Добірка наукової літератури з теми "Agrivoltaism"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Agrivoltaism".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Agrivoltaism":

1

Khele, Issam, and Márta Szabó. "Microclimatic and Energetic Feasibility of Agrivoltaic Systems: State of the Art." Hungarian Agricultural Engineering, no. 40 (2021): 102–15. http://dx.doi.org/10.17676/hae.2021.40.102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Agrivoltaic systems have been proposed as the most prominent synergetic application of agricultural and energetic sectors. Integrating solar power generating with agricultural activities is relatively new; however, it has started with implementing the PV panels into the greenhouses. Comparatively, openfield agrivoltaics systems are still growing and under-development in many locations around the world. The urge to explore innovative solutions for the increasing demand for electricity and food has been the main motivation for the research centers, researchers, and governments to escalate agrivoltaics development globally. In this paper, the current and most recent projects and studies of open-field agrivoltaic systems are presented, compared, and analyzed in order to anticipate the potential and path of development for agrivoltaics in the near future. Several pieces of research from different countries globally were included to illustrate the main features and performance indicators of agrivoltaic systems. The paper concludes that the agrivoltaics system has the potential to grow to big-scale projects in different climatic regions because it provides benefits either by increasing the Land Equivalent Ratio (LER), protecting the plants from severe ambient weather, and diversifying the income for farmers. New technologies and methods have been integrated with the agrivoltaics systems in different projects to optimize the model; however, many aspects of development could be introduced in the near future.
2

Pearce, Joshua M. "Agrivoltaics in Ontario Canada: Promise and Policy." Sustainability 14, no. 5 (March 4, 2022): 3037. http://dx.doi.org/10.3390/su14053037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Well-intentioned regulations to protect Canada’s most productive farmland restrict large-scale solar photovoltaic (PV) development. The recent innovation of agrivoltaics, which is the co-development of land for both PV and agriculture, makes these regulations obsolete. Burgeoning agrivoltaics research has shown agricultural benefits, including increased yield for a wide range of crops, plant protection from excess solar energy and hail, and improved water conservation, while maintaining agricultural employment and local food supplies. In addition, the renewable electricity generation decreases greenhouse gas emissions while increasing farm revenue. As Canada, and Ontario in particular, is at a strategic disadvantage in agriculture without agrivoltaics, this study investigates the policy changes necessary to capitalize on the benefits of using agrivoltaics in Ontario. Land-use policies in Ontario are reviewed. Then, three case studies (peppers, sweet corn, and winter wheat) are analysed for agrivoltaic potential in Ontario. These results are analysed in conjunction with potential policies that would continue to protect the green-belt of the Golden Horseshoe, while enabling agrivoltaics in Ontario. Four agrivoltaic policy areas are discussed: increased research and development, enhanced education/public awareness, mechanisms to support Canada’s farmers converting to agrivoltaics, and using agrivoltaics as a potential source of trade surplus with the U.S.
3

Proctor, Kyle W., Ganti S. Murthy, and Chad W. Higgins. "Agrivoltaics Align with Green New Deal Goals While Supporting Investment in the US’ Rural Economy." Sustainability 13, no. 1 (December 25, 2020): 137. http://dx.doi.org/10.3390/su13010137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Agrivoltaic systems combine solar photovoltaic energy production with agriculture to improve land-use efficiency. We provide an upper-bound reduced-order cost estimate for widespread implementation of Agrivoltaic systems in the United States. We find that 20% of the US’ total electricity generation can be met with Agrivoltaic systems if less than 1% of the annual US budget is invested into rural infrastructure. Simultaneously, Agrivoltaic systems align well with existing Green New Deal goals. Widescale installation of Agrivoltaic systems can lead to a carbon dioxide (CO2) emissions reduction equivalent to removing 71,000 cars from the road annually and the creation of over 100,000 jobs in rural communities. Agrivoltaics provide a rare chance for true synergy: more food, more energy, lower water demand, lower carbon emissions, and more prosperous rural communities.
4

