family of reproducing kernel W*-correspondences that includes certain, though not all, classic weighted Hardy spaces. It is the purpose of this thesis to generalize several of Muhly and Solel's results to the weighted setting and investigate the function-theoretic properties of the resulting spaces. We give two principal results. The first is a weighted version of Muhly and Solel's commutant lifting theorem, which we obtain by making use of Parrott's lemma. The second main result, which in fact follows from the first, is a weighted Nevanlinna-Pick interpolation theorem. Other results, several of which follow from the two primary results, include the construction of an orthonormal basis for the nonzero tensor product of two W*-corrrespondences, a double commutant theorem, the identification of several function-theoretic properties of the elements in the reproducing kernel W*-correspondence associated with a weighted W*-Szegö kernel as well as the elements in its algebra of mutlipliers, and the presentation of a relationship between this algebra of multipliers and a weighted Hardy algebra. In addition, we consider a candidate for a W*-version of the complete Pick property and investigate the aforementioned weighted W*-Szegö kernel in its light.
9

Shinde, Sachin Dilip. "SuperTaco : Taco Tensor Algebra kernels on distributed systems using Legion." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121683.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 89-91).
Tensor algebra is a powerful language for expressing computation on multidimensional data. While many tensor datasets are sparse, most tensor algebra libraries have limited support for handling sparsity. The Tensor Algebra Compiler (Taco) has introduced a taxonomy for sparse tensor formats that has allowed them to compile sparse tensor algebra expressions to performant C code, but they have not taken advantage of distributed systems. This work provides a code generation technique for creating Legion programs that distribute the computation of Taco tensor algebra kernels across distributed systems, and a scheduling language for controlling how this distributed computation is structured. This technique is implemented in the form of a command-line tool called SuperTaco. We perform a strong scaling analysis for the SpMV and TTM kernels under a row blocking distribution schedule, and find speedups of 9-10x when using 20 cores on a single node. For multi-node systems using 20 cores per node, SpMV achieves a 33.3x speedup at 160 cores and TTM achieves a 42.0x speedup at 140 cores.
by Sachin Dilip Shinde.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
10

Wilding, David. "Linear algebra over semirings." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/linear-algebra-over-semirings(1dfe7143-9341-4dd1-a0d1-ab976628442d).html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Motivated by results of linear algebra over fields, rings and tropical semirings, we present a systematic way to understand the behaviour of matrices with entries in an arbitrary semiring. We focus on three closely related problems concerning the row and column spaces of matrices. This allows us to isolate and extract common properties that hold for different reasons over different semirings, yet also lets us identify which features of linear algebra are specific to particular types of semiring. For instance, the row and column spaces of a matrix over a field are isomorphic to each others' duals, as well as to each other, but over a tropical semiring only the first of these properties holds in general (this in itself is a surprising fact). Instead of being isomorphic, the row space and column space of a tropical matrix are anti-isomorphic in a certain order-theoretic and algebraic sense. The first problem is to describe the kernels of the row and column spaces of a given matrix. These equivalence relations generalise the orthogonal complement of a set of vectors, and the nature of their equivalence classes is entirely dependent upon the kind of semiring in question. The second, Hahn-Banach type, problem is to decide which linear functionals on row and column spaces of matrices have a linear extension. If they all do, the underlying semiring is called exact, and in this case the row and column spaces of any matrix are isomorphic to each others' duals. The final problem is to explain the connection between the row space and column space of each matrix. Our notion of a conjugation on a semiring accounts for the different possibilities in a unified manner, as it guarantees the existence of bijections between row and column spaces and lets us focus on the peculiarities of those bijections. Our main original contribution is the systematic approach described above, but along the way we establish several new results about exactness of semirings. We give sufficient conditions for a subsemiring of an exact semiring to inherit exactness, and we apply these conditions to show that exactness transfers to finite group semirings. We also show that every Boolean ring is exact. This result is interesting because it allows us to construct a ring which is exact (also known as FP-injective) but not self-injective. Finally, we consider exactness for residuated lattices, showing that every involutive residuated lattice is exact. We end by showing that the residuated lattice of subsets of a finite monoid is exact if and only if the monoid is a group.

