Дисертації з теми "AI DECISIONS"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "AI DECISIONS".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Blandford, Ann. "Design, decisions and dialogue." Thesis, Open University, 1991. http://oro.open.ac.uk/57316/.
Повний текст джерелаHoutsma, Meile Jacob. "Perceived AI Performance and Intended Future Use in AI-based Applications." Thesis, Uppsala universitet, Institutionen för informatik och media, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414835.
Повний текст джерелаAli, Kashan, and Kim Freimann. "Applying the Technology Acceptance Model to AI decisions in the Swedish Telecom Industry." Thesis, Blekinge Tekniska Högskola, Institutionen för industriell ekonomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21825.
Повний текст джерелаAlabdallah, Abdallah. "Human Understandable Interpretation of Deep Neural Networks Decisions Using Generative Models." Thesis, Högskolan i Halmstad, Halmstad Embedded and Intelligent Systems Research (EIS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-41035.
Повний текст джерелаErhard, Annalena. "The Cost of Algorithmic decisions : A Systematic Literature Review." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85526.
Повний текст джерелаMIGLIERINA, ENRICO CARLO. "UN APPROCCIO DINAMICO AI PROBLEMI DI OTTIMIZZAZIONE VETTORIALE." Doctoral thesis, Università degli studi di Trieste, 2002. http://thesis2.sba.units.it/store/handle/item/13246.
Повний текст джерелаOrefors, Emil, and Nouri Issaki. "AI IN CONTEXT BASED STATISTICS IN CLINICAL DECISION SUPPORT." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-39923.
Повний текст джерелаElbegzaya, Temuulen <1991>. "Application AI in Traditional Supply Chain Management Decision-Making." Master's Degree Thesis, Università Ca' Foscari Venezia, 2020. http://hdl.handle.net/10579/17733.
Повний текст джерелаFrank, Michael Patrick. "Advances in decision-theoretic AI : limited rationality and abstract search." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/34070.
Повний текст джерелаIncludes bibliographical references (p. 153-165).
by Michael Patrick Frank.
M.S.
Latora, Antonio Giuseppe. "Metodologie Analytic Hierarchy Process ibride per applicazioni di Multiple Criteria Decision Analysis ai processi di Procurement." Doctoral thesis, Università di Catania, 2012. http://hdl.handle.net/10761/1040.
Повний текст джерелаAldeano, João Pedro Candeias Coxinho Tomé. "A decision support system in shuttle service managing." Master's thesis, Universidade de Évora, 2020. http://hdl.handle.net/10174/27923.
Повний текст джерелаWIEHLER, Lukas. "How can AI regulation be effectively enforced? : comparing compliance mechanisms for AI regulation with a multiple-criteria decision analysis." Doctoral thesis, European University Institute, 2022. http://hdl.handle.net/1814/74805.
Повний текст джерелаNewly emerging AI regulations need effective and innovative enforcement and compliance mechanisms to assure that fundamental and human rights are protected when using an AI system. This study compares four different compliance mechanisms namely ‘Real-Time and Automated Conformity Assessment’, ‘Standardization and Certification’, ‘Algorithmic Impact Assessment’ and ‘Algorithmic Auditing’ as well as three different assurers of compliance namely deployers, notified bodies and civil society organisations. With an MCDA, this research has shown that civil society-based compliance mechanisms are believed to be less effective, less feasible and more costly compared to all other compliance mechanisms. Second, external compliance mechanisms (by notified bodies) were rated to be more effective but also more difficult to implement compared to internal compliance mechanisms. Third, algorithmic auditing scored highest among all policy options. Fourth, despite its experimental nature, automated and real-time compliance mechanisms are not scored significantly lower than other compliance mechanisms.
Yusuf, Syed Adnan. "An evolutionary AI-based decision support system for urban regeneration planning." Thesis, University of Wolverhampton, 2010. http://hdl.handle.net/2436/114896.
Повний текст джерелаNygren, Fredrik, and Olof Thelander. "Modernt beslutsfattande, Människa eller AI : En kvalitativ studie om hur olika faktorer påverkar investerares beslutsfattande kring investeringar i AI-styrda fonder." Thesis, Linköpings universitet, Företagsekonomi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160543.
