Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Air-sea interactions.

Статті в журналах з теми "Air-sea interactions"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Air-sea interactions".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Brandt, A., G. Geernaert, A. I. Weinstein, and J. Dugan. "Submesoscale air-sea interactions studied." Eos, Transactions American Geophysical Union 74, no. 11 (1993): 122–23. http://dx.doi.org/10.1029/93eo00089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sun, Jielun, and Jeffrey R. French. "Air–Sea Interactions in Light of New Understanding of Air–Land Interactions." Journal of the Atmospheric Sciences 73, no. 10 (2016): 3931–49. http://dx.doi.org/10.1175/jas-d-15-0354.1.

Повний текст джерела
Анотація:
Abstract Air–sea interactions are investigated using the data from the Coupled Boundary Layers Air–Sea Transfer experiment under low wind (CBLAST-Low) and the Surface Wave Dynamics Experiment (SWADE) over sea and compared with measurements from the 1999 Cooperative Atmosphere–Surface Exchange Study (CASES-99) over land. Based on the concept of the hockey-stick transition (HOST) hypothesis, which emphasizes contributions of large coherent eddies in atmospheric turbulent mixing that are not fully captured by Monin–Obukhov similarity theory, relationships between the atmospheric momentum transfer
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Xie, Lian, Bin Liu, John Morrison, Huiwang Gao, and Jianhong Wang. "Air-Sea Interactions and Marine Meteorology." Advances in Meteorology 2013 (2013): 1–3. http://dx.doi.org/10.1155/2013/162475.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Seo, Hyodae, Larry W. O’Neill, Mark A. Bourassa, et al. "Ocean Mesoscale and Frontal-Scale Ocean–Atmosphere Interactions and Influence on Large-Scale Climate: A Review." Journal of Climate 36, no. 7 (2023): 1981–2013. http://dx.doi.org/10.1175/jcli-d-21-0982.1.

Повний текст джерела
Анотація:
Abstract Two decades of high-resolution satellite observations and climate modeling studies have indicated strong ocean–atmosphere coupled feedback mediated by ocean mesoscale processes, including semipermanent and meandrous SST fronts, mesoscale eddies, and filaments. The air–sea exchanges in latent heat, sensible heat, momentum, and carbon dioxide associated with this so-called mesoscale air–sea interaction are robust near the major western boundary currents, Southern Ocean fronts, and equatorial and coastal upwelling zones, but they are also ubiquitous over the global oceans wherever ocean
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Long, Zhenxia, and Will Perrie. "Air-sea interactions during an Arctic storm." Journal of Geophysical Research: Atmospheres 117, no. D15 (2012): n/a. http://dx.doi.org/10.1029/2011jd016985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sui, C.-H., X. Li, K.-M. Lau, and D. Adamec. "Multiscale Air–Sea Interactions during TOGA COARE." Monthly Weather Review 125, no. 4 (1997): 448–62. http://dx.doi.org/10.1175/1520-0493(1997)125<0448:masidt>2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Castellari, Sergio, Nadia Pinardi, and Kevin Leaman. "A model study of air–sea interactions in the Mediterranean Sea." Journal of Marine Systems 18, no. 1-3 (1998): 89–114. http://dx.doi.org/10.1016/s0924-7963(98)90007-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shukla, J. "Air-sea-land interactions: Global and regional habitability." Origins of Life and Evolution of the Biosphere 15, no. 4 (1985): 353–63. http://dx.doi.org/10.1007/bf01808179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nelson, Jill, Ruoying He, John C. Warner, and John Bane. "Air–sea interactions during strong winter extratropical storms." Ocean Dynamics 64, no. 9 (2014): 1233–46. http://dx.doi.org/10.1007/s10236-014-0745-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dobrovolski, S. G. "South Atlantic sea surface temperature anomalies and air-sea interactions: stochastic models." Annales Geophysicae 12, no. 9 (1994): 903–9. http://dx.doi.org/10.1007/s00585-994-0903-9.