Книги з теми "Algebraic kernel":

1

Jay, Jorgenson, and Walling Lynne 1958-, eds. The ubiquitous heat kernel: AMS special session, the ubiquitous heat kernel, October 2-4, 2003, Boulder, Colorado. Providence, R.I: American Mathematical Society, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hedenmalm, Haakan. Theory of Bergman spaces. New York: Springer, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Qi S. Sobolev inequalities, heat kernels under Ricci flow, and the Poincaré conjecture. Boca Raton: CRC Press, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Christensen, Jens Gerlach. Trends in harmonic analysis and its applications: AMS special session on harmonic analysis and its applications : March 29-30, 2014, University of Maryland, Baltimore County, Baltimore, MD. Providence, Rhode Island: American Mathematical Society, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hedenmalm, Hakan, Boris Korenblum, and Kehe Zhu. Theory of Bergman Spaces (Graduate Texts in Mathematics). Springer, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Murre, Jacob. Lectures on Algebraic Cycles and Chow Groups. Edited by Eduardo Cattani, Fouad El Zein, Phillip A. Griffiths, and Lê Dũng Tráng. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691161341.003.0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This chapter showcases five lectures on algebraic cycles and Chow groups. The first two lectures are over an arbitrary field, where they examine algebraic cycles, Chow groups, and equivalence relations. The second lecture also offers a short survey on the results for divisors. The next two lectures are over the complex numbers. The first of these features discussions on the cycle map, the intermediate Jacobian, Abel–Jacobi map, and the Deligne cohomology. The following lecture focuses on algebraic versus homological equivalence, as well as the Griffiths group. The final lecture, which returns to the arbitrary field, discusses the Albanese kernel and provides the results of Mumford, Bloch, and Bloch–Srinivas.
7

Farb, Benson, and Dan Margalit. The Symplectic Representation and the Torelli Group. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691147949.003.0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This chapter discusses the basic properties and applications of a symplectic representation, denoted by Ψ‎, and its kernel, called the Torelli group. After describing the algebraic intersection number as a symplectic form, the chapter presents three different proofs of the surjectivity of Ψ‎, each illustrating a different theme. It also illustrates the usefulness of the symplectic representation by two applications to understanding the algebraic structure of Mod(S). First, the chapter explains how this representation is used by Serre to prove the theorem that Mod(Sɡ) has a torsion-free subgroup of finite index. It thens uses the symplectic representation to prove, following Ivanov, the following theorem of Grossman: Mod(Sɡ) is residually finite. It also considers some of the pioneering work of Dennis Johnson on the Torelli group. In particular, a Johnson homomorphism is constructed and some of its applications are given.
8

Ricci, Fulvio, Stephen Wainger, Elias M. Stein, and Alexander Nagel. Algebras of Singular Integral Operators with Kernels Controlled by Multiple Norms. American Mathematical Society, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lang, Serge, and Jay Jorgenson. The Heat Kernel and Theta Inversion on SL2(C) (Springer Monographs in Mathematics). Springer, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

van Moerbeke, Pierre. Determinantal point processes. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article presents a list of algebraic, combinatorial, and analytic mechanisms that give rise to determinantal point processes. Determinantal point processes have been used in random matrix theory (RMT) since the early 1960s. As a separate class, determinantal processes were first used to model fermions in thermal equilibrium and the term ‘fermion’ point processes were adopted. The article first provides an overview of the generalities associated with determinantal point processes before discussing loop-free Markov chains, that is, the trajectories of the Markov chain do not pass through the same point twice almost surely. It then considers the measures given by products of determinants, namely, biorthogonal ensembles. An especially important subclass of biorthogonal ensembles consists of orthogonal polynomial ensembles. The article also describes L-ensembles, a general construction of determinantal point processes via the Fock space formalism, dimer models, uniform spanning trees, Hermitian correlation kernels, and Pfaffian point processes.