Повний текст джерелаBackground: Decision making has been researched for a long time and in the center of the research is the human inability to make rational decisions. In modern time, AI has become increasingly important and it has been discovered that AI has the opportunity to overcome the human inability to make rational decisions. In line with digitalization, AI and its ability to managed large amount of information has become a useful tool on the investment market. The AI-managed funds open for yet another investment alternative and there is currently a lack of understanding of how investors’ decision to include these funds in their savings are influenced by behavioral factors. Purpose: The purpose of this study is to create an understanding of how a decision to invest in AI-managed funds is affected by investors’ behavioral factors and attributes of the AI-managed fund. Completion: This study is a qualitative small-N-study with a hermeneutic perspective. The empirical data has been gathered through a target and a convenience sample. A total of 18 semi structured interviews have been conducted. Conclusion: The study contributes to an increased understanding of how different factors in the investor and how the attributes of the AI-managed fund affect the investor's decision. Investors' feelings for and associations with AI affect the initial attitude and are used to evaluate the pros and cons. The extent to which the advantages and disadvantages of the alternatives are considered is largely determined by the knowledge and interest the investors have for savings and investments, which results in those with higher and lower knowledge seeing different values in the attributes of the AI-managed fund. Depending on these factors, investors differ as to whether rationality or intuition is required in investment decisions.
Wang, Ming-hua. "A knowledge-based system approach for project management decision-making support." Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340476.
Повний текст джерелаSchiele, Julian [Verfasser], and Jens O. [Akademischer Betreuer] Brunner. "AI-Enabled Decision Support in Health Care / Julian Schiele ; Betreuer: Jens O. Brunner." Augsburg : Universität Augsburg, 2020. http://d-nb.info/1217194029/34.
Повний текст джерелаTersander, Jacob. "AI – Can You Afford To Wait?" Thesis, KTH, Skolan för industriell teknik och management (ITM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-241051.
Повний текст джерелаParadigmet för innovationsspridning kan spåras ända tillbaka till 1940-talet när Ryan och Gross undersökte spridningen av hybridfrön bland bönder i Iowa. Sedan 1960-talet har forskningen tillämpats inom en mängd olika discipliner, till exempel för att studera spridningen av Internet och icke-spridningen av Dvorak-tangentbordet. För närvarande är teknologierna som ligger på toppen av Gartner Hype-cykeln alla förknippade med artificiell intelligens (AI), som kan definieras som lärande enheter som uppfattar sin miljö och vidtar åtgärder för att maximera sin framgång gällande något mål. Hypen som nu finns kring AI har lett till att vissa människor tror att det kan innebära slutet för mänskligheten medan andra tror att det kommer att ge plats för miljoner nya jobb och smartare beslutsfattande. Under de senaste åren har både medier och politiska organisationer visat stort intresse för AI samt visat intresse för potentiella användningsområden av AI. AI-relaterade företag i USA har under de senaste åren har tagit in miljarder dollar i riskkapital. Ett stort antal förvärv och kapitalflödet till AI-teknik ökar den snabba utvecklingen av AI-lösningar. Syftet med denna studie är att beskriva spridningen av AI i organisationer från ett antal olika sektorer. Vad som kan sägas efter att ha studerat olika sektorer är att organisationer delar en gemensam nyfikenhet för AI och att de tror att AI kommer bli en allt mer naturlig del av sina processer. De företag som spenderar mycket pengar på FoU har längre erfarenhet av att använda AI och gör för närvarande projekt som använder mer avancerade tekniker. I andra organisationer är investeringarna inom AI beroende av de anställda som har rätt att investera pengar i projekt och deras syn på AI. Organisationer verkar allmänt närma sig AI på ett liknande sätt där de först utvärderar vad AI är. Därefter väljer de ett antal områden där de gör små iterativa projekt där de utnyttjar AI, vanligtvis via ML. Därefter investerades mer pengar om de små projekten lyckas och företaget börjar titta på hur man kan förvärva mer kompetens inom området.
Mugrauer, Alex, and Johannes Pers. "Marketing managers in the age of AI : A multiple-case study of B2C firms." Thesis, Umeå universitet, Företagsekonomi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-161285.
Повний текст джерелаEriksson, Falk Filiph, and Fredrik Frenning. "Intelligent Matching For Clinical Decision Support System For Cerebral Palsy Using Domain Knowledge." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-36231.
Повний текст джерелаVETTORETTO, LUCIANO. "Nuovi sviluppi della ricerca territoriale in relazione ai problemi attuali di conoscenza e decisione : teorie, metodo, esperienze." Doctoral thesis, Università IUAV di Venezia, 1987. http://hdl.handle.net/11578/278088.