Повний текст джерела
Анотація:
Abstract. Data on the South Atlantic monthly sea surface temperature anomalies (SSTA) are analysed using the maximum-entropy method. It is shown that the Markov first-order process can describe, to a first approximation, SSTA series. The region of maximum SSTA values coincides with the zone of maximum residual white noise values (sub-Antarctic hydrological front). The theory of dynamic-stochastic climate models is applied to estimate the variability of South Atlantic SSTA and air-sea interactions. The Adem model is used as a deterministic block of the dynamic-stochastic model. Experiments show
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Zhang, Wei, Yulong Yao, Duo Chan, and Jie Feng. "Advances in Air–Sea Interactions, Climate Variability, and Predictability." Atmosphere 15, no. 12 (2024): 1422. http://dx.doi.org/10.3390/atmos15121422.

Повний текст джерела
Анотація:
Air–sea interaction remains one of the most dynamic and influential components of the Earth’s climate system, significantly shaping the variability and predictability of both weather and climate [...]
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Sathiyamoorthy, S., and G. W. K. Moore. "Quantifying Temporal Variance in High-Latitude Air–Sea Interactions." Journal of Climate 16, no. 4 (2003): 746–55. http://dx.doi.org/10.1175/1520-0442(2003)016<0746:qtvihl>2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Feng, Aixia, Zhiqiang Gong, Qiguang Wang, and Guolin Feng. "Three-dimensional air–sea interactions investigated with bilayer networks." Theoretical and Applied Climatology 109, no. 3-4 (2012): 635–43. http://dx.doi.org/10.1007/s00704-012-0600-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Mitsuyasu, Hisashi, and Yoshikazu Yoshida. "Air-Sea Interactions under the Existence of Opposing Swell." Journal of Oceanography 61, no. 1 (2005): 141–54. http://dx.doi.org/10.1007/s10872-005-0027-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Panin, G. N. "Some experimental results from studies of air-sea interactions." Boundary-Layer Meteorology 50, no. 1-4 (1990): 147–52. http://dx.doi.org/10.1007/bf00120522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Misra, Vasubandhu. "Coupled Air, Sea, and Land Interactions of the South American Monsoon." Journal of Climate 21, no. 23 (2008): 6389–403. http://dx.doi.org/10.1175/2008jcli2497.1.

Повний текст джерела
Анотація:
Abstract The dominant interannual variation of the austral summer South American monsoon season (SAM) is associated with El Niño–Southern Oscillation (ENSO). Although this teleconnection provides a basis for the seasonal predictability of SAM, it is shown that the conventional tier-2 modeling approach of prescribing observed sea surface temperature (SST) is inappropriate to capture this teleconnection. Furthermore, such a forced atmospheric general circulation model (AGCM) simulation leads to degradation of the SAM precipitation variability. However, when the same AGCM is coupled to an ocean g
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Souza, Ronald, Luciano Pezzi, Sebastiaan Swart, Fabrício Oliveira, and Marcelo Santini. "Air-Sea Interactions over Eddies in the Brazil-Malvinas Confluence." Remote Sensing 13, no. 7 (2021): 1335. http://dx.doi.org/10.3390/rs13071335.

Повний текст джерела
Анотація:
The Brazil–Malvinas Confluence (BMC) is one of the most dynamical regions of the global ocean. Its variability is dominated by the mesoscale, mainly expressed by the presence of meanders and eddies, which are understood to be local regulators of air-sea interaction processes. The objective of this work is to study the local modulation of air-sea interaction variables by the presence of either a warm (ED1) and a cold core (ED2) eddy, present in the BMC, during September to November 2013. The translation and lifespans of both eddies were determined using satellite-derived sea level anomaly (SLA)
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Misra, Vasubandhu, and P. A. Dirmeyer. "Air, Sea, and Land Interactions of the Continental U.S. Hydroclimate." Journal of Hydrometeorology 10, no. 2 (2009): 353–73. http://dx.doi.org/10.1175/2008jhm1003.1.