Pascaris, Alexis S., Chelsea Schelly, and Joshua M. Pearce. "A First Investigation of Agriculture Sector Perspectives on the Opportunities and Barriers for Agrivoltaics." Agronomy 10, no. 12 (November 28, 2020): 1885. http://dx.doi.org/10.3390/agronomy10121885.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Agrivoltaic systems are a strategic and innovative approach to combine solar photovoltaic (PV)-based renewable energy generation with agricultural production. Recognizing the fundamental importance of farmer adoption in the successful diffusion of the agrivoltaic innovation, this study investigates agriculture sector experts’ perceptions on the opportunities and barriers to dual land-use systems. Using in-depth, semistructured interviews, this study conducts a first study to identify challenges to farmer adoption of agrivoltaics and address them by responding to societal concerns. Results indicate that participants see potential benefits for themselves in combined solar and agriculture technology. The identified barriers to adoption of agrivoltaics, however, include: (i) desired certainty of long-term land productivity, (ii) market potential, (iii) just compensation and (iv) a need for predesigned system flexibility to accommodate different scales, types of operations, and changing farming practices. The identified concerns in this study can be used to refine the technology to increase adoption among farmers and to translate the potential of agrivoltaics to address the competition for land between solar PV and agriculture into changes in solar siting, farming practice, and land-use decision-making.
5

Jamil, Uzair, and Joshua M. Pearce. "Energy Policy for Agrivoltaics in Alberta Canada." Energies 16, no. 1 (December 21, 2022): 53. http://dx.doi.org/10.3390/en16010053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
As Alberta increases conventional solar power generation, land-use conflicts with agriculture increase. A solution that enables low-carbon electricity generation and continued (in some cases, increased) agricultural output is the co-locating of solar photovoltaics (PV) and agriculture: agrivoltaics. This review analyzes policies that impact the growth of agrivoltaics in Alberta. Solar PV-based electricity generation is governed by three regulations based on system capacity. In addition, agrivoltaics falls under various legislations, frameworks, and guidelines for land utilization. These include the Land Use Framework, Alberta Land Stewardship Act, Municipal Government Act, Special Areas Disposition, Bill 22, and other policies, which are reviewed in the agrivoltaics context. Several policies are recommended to support the rapid deployment of agrivoltaics. Openly accessible agrivoltaics research will help optimize agrivoltaic systems for the region, and can be coupled with public education to galvanize social acceptability of large-scale PV deployment. Clearly defining and categorizing agrivoltaics technology, developing agrivoltaics standards, making agrivoltaics technology-friendly regulations and frameworks, and developing programs and policies to incentivize agrivoltaics deployment over conventional PV will all accelerate the technology’s deployment. Through these measures, Alberta can achieve conservation and sustainability in the food and energy sectors while simultaneously addressing their renewable energy and climate-related goals.
6

Pulido-Mancebo, José S., Rafael López-Luque, Luis Manuel Fernández-Ahumada, José C. Ramírez-Faz, Francisco Javier Gómez-Uceda, and Marta Varo-Martínez. "Spatial Distribution Model of Solar Radiation for Agrivoltaic Land Use in Fixed PV Plants." Agronomy 12, no. 11 (November 10, 2022): 2799. http://dx.doi.org/10.3390/agronomy12112799.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Agrivoltaics is currently presented as a possible effective solution to one of society’s greatest challenges: responding to the increasing demand for energy and food in an efficient and sustainable manner. To this end, agrivoltaics proposes to combine agricultural and renewable energy production on the same land using photovoltaic technology. The performance of this new production model strongly depends on the interaction between the two systems, agricultural and photovoltaic. In that sense, one of the most important aspects to consider are the effects of the shadows of the photovoltaic panels on the crop land. Therefore, further study of crop behavior under agrivoltaic conditions requires exhaustive knowledge of the spatial distribution of solar radiation within the portion of land between collectors and crops. This study presents a valid methodology to estimate this distribution of solar irradiance in agrivoltaic installations as a function of the photovoltaic installation geometry and the levels of diffuse and direct solar irradiance incident on the crop land. As an example, this methodology was applied to simulate the radiative capture potential of possible photovoltaic plants located in Cordoba, Spain by systematically varying the design variables of the photovoltaic plants. Based on the results obtained, a model correlating the agrivoltaic potential of a photovoltaic plant with its design variables is proposed. Likewise, for the “Alcolea 1” photovoltaic plant (Cordoba, Spain), the solar radiation decay profiles were simulated in the lanes between the photovoltaic collectors where the crops would be planted in the event of converting this plant into an agrivoltaic facility. Thus, the methodology proposed represents an interesting way to determine the agrivoltaic potential of existing grid-connected photovoltaic installations that could be converted into agrivoltaic installations, contributing to the implementation of this new agricultural production model that is more sustainable and environmentally committed to the future.
7