Повний текст джерелаADORNI, ROBERTA. "Dinamiche elettrofisiologiche nella lettura di parole: dall'analisi ortografica ai processi di elaborazione semantica." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2010. http://hdl.handle.net/10281/7832.
Повний текст джерелаALBÅGE, PETTERSSON ANNIE, and HOLMES KLARA ANDERHAGEN. "Beslutsfattande kring produktutvecklingsprocessen i svenska klädföretag och framtida AI-applikationer : En studie om svenska klädföretags hållbara material- och produktbeslut samt AI-stöd i framtiden." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279761.
Повний текст джерелаIn the apparel industry, material choice and decisions regarding products are an important part of the product development process, influencing design, cost, feeling and aesthetic of a product. The material choice process is becoming more complex and look along with quality now also competes with sustainability. Many aspects are therefore important to balance when making decisions. There are methods, but it is unclear if and how they are used by Swedish apparel companies. Artificial Intelligence systems that can be used in decision making are available today, and already in use in different areas within the apparel industry. There are also AI-systems for material choice, but not yet in the apparel industry. The purpose of this study is to study decision making within Swedish clothing companies regarding sustainable product and material choices and whether AI could support the process. Semi structured interviews conducted with two Swedish apparel companies were used to answer two research questions, together with an iterative literature study. The study shows that Swedish apparel companies do not use any special tools or known methods while making decisions regarding material and products in order to achieve their sustainability goals. Often intuition and experience is behind making a decision or choice, but also specifications regarding each product with requirements that have to be fulfilled. Today the asked companies do not use AI-systems for making decisions regarding materials or products, but according to literature, there are some methods that possibly could be implemented regarding quantitative aspects such as water permeability. However, there does not seem to be any AI-systems today that can replace human’s ability to make decisions concerning the qualitative aspects such as the feeling of a material.
Sottara, Davide <1981>. "Integration of symbolic and connectionist AI techniques in the development of Decision Support Systems applied to biochemical processes." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2972/1/Sottara_Davide_Tesi.pdf.
Повний текст джерелаSottara, Davide <1981>. "Integration of symbolic and connectionist AI techniques in the development of Decision Support Systems applied to biochemical processes." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2972/.
Повний текст джерелаWang, Olivier. "Adaptive Rules Model : Statistical Learning for Rule-Based Systems." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX037/document.
Повний текст джерелаBusiness Rules (BRs) are a commonly used tool in industry for the automation of repetitive decisions. The emerging problem of adapting existing sets of BRs to an ever-changing environment is the motivation for this thesis. Existing Supervised Machine Learning techniques can be used when the adaptation is done knowing in detail which is the correct decision for each circumstance. However, there is currently no algorithm, theoretical or practical, which can solve this problem when the known information is statistical in nature, as is the case for a bank wishing to control the proportion of loan requests its automated decision service forwards to human experts. We study the specific learning problem where the aim is to adjust the BRs so that the decisions are close to a given average value.To do so, we consider sets of Business Rules as programs. After formalizing some definitions and notations in Chapter 2, the BR programming language defined this way is studied in Chapter 3, which proves that there exists no algorithm to learn Business Rules with a statistical goal in the general case. We then restrain the scope to two common cases where BRs are limited in some way: the Iteration Bounded case in which no matter the input, the number of rules executed when taking the decision is less than a given bound; and the Linear Iteration Bounded case in which rules are also all written in Linear form. In those two cases, we later produce a learning algorithm based on Mathematical Programming which can solve this problem. We briefly extend this theory and algorithm to other statistical goal learning problems in Chapter 5, before presenting the experimental results of this thesis in Chapter 6. The last includes a proof of concept to automate the main part of the learning algorithm which does not consist in solving a Mathematical Programming problem, as well as some experimental evidence of the computational complexity of the algorithm
Dellaluce, Jason. "Enhancing symbolic AI ecosystems with Probabilistic Logic Programming: a Kotlin multi-platform case study." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23856/.
Повний текст джерелаBjörklund, Pernilla. "The curious case of artificial intelligence : An analysis of the relationship between the EU medical device regulations and algorithmic decision systems used within the medical domain." Thesis, Uppsala universitet, Juridiska institutionen, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-442122.