Повний текст джерела
Анотація:
Abstract Multidecadal simulations over the continental United States by an atmospheric general circulation model coupled to an ocean general circulation model is compared with that forced by observed sea surface temperature (SST). The differences in the mean and the variability of precipitation are found to be larger in the boreal summer than in the winter. This is because the mean SST differences in the two simulations are qualitatively comparable between the two seasons. The analysis shows that, in the boreal summer season, differences in moisture flux convergence resulting from changes in t
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Li, Z. X. "Thermodynamic air-sea interactions and tropical atlantic SST dipole pattern." Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 26, no. 2 (2001): 155–57. http://dx.doi.org/10.1016/s1464-1909(00)00233-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Wang, Xidong, Xin Wang, and Peter C. Chu. "Air-sea interactions during rapid intensification of typhoon Fengshen (2008)." Deep Sea Research Part I: Oceanographic Research Papers 140 (October 2018): 63–77. http://dx.doi.org/10.1016/j.dsr.2018.08.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Bergman, John W., Harry H. Hendon, and Klaus M. Weickmann. "Intraseasonal Air–Sea Interactions at the Onset of El Niño." Journal of Climate 14, no. 8 (2001): 1702–19. http://dx.doi.org/10.1175/1520-0442(2001)014<1702:iasiat>2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Rennick, M. A., and R. L. Haney. "Stable and Unstable Air-Sea Interactions in the Equatorial Region." Journal of the Atmospheric Sciences 43, no. 23 (1986): 2937–43. http://dx.doi.org/10.1175/1520-0469(1986)043<2937:sauasi>2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Jury, Mark R. "Air–Sea Interactions over the East Caribbean Low Salinity Pool." Atmosphere-Ocean 63, no. 3 (2025): 172–82. https://doi.org/10.1080/07055900.2025.2515969.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Artegiani, A., E. Paschini, A. Russo, D. Bregant, F. Raicich, and N. Pinardi. "The Adriatic Sea General Circulation. Part I: Air–Sea Interactions and Water Mass Structure." Journal of Physical Oceanography 27, no. 8 (1997): 1492–514. http://dx.doi.org/10.1175/1520-0485(1997)027<1492:tasgcp>2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

He, J., R. He, and Y. Zhang. "Impacts of air–sea interactions on regional air quality predictions using WRF/Chem v3.6.1 coupled with ROMS v3.7: southeastern US example." Geoscientific Model Development Discussions 8, no. 11 (2015): 9965–10009. http://dx.doi.org/10.5194/gmdd-8-9965-2015.

Повний текст джерела
Анотація:
Abstract. Air–sea interactions have significant impacts on coastal convection and surface fluxes exchange, which are important for the spatial and vertical distributions of air pollutants that affect public health, particularly in densely populated coastal areas. To understand the impacts of air–sea interactions on coastal air quality predictions, sensitivity simulations with different cumulus parameterization schemes and atmosphere–ocean coupling are conducted in this work over southeastern US in July 2010 using the Weather Research and Forecasting Model with Chemistry (WRF/Chem). The results
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Gautier, Catherine, Peter Peterson, and Charles Jones. "Variability of Air–Sea Interactions over the Indian Ocean Derived from Satellite Observations." Journal of Climate 11, no. 8 (1998): 1859–73. http://dx.doi.org/10.1175/1520-0442-11.8.1859.

Повний текст джерела
Анотація:
Abstract Novel ways of monitoring the large-scale variability of the southwest monsoon in the Indian Ocean are presented using multispectral satellite datasets. The fields of sea surface temperature (SST), surface latent heat flux (LHF), net surface solar radiation (SW), precipitation (P), and SW − LHF over the Indian Ocean are analyzed to characterize the seasonal and interannual variability with special emphasis on the period 1988–90. It is shown that satellite data are able to make a significant contribution to the multiplatform strategy necessary to describe the large-scale spatial and tem
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Thurnherr, Iris, and Franziska Aemisegger. "Disentangling the impact of air–sea interaction and boundary layer cloud formation on stable water isotope signals in the warm sector of a Southern Ocean cyclone." Atmospheric Chemistry and Physics 22, no. 15 (2022): 10353–73. http://dx.doi.org/10.5194/acp-22-10353-2022.