Jamil, Uzair, Abigail Bonnington, and Joshua M. Pearce. "The Agrivoltaic Potential of Canada." Sustainability 15, no. 4 (February 10, 2023): 3228. http://dx.doi.org/10.3390/su15043228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Canada has committed to reducing greenhouse gas (GHG) emissions by increasing the non-emitting share of electricity generation to 90% by 2030. As solar energy costs have plummeted, agrivoltaics (the co-development of solar photovoltaic (PV) systems and agriculture) provide an economic path to these goals. This study quantifies agrivoltaic potential in Canada by province using geographical information system analysis of agricultural areas and numerical simulations. The systems modeled would enable the conventional farming of field crops to continue (and potentially increase yield) by using bifacial PV for single-axis tracking and vertical system configurations. Between a quarter (vertical) and more than one third (single-axis tracking) of Canada’s electrical energy needs can be provided solely by agrivoltaics using only 1% of current agricultural lands. These results show that agrivoltaics could be a major contributor to sustainable electricity generation and provide Canada with the ability to render the power generation sector net zero/GHG emission free. It is clear that the potential of agrivoltaic-based solar energy production in Canada far outstrips current electric demand and can, thus, be used to electrify and decarbonize transportation and heating, expand economic opportunities by powering the burgeoning computing sector, and export green electricity to the U.S. to help eliminate their dependence on fossil fuels.
8

Jamil, Uzair, and Joshua M. Pearce. "Maximizing Biomass with Agrivoltaics: Potential and Policy in Saskatchewan Canada." Biomass 3, no. 2 (June 2, 2023): 188–216. http://dx.doi.org/10.3390/biomass3020012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Canada is a leading global agricultural exporter, and roughly half of Canada’s farmland is in Saskatchewan. New agrivoltaics research shows increased biomass for a wide range of crops. This study looks at the potential increase in crop yield and livestock in Saskatchewan through agrivoltaics along with its financial implications. Then, the legislation that could influence the adoption of agrivoltaics in Saskatchewan is reviewed. Specifically, experimental results from agrivoltaic wheat production are analyzed for different adoption scenarios. The impact of converting the province’s pasture grass areas to agrivoltaics and using sheep to harvest them is also examined. The results indicate that approximately 0.4 million tons of wheat, 2.9 to 3.5 million tons of forage and 3.9 to 4.6 million additional sheep can be grazed using agrivoltaics in Saskatchewan. Only these two agrivoltaics applications, i.e., wheat farmland and pastureland, result in potential additional billions of dollars in annual provincial agricultural revenue. The Municipalities Act and the Planning and Development Act were found to have the most impact on agrivoltaics in the province as official community plans and zoning bylaws can impede diffusion. Agrivoltaics can be integrated into legislation to avoid delays in the adoption of the technology so that the province reaps all of the benefits.
9

Fattoruso, Grazia, Domenico Toscano, Andrea Venturo, Alessandra Scognamiglio, Massimiliano Fabricino, and Girolamo Di Francia. "A Spatial Multicriteria Analysis for a Regional Assessment of Eligible Areas for Sustainable Agrivoltaic Systems in Italy." Sustainability 16, no. 2 (January 21, 2024): 911. http://dx.doi.org/10.3390/su16020911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Agrivoltaics’ share of renewable generation is relevant for countries to achieve their energy transition targets. Agrivoltaics is the dual and synergistic use of the land by agricultural crop production and photovoltaic (PV) systems. For their development around a country, a fundamental step is to determine which areas are suitable. This research work has developed a methodological framework for a reliable agrivoltaic land eligibility analysis at regional scale based on a spatial multicriteria analysis (i.e., GIS/MCDM-AHP). The challenging step has been to select a set of relevant criteria, also based on experts’ knowledge, able to capture the factors that can affect both the solar PV potential and agriculture-oriented factors. On the basis of these criteria, properly weighted, a 30 m-resolution land eligibility map for agrivoltaic systems has been generated for the NUTS-2 regions of Italy. We have found that Italy has an eligible area of 10.7 million hectares and a capacity potential of 6435 GW, assuming an installed power density of 0.6 MW/ha. Thus, a land coverage of only 1.24% of this area would allow to reach the national 80 GW target of new renewable capacity to achieve the country’s decarbonisation and energy transition objectives by 2030. The potential of installed capacity results at GW scale for the main land categories of arable land and permanent crops if they are just covered by only 5% with agrivoltaic systems. Thus, the impact of agrivoltaic systems development on land occupation can be considered marginal especially in relation to benefits generated for both the energy and agricultural sectors. Such a method is essentially targeted to regional authorities for planning the sustainable development of agrivoltaic systems at the local level.
10