Повний текст джерелаHammarström, Tobias. "Towards Explainable Decision-making Strategies of Deep Convolutional Neural Networks : An exploration into explainable AI and potential applications within cancer detection." Thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-424779.
Повний текст джерелаForslund, Lia, and Mentzer Sofia von. "Sjukvårdskris och svalt mottagande av AI, hur går det ihop? : En fallstudie i vilka faktorer som har störst påverkan på införandet av artificiell intelligens." Thesis, Uppsala universitet, Institutionen för informatik och media, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414559.
Повний текст джерелаCooper, Tessa L. "Case Adaptation for an Intelligent Decision Support System for Diabetes Management." Ohio University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1289585163.
Повний текст джерелаWang, Brydon. "The role of trustworthiness in automated decision-making systems and the law." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/231388/1/Brydon_Wang_Thesis.pdf.
Повний текст джерелаBerggren, Andreas, Martin Gunnarsson, and Johannes Wallin. "Artificial intelligence as a decision support system in property development and facility management." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-25535.
Повний текст джерелаByggbranschen har länge varit tveksamt till att applicera nya tekniker. Inom fastighetsutveckling bygger branschen mycket på att anställda tar med sig erfarenheter från ett projekt till ett annat. Dessa anställda lär sig hantera risker i samband med förvärv av mark men när dessa personer slutar eller går i pension försvinner kunskapen. Ett AI baserat beslutssystem som tar risk och marknad i beaktning vid förvärv av mark kan lära sig av varje projekt och ta med dessa kunskaper till framtida projekt. Inom fastighetsförvaltning skulle artificiell intelligens kunna effektivisera allokerandet av personal i den pågående verksamheten. Syftet med studien är att analysera hur företag i fastighetsbranschen kan förbättra sitt beslutstagande med hjälp av AI i utveckling av fastigheter samt fastighetsförvaltning. I denna studien har två fallstudier av två olika aktörer i fastighetsbranschen utförts. Ena aktören, Bygg-Fast, representerar fastighetsutveckling och den andra aktören, VGR, representerar fastighetsförvaltning. Studien bygger på intervjuer, diskussioner och insamlade data. Genom att kartlägga och sedan kvantifiera de risker samt marknadsindikatorer som är indata i processen kan ett underlag skapas. Underlaget kan användas för en modell som lägger grunden för ett AI baserat beslutsstödsystem som ska hjälpa fastighetsutvecklaren med att ta kalkylerade beslut i mark förvärvsprocessen. Genom att kartlägga hur ett flöde genom en fastighet ser ut kan mätpunkter sättas ut för att analysera hur lång tid aktiviteterna tar i den specifika verksamheten. Dessa mätvärden ger en samlad data som gör det lättare att planera verksamheten som bedrivs i fastigheten. Ett effektivare flöde kan uppnås genom att visualisera hela processen så personal kan allokeras till rätt del av flödet. Genom att vara flexibel och kunna planera om verksamheten snabbt ifall planering störs kan en hög effektivitet nås. Detta skulle kunna göras av ett AI baserat beslutsstödsystem som simulerar alternativa dagsplaneringar.
Bergquist, Olsson Frida, and Hanna Dahl. "Co-creators or puppets? : a study on AI-marketing’s role in consumers’ value co-creation." Thesis, Högskolan Kristianstad, Fakulteten för ekonomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-22155.
Повний текст джерелаWalker, Donald. "Similarity Determination and Case Retrieval in an Intelligent Decision Support System for Diabetes Management." Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1194562654.
Повний текст джерелаHaviland, Hannah. ""The Machine Made Me Do It!" : An Exploration of Ascribing Agency and Responsibility to Decision Support Systems." Thesis, Linköping University, Centre for Applied Ethics, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2922.