Повний текст джерела
Анотація:
Abstract. Stable water isotopes in marine boundary layer water vapour are strongly influenced by the strength of air–sea fluxes. Air–sea fluxes in the extratropics are modulated by the large-scale atmospheric flow, for instance by the advection of warm and moist air masses in the warm sector of extratropical cyclones. A distinct isotopic composition of the water vapour in the latter environment has been observed over the Southern Ocean during the 2016/2017 Antarctic Circumnavigation Expedition (ACE). Most prominently, the secondary isotope variable deuterium excess (d=δ2H–8⋅δ18O) shows negativ
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Zhang, Han, Dake Chen, Tongya Liu, et al. "MASCS 1.0: synchronous atmospheric and oceanic data from a cross-shaped moored array in the northern South China Sea during 2014–2015." Earth System Science Data 16, no. 12 (2024): 5665–79. https://doi.org/10.5194/essd-16-5665-2024.

Повний текст джерела
Анотація:
Abstract. This work presents a cross-shaped moored array dataset (MASCS 1.0) comprising five buoys and four moorings with synchronous atmospheric and oceanic data in the northern South China Sea during 2014–2015. The atmospheric data are observed by two meteorological instruments at the buoys. The oceanic data consist of sea surface waves measured using a wave recorder, temperature, and salinity from the surface to a depth of 400 m and at 10 and 50 m above the ocean bottom using conductivity, temperature, and depth recorders. They also include currents from the surface to a depth of 850 m meas
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Stocchi, P., and S. Davolio. "Intense air-sea exchange and heavy rainfall: impact of the northern Adriatic SST." Advances in Science and Research 13 (February 23, 2016): 7–12. http://dx.doi.org/10.5194/asr-13-7-2016.

Повний текст джерела
Анотація:
Abstract. Over the northern Adriatic basin, intense air-sea interactions are often associated with heavy precipitation over the mountainous areas surrounding the basin. In this study, a high-resolution mesoscale model is employed to simulate three severe weather events and to evaluate the effect of the sea surface temperature on the intensity and location of heavy rainfall. The sensitivity tests show that the impact of SST varies among the events and it mainly involves the modification of the PBL characteristics and thus the flow dynamics and its interaction with the orography.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Caccia, M., R. Bono, G. Bruzzone, et al. "Sampling sea surfaces with SESAMO: an autonomous craft for the study of sea-air interactions." IEEE Robotics & Automation Magazine 12, no. 3 (2005): 95–105. http://dx.doi.org/10.1109/mra.2005.1511873.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Vialard, J., J. P. Duvel, M. J. McPhaden, et al. "Cirene: Air—Sea Interactions in the Seychelles—Chagos Thermocline Ridge Region." Bulletin of the American Meteorological Society 90, no. 1 (2009): 45–62. http://dx.doi.org/10.1175/2008bams2499.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Geernaert, G. L. "On the importance of the drag coefficient in air-sea interactions." Dynamics of Atmospheres and Oceans 11, no. 1 (1987): 19–38. http://dx.doi.org/10.1016/0377-0265(87)90012-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