Shepard, Laurel A., Chad W. Higgins, and Kyle W. Proctor. "Agrivoltaics: Modeling the relative importance of longwave radiation from solar panels." PLOS ONE 17, no. 10 (October 28, 2022): e0273119. http://dx.doi.org/10.1371/journal.pone.0273119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Agrivoltaics, which integrate photovoltaic power production with agriculture in the same plot of land, have the potential to reduce land competition, reduce crop irrigation, and increase solar panel efficiency. To optimize agrivoltaic systems for crop growth, energy pathways must be characterized. While the solar panels shade the crops, they also emit longwave radiation and partially block the ground from downwelling longwave radiation. A deeper understanding of the spatial variation in incoming energy would enable controlled allocation of energy in the design of agrivoltaic systems. The model also demonstrates that longwave energy should not be neglected when considering a full energy balance on the soil under solar panels.

Дисертації з теми "Agrivoltaism":

1

Savalle-Gloire, Noé. "Effet du microclimat lié à l'ombrage temporaire sur la physiologie et la croissance, le rendement et la qualité des fruits de la tomate (Solanum lycopersicum L. H. Karst)." Electronic Thesis or Diss., Avignon, 2024. http://www.theses.fr/2024AVIG0624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’augmentation des températures et des risques de sécheresses du fait des changements climatiques impose une adaptation rapide des pratiques culturales afin de protéger les cultures face à l’augmentation des stress thermiques et hydriques. De plus, limiter l’émission de gaz à effet de serre à l’origine de ces changements climatiques nécessite le développement d’énergies renouvelables, mais ce développement se heurte dans certains pays à des conflits d’usage, alors qu’une part importante du territoire est déjà dédiée à l’agriculture. L’agrivoltaïsme consiste à installer des panneaux photovoltaïques sur des terres cultivées, ce qui permet de produire une électricité renouvelable tout en protégeant les cultures face aux canicules et aux sécheresses, et ainsi de répondre à ces deux problématiques. Cette pratique pourrait être particulièrement utile pour les serres de tomate dans lesquelles l’ombrage est déjà utilisé pour protéger les plantes, et où une structure capable de supporter les panneaux est déjà en place. L’utilisation de panneaux mobiles (agrivoltaïsme dynamique) permet d’ajuster l’ombrage aux besoins de la plante. Cependant, cette pratique provoque un ombrage temporaire dont l’effet sur les cultures n’est pas encore suffisamment bien compris pour optimiser leur pilotage et maximiser les rendements et la qualité de la culture. Cette thèse examine l'impact de l'ombrage sur la croissance végétative, la physiologie, le rendement et la qualité des plants de tomates. Elle étudie les effets de l'ombrage appliqué à différentes échelles spatiales et temporelles, allant de l'organe à la plante et variant en intensité sur une base horaire ou saisonnière. Elle s’appuie sur deux expérimentations réalisées sous serre agrivoltaïque en 2021 et 2022 à Alénya (Pyrénées-Orientales, France). Différentes modalités d’ombrage ont été étudiées, selon le moment de la journée où l’ombrage a été appliqué sur les plantes (en fin de matinée, en début de matinée et en fin d’après-midi, et en début d’après-midi) et comparées à une modalité témoin réalisée dans une serre identique sans panneaux photovoltaïques. Les données expérimentales ont été utilisées pour adapter et calibrer un modèle structure-fonction de la tomate (FSPM) développé dans l’unité PSH, ce qui a permis d'analyser l’effet de l’ombrage à l’échelle de la plante entière
Due to climate change, farming practices must be adapted to protect crops from increased heat and water stress. Additionally, limiting greenhouse gas emissions requires the development of renewable energies. However, in some countries, conflicts of use arise when a large part of the land is already dedicated to agriculture. Agrivoltaics is the practice of installing photovoltaic panels on cultivated land to produce renewable electricity while also protecting crops from heatwaves and drought, and thus it addresses both these issues. This practice could be particularly useful for tomato greenhouses, where shading is already used to protect the plants and where a structure capable of supporting the panels is already in place. The use of mobile panels (dynamic agrivoltaics) makes it possible to adjust shading to the needs of the plant. However, this practice causes temporary shading, the effect of which on crops is not yet fully understood, making it difficult to optimise their stirring policy and maximise crop yields and quality. This thesis examines the impact of shading on the vegetative growth, physiology, yield, andquality of tomato plant. It studies the effects of shading applied at different spatial and temporal scales, ranging from the organ to the plant and varying in intensity on an hourly or seasonal basis. The experiments were conducted in an agrivoltaic greenhouse in Alénya (Pyrénées-Orientales, France) in 2021 and 2022. Various shading treatments were investigated, depending on the daily pattern of plant shading (late morning, early morning, late afternoon, and afternoon) compared to a control grown in a similar greenhouse without photovoltaic panels. The experimental data were used to adapt and calibrate a tomato structure-function model (FSPM) developed in the PSH laboratory, which made it possible to analyse the effect of shading at the whole plant level
2