Повний текст джерелаAre agency and responsibility solely ascribable to humans? The advent of artificial intelligence (AI), including the development of so-called “affective computing,” appears to be chipping away at the traditional building blocks of moral agency and responsibility. Spurred by the realization that fully autonomous, self-aware, even rational and emotionally-intelligent computer systems may emerge in the future, professionals in engineering and computer science have historically been the most vocal to warn of the ways in which such systems may alter our understanding of computer ethics. Despite the increasing attention of many philosophers and ethicists to the development of AI, there continues to exist a fair amount of conceptual muddiness on the conditions for assigning agency and responsibility to such systems, from both an ethical and a legal perspective. Moral and legal philosophies may overlap to a high degree, but are neither interchangeable nor identical. This paper attempts to clarify the actual and hypothetical ethical and legal situations governing a very particular type of advanced, or “intelligent,” computer system: medical decision support systems (MDSS) that feature AI in their system design. While it is well-recognized that MDSS can be categorized by type and function, further categorization of their mediating effects on users and patients is needed in order to even begin ascribing some level of moral or legal responsibility. I conclude that various doctrines of Anglo legal systems appear to allow for the possibility of assigning specific types of agency – and thus specific types of legal responsibility – to some types of MDSS. Strong arguments for assigning moral agency and responsibility are still lacking, however.
Klingvall, Emelie. "Artificiell intelligens som ett beslutsstöd inom mammografi : En kvalitativ studie om radiologers perspektiv på icke-tekniska utmaningar." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-18768.
Повний текст джерелаArtificial intelligence (AI) has become more commonly used to support people when making decisions. Machine learning (ML) is a sub-area of AI that has become more frequently used in health care. Patient data is increasing in healthcare and an AI system can help to process this increased amount of data, which further can develop a decision support that can help doctors. AI technology is becoming more common to use in radiology and specifically in mammography, as a decision support. The usage of AI technology in mammography has many benefits, but there are also challenges that are not connected to technology.Non-technical challenges are important to consider and review in order to generate a successful practice. The purpose of this thesis is therefore to review non-technical challenges when using AI as a decision support in mammography from a radiological perspective. Radiologists with experience in mammography were interviewed in order to increase knowledge about their views on the usage.The results identified and developed the non-technical challenges based on themes: responsibility, human abilities, acceptance, education/knowledge and collaboration. The study also found indications within these themes that there are non-technical challenges with associated aspects that are more prominent than others. This study emphasizes and increases the knowledge of radiologists views on the usage of AI and contributes to future research for all the actors involved. Future research can address these non-technical challenges even before the technology is implemented to reduce the risk of complications.
Beka, Be Nguema Marius. "Comportement de l'opérateur humain face à une situation dégradée et imprévue : contribution à la réalisation d'une interface homme-machine tolérante à certaines erreurs humaines." Valenciennes, 1994. https://ged.uphf.fr/nuxeo/site/esupversions/3e915137-f166-4513-adfd-f97943c83baf.
Повний текст джерелаLindstam, Tim, and Anton Svensson. "Behavior Based Artificial Intelligence in a Village Environment." Thesis, Malmö högskola, Fakulteten för teknik och samhälle (TS), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20522.
Повний текст джерелаFredriksson, Tomas, and Rickard Svensson. "Analysis of machine learning for human motion pattern recognition on embedded devices." Thesis, KTH, Mekatronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246087.
Повний текст джерелаAntalet uppkopplade enheter ökar och det senaste uppsvinget av ar-tificiell intelligens driver forskningen framåt till att kombinera de två teknologierna för att både förbättra existerande produkter och utveckla nya. Maskininlärning är traditionellt sett implementerat på kraftfulla system så därför undersöker den här masteruppsatsen potentialen i att utvidga maskininlärning till att köras på inbyggda system. Den här undersökningen av existerande maskinlärningsalgoritmer, implemen-terade på begränsad hårdvara, har utförts med fokus på att klassificera grundläggande mänskliga rörelser. Tidigare forskning och implemen-tation visar på att det ska vara möjligt med vissa begränsningar. Den här uppsatsen vill svara på vilken hårvarubegränsning som påverkar klassificering mest samt vilken klassificeringsgrad systemet kan nå på den begränsande hårdvaran. Testerna inkluderade mänsklig rörelsedata från ett existerande dataset och inkluderade fyra olika maskininlärningsalgoritmer på tre olika system. SVM presterade bäst i jämförelse med CART, Random Forest och AdaBoost. Den nådde en klassifikationsgrad på 84,69% på de sex inkluderade rörelsetyperna med en klassifikationstid på 16,88 ms per klassificering på en Cortex M processor. Detta är samma klassifikations-grad som en vanlig persondator når med betydligt mer beräknings-resurserresurser. Andra hårdvaru- och algoritm-kombinationer visar en liten minskning i klassificeringsgrad och ökning i klassificeringstid. Slutsatser kan dras att minnet på det inbyggda systemet påverkar vilka algoritmer som kunde köras samt komplexiteten i datan som kunde extraheras i form av attribut (features). Processeringshastighet påverkar mest klassificeringstid. Slutligen är prestandan för maskininlärningsy-stemet bunden till typen av data som ska klassificeras, vilket betyder att olika uppsättningar av algoritmer och hårdvara påverkar prestandan olika beroende på användningsområde.