Частини книг з теми "Algebraic kernel":

1

Avramidi, Ivan. "Algebraic Method for the Heat Kernel." In Frontiers in Mathematics, 155–73. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-27451-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Huang, Wenxue. "The Structure of Affine Algebraic Monoids in Terms of Kernel Data." In Algebraic Monoids, Group Embeddings, and Algebraic Combinatorics, 119–40. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0938-4_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Orsini, Francesco, Paolo Frasconi, and Luc De Raedt. "kProbLog: An Algebraic Prolog for Kernel Programming." In Inductive Logic Programming, 152–65. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40566-7_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lazard, Sylvain, Luis Peñaranda, and Elias Tsigaridas. "Univariate Algebraic Kernel and Application to Arrangements." In Experimental Algorithms, 209–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02011-7_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ancona, Davide. "MIX(FL): A Kernel Language of Mixin Modules." In Algebraic Methodology and Software Technology, 454–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45499-3_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Phelps, Kevin T., Josep Rifà, and Mercè Villanueva. "Hadamard Codes of Length 2 t s (s Odd). Rank and Kernel." In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 328–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11617983_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ikeda, Kazushi. "Generalization Error Analysis for Polynomial Kernel Methods — Algebraic Geometrical Approach." In Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003, 201–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44989-2_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Schreiner, Wolfgang, and Hoon Hong. "The design of the PACLIB kernel for parallel algebraic computation." In Parallel Computation, 204–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-57314-3_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chernousov, Vladimir. "On the Kernel of the Rost Invariant for E 8 Modulo 3." In Quadratic Forms, Linear Algebraic Groups, and Cohomology, 199–214. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6211-9_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kolster, Manfred. "Odd Torsion in the Tame Kernel of Totally Real Number Fields." In Algebraic K-Theory: Connections with Geometry and Topology, 177–88. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2399-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Algebraic kernel":

1

Berberich, Eric, Michael Hemmer, and Michael Kerber. "A generic algebraic kernel for non-linear geometric applications." In the 27th annual ACM symposium. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1998196.1998224.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Khanipov, Timur, Dmitry Nikolaev, Marina Chukalina, and Anastasia Ingacheva. "Blur kernel estimation with algebraic tomography technique and intensity profiles of object boundaries." In Tenth International Conference on Machine Vision (ICMV 2017), edited by Jianhong Zhou, Petia Radeva, Dmitry Nikolaev, and Antanas Verikas. SPIE, 2018. http://dx.doi.org/10.1117/12.2310064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Trifonov, Peter. "Algebraic Matching Techniques for Fast Decoding of Polar Codes with Reed-Solomon Kernel." In 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018. http://dx.doi.org/10.1109/isit.2018.8437829.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Soper, R. Randall, Stephen L. Canfield, Charles F. Reinholtz, and Dean T. Mook. "New Matrix-Theory-Based Definitions for Manipulator Dexterity." In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/dac-4410.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Historically, the evaluation of the “dexterity” of a given manipulator has been presented as a difficult qualitative and context-dependent task. The nature of this task has given rise to numerous definitions for quantitative properties associated with a manipulator, all referred to as dexterity. By divorcing the kernel of the idea of dexterity from the qualitative evaluation, a novel, unified, and simple definition for manipulator dexterity has been developed. The new definition of dexterity retains the spirit of all previous definitions. Simplicity is retained by recognizing that all velocity analyses and hence all measures of dexterity are governed by linear systems of algebraic equations. The derivations presented are general and may be universally applied to both redundant architectures and non-spanning substructures.
5

Ros, J., J. Gil, and I. Zabalza. "3D_Mec: An Application to Teach Mechanics." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
3D_Mec is a GPL-ed application for the solution of problems related to Mechanics. It is specially well suited for the direct kinematic and dynamic simulation of general systems. Is has been used during the last 10 years as a practical complement of the “Mechanics” Bachelor Course in Mechanical Engineering at the Public University of Nabarre-Spain. The main focus of the application is teaching Classical Mechanical principles and their applications. To that end 3D_Mec is constructed over an underlying Symbolic Algebra Kernel that allows the user to express itself in a language that closely resembles that of the mechanics and its level of abstraction. Classical kinematical primitives: Point, Basis and Reference, and set of operators acting upon them; support for vector and tensors, automatic basis change, ... relieve the user from the tedious algebraic manipulations directing his focus at the concept. A set of OpenGL based graphical primitives allow to represent the system and its simulation, and to create clips from them, it also represents a valuable way to check for the validity of the defined vectors and equations. 3D_Mec can also be used as a preprocessor or postprocessor, this is accomplished exporting the defined variables and different sets of equations in the popular language MatLab [3], where the integration or a different problem can be readily made based on well formed tested equations, results can be easily imported back from files containing a temporal series of the different variables. The program is also being used successfully in this way in “Dynamics of MultiBody Systems” PhD. course.
6