Iaquinta, Pier Giuseppe. "Dimensionamento preliminare di un impianto agrivoltaico connesso in media tensione." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24680/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Il seguente elaborato riguarda il dimensionamento preliminare di un impianto agrivoltaico connesso alla rete di media tensione. Saranno illustrate le varie fasi del progetto realizzativo; i punti principali riguardano: analisi dei vincoli territoriali, scelta del layout di impianto ottimale, scelta dei componenti elettrici, dimensionamento dei cavi, valutazione della producibilità energetica e studio di compatibilità ambientale. Viene proposto anche un focus su una variante di impianto con moduli i verticale.
3

Dos, Santos Charline Ninon Lolita. "Agrivoltaic system : A possible synergy between agriculture and solar energy." Thesis, KTH, Kraft- och värmeteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-272965.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The development of photovoltaic energy requires a lot of land. To maximize the land use, agrivoltaic systems that combine an agricultural and an electrical production on the same land unit are developed. A demonstrator was built in Montpellier (France) with dierent experimental arrangements to study the impact of a xed and a dynamic solutions on the crops below the panels. The eect of shade on lettuces appears to be positive with a Land Equivalent Ratio greater than 1. To extend the experiment to other crops, the crop species best adapted to the agrivoltaic system are identied. The shade tolerance and vulnerability to climate change are key parameters to select crops that will benet the most from the installation of PV panels. The SWOT analysis brings out that agrivoltaic systems can be a solution to maximize the land use and to adapt crops to climate change. The technical constraints imposed by the PV structure must be overcome to deploy this technology on a large scale. The greatest threat lies in the non-acceptability of the projects by farmers and the chambers of agriculture. An agrivoltaic project was developed in the South of France as a rst testing area but was nally abandoned because of too important reciprocal constraints for the farmer and the operator.
Utvecklingen av fotovoltaisk energi kräver mycket mark. För att maximera markanvändningen utvecklas agrivoltaiska system som kombinerar en jordbruksproduktion och en elektrisk produktion på samma markenhet. En demonstrant byggdes i Montpellier (Frankrike) med olika experimentella arrangemang för att studera effekterna av en fast och en dynamisk lösning på grödorna under panelerna. Effekten av skugga på sallader verkar vara positiv med en LER som är större än 1. För att utvidga experimentet till andra grödor identiferas de grödor som bäst anpassas till det agrivoltaiska systemet. Skuggtoleransen och sårbarheten för klimatförändringar är viktiga parametrar för att välja grödor som kommer att dra mest nytta av installationen av PV-paneler. SWOT-analysen visar att agrivoltaiska system kan vara en lösning för att maximera markanvändningen och anpassa grödorna till klimatförändringar.  De tekniska begränsningarna som PV-strukturen sätter måste övervinnas för att kunna använda denna teknik i stor skala. Det största hotet ligger i att projekten inte godtas av jordbrukare och jordbrukskamrar. Ett agrivoltaiskt projekt utvecklades i södra Frankrike som ett första testområde men övergavs slutligen på grund av för viktiga ömsesidiga begränsningar för bonden och operatören.
4