Lemaitre, Juliette. "Vers une simplification de la conception de comportements stratégiques pour les opposants dans les jeux vidéo de stratégie." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2343/document.
Повний текст джерелаThis PhD thesis addresses the topic of creating artificial intelligence (AI) to control high-level decision-making in strategy games. This kind of game offers complex environments that require the manipulation of a large number of resources by choosing actions depending on long-term goals. This AI design is not simple because it is about providing to the player a playful and interesting experience. Hence, the aim is not to create unbeatable behaviors, but rather to display several personality traits allowing the player to face diverse opponents. Its creation involves game designers who are responsible of defining several strategies according to the experience they want to provide to the player, and game developers who implement those strategies to put them into the game. The collaboration between them requires many exchanges and development iterations to obtain a result corresponding to game designers’ expectations. The objective of this PhD thesis is to improve and simplify the creation of strategical behaviors by proposing a strategy model intelligible to game designers and that can be interfaced easily with developers’ work. For game designers, a strategy model has been created to allow them to express rules guiding the choice of goals and their allocated resources. These rules make it possible for game designers to express which goal to choose according to the context but also to choose several of them and give them relative importance in order to influence the resource distribution. To improve intelligibility we use a graphical model inspired from finite state machines and behavior trees. Our proposition also includes a strategy engine which executes the strategies created with the model. This execution produces directives that are represented by a list of selected strategical goals and the resources that have been allocated according to the importance and needs of each goal. These directives are intended for a tactical module in charge of their application. The developers are then responsible for the implementation of this tactical module. Our solution enables game designers to directly design the strategical level of an AI and therefore facilitates their cooperation with game developers and simplifies the entire creation process of the AI
Birindwa, Fleury. "Prestandajämförelse mellan Xception, InceptionV3 och MobileNetV2 för bildklassificering på nätpaneler." Thesis, Jönköping University, JTH, Datateknik och informatik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-51351.
Повний текст джерелаIn recent years, deep learning models have been used in almost all areas, from industry to academia, specifically for image classification. However, these models are huge in size, with millions of parameters, making it difficult to distribute to smaller devices with limited resources such as mobile phones. This study addresses lightweight pre-trained models of convolutional neural networks which is state of art in deep learning and their size is suitable as a base model for mobile application development. The purpose of this study is to evaluate the performance of Xception, InceptionV3 and MobilNetV2 in order to facilitate selection decisions of a lightweight convolutional networks as base for the development of mobile applications in image classification. In order to achieve their purpose, these models have been implemented using the Transfer Learning method and are designed to distinguish images on mesh panels from the company Troax. The study takes up the method that allows transfer of knowledge from an existing model to a new model, explain how the training process and the test process went, as well as analysis of results. Results showed that Xception had 86% accuracy and had 10 minutes processing time on 2000 training images and 1000 test images. Exception’s performance was the best among all these models. The difference between Xception and InceptionV3 was 10% accuracy and 2 minutes process time. Between Xception and MobilNetV2 there was a difference of 23% in accuracy and 3 minutes in process time. Experiments showed that these models performed less well with smaller training images below 800 images. Over 800 images, each model began to perform prediction over 70% accuracy.
Kolář, Vít. "Umělá inteligence ve hře Bang!" Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2010. http://www.nusl.cz/ntk/nusl-235543.
Повний текст джерелаBjarnolf, Philip. "Threat Analysis Using Goal-Oriented Action Planning : Planning in the Light of Information Fusion." Thesis, University of Skövde, School of Humanities and Informatics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-1108.
Повний текст джерелаAn entity capable of assessing its and others action capabilities possess the power to predict how the involved entities may change their world. Through this knowledge and higher level of situation awareness, the assessing entity may choose the actions that have the most suitable effect, resulting in that entity’s desired world state.