von Storch, Jin-Song. "Signatures of Air–Sea Interactions in a Coupled Atmosphere–Ocean GCM." Journal of Climate 13, no. 19 (2000): 3361–79. http://dx.doi.org/10.1175/1520-0442(2000)013<3361:soasii>2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Esau, Igor. "Indirect air–sea interactions simulated with a coupled turbulence-resolving model." Ocean Dynamics 64, no. 5 (2014): 689–705. http://dx.doi.org/10.1007/s10236-014-0712-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Lucas, A. J., E. L. Shroyer, H. W. Wijesekera, et al. "Mixing to Monsoons: Air-Sea Interactions in the Bay of Bengal." Eos, Transactions American Geophysical Union 95, no. 30 (2014): 269–70. http://dx.doi.org/10.1002/2014eo300001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Herrera, Eduardo, Víctor Magaña, and Ernesto Caetano. "Air-sea interactions and dynamical processes associated with the midsummer drought." International Journal of Climatology 35, no. 7 (2014): 1569–78. http://dx.doi.org/10.1002/joc.4077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Abir, Shai, Hamish A. McGowan, Yonatan Shaked, Hezi Gildor, Efrat Morin, and Nadav G. Lensky. "Air–sea interactions in stable atmospheric conditions: lessons from the desert semi-enclosed Gulf of Eilat (Aqaba)." Atmospheric Chemistry and Physics 24, no. 10 (2024): 6177–95. http://dx.doi.org/10.5194/acp-24-6177-2024.

Повний текст джерела
Анотація:
Abstract. Accurately quantifying air–sea heat and gas exchange is crucial for comprehending thermoregulation processes and modeling ocean dynamics; these models incorporate bulk formulae for air–sea exchange derived in unstable atmospheric conditions. Therefore, their applicability in stable atmospheric conditions, such as desert-enclosed basins in the Gulf of Eilat/Aqaba (coral refugium), Red Sea, and Persian Gulf, is unclear. We present 2-year eddy covariance results from the Gulf of Eilat, a natural laboratory for studying air–sea interactions in stable atmospheric conditions, which are dir
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Moura, Regiane, Fernanda Casagrande, and Ronald Buss de Souza. "An Overview of Air-Sea Heat Flux Products and CMIP6 HighResMIP Models in the Southern Ocean." Atmosphere 16, no. 4 (2025): 402. https://doi.org/10.3390/atmos16040402.

Повний текст джерела
Анотація:
The Southern Ocean (SO) is crucial for global climate regulation by absorbing excess heat and anthropogenic CO2. However, representing air-sea heat fluxes in climate models remains a challenge, particularly in regions characterised by strong ocean–atmosphere–sea ice interactions. This study analysed air–sea heat fluxes over the SO using four products and seven CMIP6 HighResMIP pairs, comparing the mean state and trends (1985–2014) of sensible and latent heat fluxes (SHF and LHF, respectively) and the impact of grid resolution refinement on their estimation. Our results revealed significant dis
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Illig, Serena, and Boris Dewitte. "Local Coupled Equatorial Variability versus Remote ENSO Forcing in an Intermediate Coupled Model of the Tropical Atlantic." Journal of Climate 19, no. 20 (2006): 5227–52. http://dx.doi.org/10.1175/jcli3922.1.

Повний текст джерела
Анотація:
Abstract The relative roles played by the remote El Niño–Southern Oscillation (ENSO) forcing and the local air–sea interactions in the tropical Atlantic are investigated using an intermediate coupled model (ICM) of the tropical Atlantic. The oceanic component of the ICM consists of a six-baroclinic mode ocean model and a simple mixed layer model that has been validated from observations. The atmospheric component is a global atmospheric general circulation model developed at the University of California, Los Angeles (UCLA). In a forced context, the ICM realistically simulates both the sea surf
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Misra, Vasubandhu, L. Marx, M. Fennessy, B. Kirtman, and J. L. Kinter. "A Comparison of Climate Prediction and Simulation over the Tropical Pacific." Journal of Climate 21, no. 14 (2008): 3601–11. http://dx.doi.org/10.1175/2008jcli1932.1.