Choi, Chong Seok Seok. "COMBINED LAND USE OF SOLAR INFRASTRUCTURE AND AGRICULTURE FOR SOCIOECONOMIC AND ENVIRONMENTAL CO-BENEFITS IN THE TROPICS." Master's thesis, Temple University Libraries, 2019. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/546811.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Geology
M.S.
Solar photovoltaic (PV) generation has been gaining popularity as low carbon energy technology in the face of the global climate change. However, conventional utility-scale PV requires large swaths of land to be occupied for decades which prevents the land from producing food or performing vital ecosystem services. Co-location of PV with crop cultivation is an emerging strategy for mitigating the land use of PV. In order to optimize this strategy, the impact of the plant growth-related soil properties need to be quantified. To this end, the first portion of the thesis investigated the impacts on the soil properties in a re-vegetated solar PV facility in Boulder, Colorado, which was the oldest vegetation-PV co-location site in the world. The second portion of the thesis uses a life cycle analysis (LCA) approach to test the feasibility of co-location of model crop cultivation and solar PV electricity generation in rural Indonesia, and it is the first study to use the LCA study of the co-located solar in the tropics. The first approach revealed that the soil hydrology, grain size distribution, and total carbon and nitrogen are significantly altered from their original state by the construction and presence of photovoltaic arrays, and that those properties had not been restored to their pre-construction levels despite the fact that ten years had passed since re-vegetation of the PV array. The persistence of the altered soil properties meant that the designs regarding re-vegetation or co-location of PV with crops would have to be considered at the beginning of the construction of the PV to minimize the impact on the soil and the existing vegetation. Furthermore, soil moisture was the highest in the soil underneath the western edge of the PV panels, where the western tilt of the PV panel had concentrated the rainfall. The heterogeneity in soil hydrology created by the panels could be manipulated to benefit the growth of vegetation within the PV array. The LCA approach revealed that a hectare of PV arrays with full module density would carbon offsets against diesel electricity generation and the grid, and that the annual supply of electricity from the PV could satisfy the demand of a typical rural Indonesian village several times over. However, the high capital expenditure of solar mean that co-location with full PV module density would not be economically feasible, even with the income stream from the co-located crop cultivation. In order to reduce the capital expenditure, the PV module density for co-location was reduced to half. The combination of reduced capital expenditure and the income stream from the crop made the co-located land use significantly less costly. Additionally, the rural electrification would be able to provide secondary socioeconomic benefits such as avoidance of health costs through operation of public health infrastructures, increased standard of living, and secondary income opportunities from processing of raw materials. However, better subsidies for renewables, specialized loan structures for small-scale renewable systems, and a culture of co-operation between small landholders would need to be implemented before the co-located system becomes affordable to the inhabitants in rural Indonesian villages.
Temple University--Theses
5

Valle, Benoît. "Modélisation et optimisation de la croissance de la laitue dans un système agrivoltaïque dynamique." Thesis, Montpellier, SupAgro, 2017. http://www.theses.fr/2017NSAM0017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’agrivoltaïque, combinaison de panneaux photovoltaïques et d’une culture sur le même sol, a été proposé en 1982 comme solution au conflit d’usage des sols. Lancé en 2010 à Montpellier, le concept associant panneaux fixes et diverses cultures a fait la preuve d’une productivité combinée de la parcelle améliorée grâce, notamment, à l’acclimatation de la culture à l’ombre. Dans cette thèse, les panneaux fixes ont été échangés par des panneaux orientables au cours de la journée. L’objectif était d’optimiser l’orientation des panneaux pour maximiser la productivité combinée de la parcelle sans pénaliser la culture. Pour cela, la croissance et le développement de laitues ont été analysés en conditions contrôlées et en plein champ sous différentes modalités d’ombrage par panneaux fixes ou mobiles. Les panneaux mobiles ont permis d’améliorer la productivité combinée de la parcelle par rapport à des panneaux fixes, avec un maintien de la production agricole dans certaines conditions. Une approche écophysiologique basée sur le développement de la plante, sa capacité à intercepter et convertir le rayonnement en biomasse, a révélé que les modalités d’ombrage avaient peu d’impact sur la mise en place de la surface foliaire malgré des différences de biomasse accumulée en rapport avec le rayonnement transmis à la plante. Des modifications du développement foliaire ont conduit à une meilleure utilisation du rayonnement transmis lorsque celui-ci était réduit. Ce travail a débouché sur une modélisation de l’impact de l’orientation des panneaux sur la biomasse des laitues permettant d’optimiser le pilotage des panneaux en fonction du scénario climatique et des objectifs de productions
Agrivoltaic systems, combining solar panels and crops on the same land were proposed in the early 1980’s as a solution to solve land use conflict. Introduced in 2010 in Montpellier, the concept has proven itself associating fixed panels to multiple food crops. Total land productivity was improved, thanks to plant acclimation to shade. In this thesis, fixed panels were replaced with mobile panels, adjustable along the day. The aim of this work was to optimize solar panel orientations to maximise total land productivity without threatening the crop culture. Growth and development of lettuces were analysed in controlled conditions and in the field under several shading conditions by fixed or mobile panels. Total land productivity was improved with mobile panels in comparison with fixed panels, maintaining lettuce yield under certain conditions. Through an ecophysiological approach based on plant development and its ability to intercept and convert light into biomass, the different shading conditions were shown to have a small impact in the plant leaf area dynamic despite large differences in accumulated dry mass associated with transmitted radiation at the plant level. This was due to differences in leaf development resulted in higher use of the transmitted radiation when it was reduced. This study proposed a modelling approach of the incidence of panel orientations on lettuce dry mass at harvest. The model allows an optimisation of solar panels controlling as a function of climate scenario and crop and electricity production objectives
6