This thesis covers aspects and concepts of an arbitrary planning system and presents a threat analyzer architecture built on the novel planning system Goal-Oriented Action Planning (GOAP). This planning system has been suggested for an application for improved missile route planning and targeting, as well as being applied in contemporary computer games such as F.E.A.R. – First Encounter Assault Recon and S.T.A.L.K.E.R.: Shadow of Chernobyl. The GOAP architecture realized in this project is utilized by two agents that perform action planning to reach their desired world states. One of the agents employs a modified GOAP planner used as a threat analyzer in order to determine what threat level the adversary agent constitutes. This project does also introduce a conceptual schema of a general planning system that considers orders, doctrine and style; as well as a schema depicting an agent system using a blackboard in conjunction with the OODA-loop.
Giannini, Valentina <1969>. "Knowledge sharing among and within stakeholder groups to cope with climate related risks." Doctoral thesis, Università Ca' Foscari Venezia, 2012. http://hdl.handle.net/10579/1170.
Повний текст джерелаSono sviluppati metodi per rendere operativo l’adattamento ai cambiamenti climatici a partire da processi partecipativi per l’armonizzazione del sapere. Il primo paradigma affrontato è la gestione integrata delle risorse idriche, caso studio è il progetto BRAHMATWINN; il secondo paradigma è la gestione del rischio, con un caso studio fondato su un progetto di armonizzazione delle conoscenze in corso in Guatemala. Tre sono i risultati: 1. la tabella integrata degli indicatori, mediante la quale si è stabilita una relazione biunivoca fra risultati della ricerca e necessità degli attori locali; 2. la matrice per l’analisi delle carenze di politiche per il rischio inondazione, in cui sono identificati ritardi nella legislazione e nella sua implementazione; 3. la mappa cognitiva totale, attraverso cui si possono raccogliere ed analizzare le visioni che gli attori locali hanno sul rischio e sulla sua gestione, per identificare e migliorare le sinergie possibili fra istituzioni che si occupano di gestione del rischio.
Knapek, Petr. "Řízení entit ve strategické hře založené na multiagentních systémech." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2019. http://www.nusl.cz/ntk/nusl-403185.
Повний текст джерелаTeng, Sin Yong. "Intelligent Energy-Savings and Process Improvement Strategies in Energy-Intensive Industries." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-433427.
Повний текст джерелаBenjamin, Michael R. "The Interval Programming Model for Multi-objective Decision Making." 2004. http://hdl.handle.net/1721.1/30416.
Повний текст джерелаMartin, Martin C. "The Essential Dynamics Algorithm: Essential Results." 2003. http://hdl.handle.net/1721.1/6718.
Повний текст джерелаWu, Chin-Hui, and 吳智暉. "University-level Automated Course Scheduling by Integrating AI Technique and Group Decision Support System - the Preceding Process." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/25388860988100308858.
Повний текст джерела大葉大學
電機工程研究所
82
Computing university course schedules is very hard. Course scheduling is basically a multiple constraint satisfaction problem, in which the determination of a solution is NP- complete. The approaches oriented to operations research simplified the problem to facilitate mathematical model building and to reduce computation time. The AI/expert-system- oriented approaches took advantage of powerful configuration tools and supplied reasoning methods, but did not completely solve the conflict problem between multiple constraints. Via literature review and system analysis, this research proposes simple heuristic rules to guide ''generate, test and debug'' strategy to automate ng. A prototype system has been developed, tested and evaluated. Course-scheduling by heuristic rules can reduce computation time significantly. And the huristic rules themselves are easier to understand than mathematical models.
Lay, Young-Jinn, and 賴永進. "University-level Automated Course Scheduling by Integrating AI Technique and Group Decision Support System - Group Negotiation Timetabling." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/88277612855266149559.
Повний текст джерела大葉大學
電機工程研究所
82
University-level course scheduling is basically a multiple constraint satisfaction problem. It needs to rely on a preceding process to get a feasible solution satisfactory to almost all constraints and on a nogotiation process to achieve a all- satisfying solution. Researches in autometed course scheduling proposed various algorithms, empirical rules and reasoning thods. Proposals were differentiated by computation time and memory space usage, but they were not guaranteed to succeed in finding a solution. The final stage in course scheduling is achieved by negotiation, precisely, a group decision process. This research proposes a course-specific group decision support system to ease the inherent negotiation activities required for the course scheduling issues. A course- specific group decision support system needs some major functions as information query, group negotiation, course adjustment, course scheduling, explanation, constraint relaxation and system help. A prototype system under this general architecture has been developed, tested and evaluated. The testing and the evaluation of the system has gained positive public opinions.