Khait, Mark, and Denis Voskov. "A GPU-Based Integrated Simulation Framework for Modelling of Complex Subsurface Applications." In SPE Reservoir Simulation Conference. SPE, 2021. http://dx.doi.org/10.2118/204000-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Alternative to CPU computing architectures, such as GPU, continue to evolve increasing the gap in peak memory bandwidth achievable on a conventional workstation or laptop. Such architectures are attractive for reservoir simulation, which performance is generally bounded by system memory bandwidth. However, to harvest the benefit of a new architecture, the source code has to be inevitably rewritten, sometimes almost completely. One of the biggest challenges here is to refactor the Jacobian assembly which typically involves large volumes of code and complex data processing. We demonstrate an effective and general way to simplify the linearization stage extracting complex physics-related computations from the main simulation loop and leaving only an algebraic multi-linear interpolation kernel instead. In this work, we provide the detailed description of simulation performance benefits from execution of the entire nonlinear loop on the GPU platform. We evaluate the computational performance of Delft Advanced Research Terra Simulator (DARTS) for various subsurface applications of practical interest on both CPU and GPU platforms, comparing particular workflow phases including Jacobian assembly and linear system solution with both stages of the Constraint Pressure Residual preconditioner.
7

Panta Pazos, Rube´n. "Finding the Minimun of the Quadratic Functional in Variational Approach in Transport Theory Problems." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48479.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this work it is reviewed the variational approach for some Transport Problems. Let X be a convex domain in Rn, and V a compact set. For that, it is considered the following equation: ∂ψ∂t(x,v,t)+v·∇ψ(x,v,t)+h(x,μ)ψ(x,v,t)==∫Vk(x,v,v′)ψ(x,v′,t)dv′+q(x,v,t)(1) where x represents the spatial variable in a domain D, v an element of a compact set V, Ψ is the angular flux, h(x,v) the collision frequency, k(x,v,v’) the scattering kernel function and q(x,v) the source function. It is put the attention in the construction of the quadratic functional J which appears in variational approaches for transport theory (for example, the Vladimirov functional). Some properties of this functional in a proper functional framework, in order to determine the minimum for J are considered. First, the general formulation is studied. Then an algorithm is given for minimizing the functional J for two remarkable problems: spherical harmonic method and spectral collocation method. A program associated to this algorithm is worked in a computer algebraic system, and also was depeloped a version in a high level language.
8

Calvo, M. L., and V. Lakshminarayanan. "Toward a quantum representation for the Fresnel regime in a linear optical system." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.thg5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The mathematical treatment involving Fresnel diffraction in compound linear optical systems presents difficulties due to the high degree of oscillations of the Fresnel integral kernel. Also, it is necessary to impose small pupil dimensions on the elements forming the compound system. A revised formulation for the general system having an arbitrary number of elements and generalized pupil functions allows one to represent the kernel in terms of convolution operations. This leads to a compact representation using Lie algebra operators.
9

Valmorin, Vincent. "Schwartz kernel theorem in algebras of generalized functions." In Linear and Non-Linear Theory of Generalized Functions and its Applications. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2010. http://dx.doi.org/10.4064/bc88-0-23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

BUESCU, JORGE, and A. C. PAIXÃO. "ALGEBRAIC, DIFFERENTIAL, INTEGRAL AND SPECTRAL PROPERTIES OF MERCER-LIKE-KERNELS." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Algebraic kernel":

1

Martín, A., L. Cirrottola, A. Froehly, R. Rossi, and C. Soriano. D2.2 First release of the octree mesh-generation capabilities and of the parallel mesh adaptation kernel. Scipedia, 2021. http://dx.doi.org/10.23967/exaqute.2021.2.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This document presents a description of the octree mesh-generation capabilities and of the parallel mesh adaptation kernel. As it is discussed in Section 1.3.2 of part B of the project proposal there are two parallel research lines aimed at developing scalable adaptive mesh refinement (AMR) algorithms and implementations. The first one is based on using octree-based mesh generation and adaptation for the whole simulation in combination with unfitted finite element methods (FEMs) and the use of algebraic constraints to deal with non-conformity of spaces. On the other hand the second strategy is based on the use of an initial octree mesh that, after make it conforming through the addition of templatebased tetrahedral refinements, is adapted anisotropically during the calculation. Regarding the first strategy the following items are included:

До бібліографії