Повний текст джерела
Анотація:
Abstract This study compares an ensemble of seasonal hindcasts with a multidecadal integration from the same global coupled climate model over the tropical Pacific Ocean. It is shown that the annual mean state of the SST and its variability are different over the tropical Pacific Ocean in the two operating modes of the model. These differences are symptoms of an inherent difference in the physics of coupled air–sea interactions and upper ocean variability. It is argued that in the presence of large coupled model errors and in the absence of coupled data assimilation, the competing and at times
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Wenta, Marta, Christian M. Grams, Lukas Papritz, and Marc Federer. "Linking Gulf Stream air–sea interactions to the exceptional blocking episode in February 2019: a Lagrangian perspective." Weather and Climate Dynamics 5, no. 1 (2024): 181–209. http://dx.doi.org/10.5194/wcd-5-181-2024.

Повний текст джерела
Анотація:
Abstract. The development of atmospheric blocks over the North Atlantic–European region can lead to extreme weather events like heat waves or cold air outbreaks. Despite their potential severe impact on surface weather, the correct prediction of blocking lifecycles remains a key challenge in current numerical weather prediction (NWP) models. Increasing evidence suggests that latent heat release in cyclones, the advection of cold air (cold air outbreaks, CAOs) from the Arctic over the North Atlantic, and associated air–sea interactions over the Gulf Stream are key processes contributing to the
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Seo, Hyodae. "Distinct Influence of Air–Sea Interactions Mediated by Mesoscale Sea Surface Temperature and Surface Current in the Arabian Sea." Journal of Climate 30, no. 20 (2017): 8061–80. http://dx.doi.org/10.1175/jcli-d-16-0834.1.

Повний текст джерела
Анотація:
Abstract During the southwest monsoons, the Arabian Sea (AS) develops highly energetic mesoscale variability associated with the Somali Current (SC), Great Whirl (GW), and cold filaments (CF). The resultant high-amplitude anomalies and gradients of sea surface temperature (SST) and surface currents modify the wind stress, triggering the so-called mesoscale coupled feedbacks. This study uses a high-resolution regional coupled model with a novel coupling procedure that separates spatial scales of the air–sea coupling to show that SST and surface currents are coupled to the atmosphere at distinct
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Viatte, Camille, Cathy Clerbaux, Christophe Maes, et al. "Air Pollution and Sea Pollution Seen from Space." Surveys in Geophysics 41, no. 6 (2020): 1583–609. http://dx.doi.org/10.1007/s10712-020-09599-0.

Повний текст джерела
Анотація:
Abstract Air pollution and sea pollution are both impacting human health and all the natural environments on Earth. These complex interactions in the biosphere are becoming better known and understood. Major progress has been made in recent past years for understanding their societal and environmental impacts, thanks to remote sensors placed aboard satellites. This paper describes the state of the art of what is known about air pollution and focuses on specific aspects of marine pollution, which all benefit from the improved knowledge of the small-scale eddy field in the oceans. Examples of re
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Liu, Yanliang, Kuiping Li, Chunlin Ning, et al. "Observed Seasonal Variations of the Upper Ocean Structure and Air-Sea Interactions in the Andaman Sea." Journal of Geophysical Research: Oceans 123, no. 2 (2018): 922–38. http://dx.doi.org/10.1002/2017jc013367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Perlin, Natalie, Eric D. Skyllingstad, Roger M. Samelson, and Philip L. Barbour. "Numerical Simulation of Air–Sea Coupling during Coastal Upwelling." Journal of Physical Oceanography 37, no. 8 (2007): 2081–93. http://dx.doi.org/10.1175/jpo3104.1.

Повний текст джерела
Анотація:
Abstract Air–sea coupling during coastal upwelling was examined through idealized three-dimensional numerical simulations with a coupled atmosphere–ocean mesoscale model. Geometry, topography, and initial and boundary conditions were chosen to be representative of summertime coastal conditions off the Oregon coast. Over the 72-h simulations, sea surface temperatures were reduced several degrees near the coast by a wind-driven upwelling of cold water that developed within 10–20 km off the coast. In this region, the interaction of the atmospheric boundary layer with the cold upwelled water resul
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Ma, Youwei, Jianping Li, Shaoqing Zhang, and Haoran Zhao. "A multi-model study of atmosphere predictability in coupled ocean–atmosphere systems." Climate Dynamics 56, no. 11-12 (2021): 3489–509. http://dx.doi.org/10.1007/s00382-021-05651-w.