Elamri, Yassin. "Bilan hydrique et développement de culture sous panneaux photovoltaïques dynamiques : de la modélisation à l’évaluation de solutions agrivoltaïques." Thesis, Montpellier, SupAgro, 2017. http://www.theses.fr/2017NSAM0049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’agrivoltaïque, association sur une même surface d’une production agricole et d’une production d’énergie d’origine photovoltaïque, apparait aujourd’hui comme une solution innovante pour atténuer les effets du changement climatique, notamment sur le secteur agricole. Déjà imaginé en 1982, les premières expérimentations débutées à Montpellier (France) en 2010 ont montré la pertinence de cette association à travers un maintien des rendements sous certaines conditions, une meilleure efficience d’utilisation du sol ainsi qu’une diminution de la consommation en eau des cultures sous ombrage. Suite à ces travaux pionniers réalisés sous des panneaux photovoltaïques à inclinaison fixe, l’utilisation de panneaux dynamiques à inclinaison variable est apparue nécessaire pour réduire l’hétérogénéité du rayonnement disponible pour la culture mais aussi, adapter la stratégie d’ombrage aux besoins radiatifs de la culture au cours de son développement.La présente thèse avait pour objectif de caractériser et de modéliser l’impact de la présence de panneaux solaires sur le bilan hydrique d’une culture conduite sous dispositif agrivoltaïque dynamique en vue d’optimiser la stratégie d’irrigation et le pilotage de l’inclinaison des panneaux. Les expérimentations menées sur une culture de laitues ont mis en évidence l’intérêt de panneaux dynamiques afin de réduire les hétérogénéités radiatives. Le développement d’un modèle de redistribution des pluies par les panneaux photovoltaïques a permis la mise en œuvre d’une stratégie de pilotage de l’inclinaison en temps réel a permis d’homogénéiser les cumuls observés au sol. L’adaptation d’un modèle de bilan hydrique et de développement de culture par l’ajout d’un module décrivant la dynamique stomatique sous ombrage fluctuant a permis de décrire la consommation en eau de la culture et son développement sous différentes stratégies de pilotage de l’ombrage. Enfin, différentes stratégies de pilotage de l’inclinaison des panneaux photovoltaïque ont pu être simulées et évaluées à l’aide d’un indicateur globale intégrant l’efficience d’utilisation du sol, la productivité de l’eau, le décalage de maturité et les sources d’hétérogénéités pouvant affecter la production de laitues
Agrivoltaism, defined as the association on the same land of agricultural and photovoltaic energy production, appears as an innovating concept to dampen some of the effects of climate change, in the agricultural sector. Although the concept was already imagined in 1982, the first experimentations started in 2010 at Montpellier (France) and showed the relevance of this combination by the maintenance of crop yield under certain conditions, the increase of land use efficiency and a reduction of water consumption for the tested crops. Following this pioneering work done under fixed (but not horizontal) photovoltaic panels, the use of "dynamic" panels, i.e. panels with a variable tilting angle, appears necessary to reduce the spatial heterogeneity of the transmitted radiation but also to adapt the shading strategy to the radiation amount required for crop growth.This thesis aims to characterize and to model the impact of the photovoltaic panels on the water budget of the cultivated plot and to progress towards the optimization of irrigation strategies in such systems controlled by the variations in time of the tilting angle of the panels. Experimentations conduced on lettuces showed the benefits of "dynamic" photovoltaic panels to reduce the radiative heterogeneity. Accounting for rain redistribution by the solar panels permits the implementation of a real time strategy to reduce rainfall heterogeneity on the ground surface. The derivation of a water budget and crop development model which describes the dynamics of stomatal conductance under fluctuating shading allows a better simulation of water consumption and crop development for different shading strategies. Finally, various strategies for the piloting of the solar panels could be tested and evaluated by a new, global index combining land use efficiency, water productivity, maturity delays and heterogeneities (in rain and radiation) which can impact production
7