Повний текст джерела
Анотація:
AbstractOf great importance for guiding numerical weather and climate predictions, understanding predictability of the atmosphere in the ocean − atmosphere coupled system is the first and critical step to understand predictability of the Earth system. However, previous predictability studies based on prefect model assumption usually depend on a certain model. Here we apply the predictability study with the Nonlinear Local Lyapunov Exponent and Attractor Radius to the products of multiple re-analyses and forecast models in several operational centers to realize general predictability of the atm
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Zhong, Chao, Jing’an Lu, Dongju Kang, and Qianyong Liang. "Application of the Navigational Air-Sea Methane Exchange Flux Observation System in the Qiongdongnan Basin of the Northern South China Sea." Energies 16, no. 1 (2023): 507. http://dx.doi.org/10.3390/en16010507.

Повний текст джерела
Анотація:
The sources and sinks of dissolved CH4 in offshore waters are becoming diversified with the rapid increase in human activities. The concentration and air–sea exchange flux of dissolved CH4 present new characteristics of more intense spatiotemporal evolution, and the contribution to atmospheric CH4 continues to increase. Herein, a new model based on navigable air–sea exchange flux observations was proposed, which replaced the traditional station-based sampling analysis and testing method, realizing the synchronous measurement of methane in the atmosphere and surface seawater carried by ships. B
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Chubarenko, Irina. "Physical processes behind interactions of microplastic particles with natural ice." Environmental Research Communications 4, no. 1 (2022): 012001. http://dx.doi.org/10.1088/2515-7620/ac49a8.

Повний текст джерела
Анотація:
Abstract Microplastic particles (MPs, &lt;5 mm) are found in marine ice in larger quantities than in seawater, however, the distribution pattern within the ice cores is not consistent. To get insights into the most general physical processes behind interactions of ice and plastic particles in cool natural environments, information from academic and applied research is integrated and verified against available field observations. Non-polar molecules of common-market plastics are hydrophobic, so MPs are weak ice nucleators, are repelled from water and ice, and concentrate within air bubbles and
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Argüello, Gabriela. "The International Maritime Organization’s Contribution to Regime Interaction: Past, Present, and Future." Max Planck Yearbook of United Nations Law Online 25, no. 1 (2022): 1–25. http://dx.doi.org/10.1163/18757413_02501003.

Повний текст джерела
Анотація:
On the occasion of the 25th anniversary of The Max Planck Yearbook of United Nations Law, this article revisits the International Maritime Organization’s (IMO) contribution to regime interaction in the fields of air pollution, climate change, ship waste management and rescue of migrants at sea. Particular attention is given to cooperation arrangements between international organizations and how their day-to-day activities contribute to or hinder legal development among legal regimes. These interactions are studied through the theoretical lenses of ‘relational interactions’ and ‘regime complexe
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Ninomiya, Junichi, Nobuhito Mori, Tomohiro Yasuda, Hajime Mase, and Naoto Kihara. "IMPROVEMENT OF STORM SURGE SIMULATION UPON PARAMETERIZATIONS OF COUPLED AIR-SEA INTERACTIONS." Coastal Engineering Proceedings 1, no. 33 (2012): 51. http://dx.doi.org/10.9753/icce.v33.currents.51.

Повний текст джерела
Анотація:
Coupled atmosphere-ocean model has been developed in various organizations. Warner et al. developed fully coupled model, so-called COAWST, using the atmosphere model WRF, the ocean model ROMS and the wave model SWAN. Though there are several studies with coupled model, there is few research on tropical cyclone event analyzing the changes in ocean current and water temperature in detail. In this study, a series of numerical simulations was carried out targeting Typhoon Melor (2009), and it is analyzed against to the meteorologic and oceanic field data at Tanabe bay, Wakayama Prefecture in Japan
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!