(7486406), Allison Perna. "Modeling Irradiance Distributions in Agrivoltaic Systems." Thesis, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

Land use constraints have motivated investigation into the spatial coexistence of solar photovoltaic electricity production and agricultural production. Previous work suggests that agriculture-photovoltaic (agrivoltaic) systems either decrease crop yield or are limited to shade-tolerant crops. Existing experimental work has also emphasized fixed south-facing configurations with traditional commercial panel shapes, and modeling work is sparse. In this work, the effects of different photovoltaic array configurations and panel designs on field insolation spatial and temporal variation are explored in detail to determine photovoltaic design routes that may increase expected crop yield in agrivoltaic systems. It is found that photovoltaic row orientation is the most influential factor on insolation homogeneity due to shadow migration paths. Additionally, it is shown that utilization of mini-modules in patterned panel designs may create more optimal conditions for plant growth while using the same area of PV, thus improving the land efficiency ratio of the agrivoltaic system. Different solar tracking algorithms are explored to optimize the trade-off between electricity production and expected crop growth. The feasibility of select agrivoltaic systems is explored for multiple U.S. locations. This thesis concludes with recommendations for photovoltaic system designs corresponding with specific crop growth considerations.

8

Oleskewicz, Kristen. "The Effect of Gap Spacing Between Solar Panel Clusters on Crop Biomass Yields, Nutrients, and the Microenvironment in a Dual-Use Agrivoltaic System." 2020. https://scholarworks.umass.edu/masters_theses_2/885.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Agrivoltaic (AV) systems are dual-use land systems that consist of elevated solar panels with crops grown underneath. They offer a solution to the increasing demand for food production and clean renewable energy. The main concern regarding AV systems is the reduced availability of light to crops below the panels. Research to date shows that AV systems are quite productive with total energy and crop production exceeding the outputs of either solar farms or crop production alone. Research also shows that solar panels affect the microenvironment below the panels. The research on AV systems so far considers altering panel density to increase radiation to the crops by varying the distance between rows of panels in an AV solar array. This study examines the crop outputs for Swiss chard, kale, pepper, and broccoli in an AV system with different gap spacings of 2, 3, 4, or 5 feet (AV plots) between panel clusters within rows to determine how much spacing between solar panels is optimal for crop production by comparing these system yields to full sun crop production. This study also examines the effect of the AV system on crop nutrient levels, on soil water content, and crop leaf temperature below the panels. Ultimately, the biomass crop yields of AV plots are restricted significantly for Swiss chard, kale, or pepper compared against the full sun control plot yields but not for broccoli stem + leaf yields. The 4-ft or 5-ft gap distances between panels yield the highest crop biomass of the AV shaded plots. Nutrient levels tend to increase with more shade but the trend is only significant for Swiss chard nitrogen and phosphorus concentrations, pepper potassium concentrations, and broccoli phosphorus concentrations. For soil water content it is found that panels have some effect on evapotranspiration and rainfall redistribution at the soil level. Leaf temperatures in the AV plots are lower than leaf temperatures in the control plots on sunny days but not on cloudy days.

Книги з теми "Agrivoltaism":

1

Chalkias, Dimitris A., and Elias Stathatos. The Emergence of Agrivoltaics. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48861-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cases, Lucie, Mailys Le Moigne, Claude Grison, and Martine Hossaert-McKey. Photovoltaism, Agriculture and Ecology: From Agrivoltaism to Ecovoltaism. Wiley & Sons, Incorporated, John, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cases, Lucie, Mailys Le Moigne, Claude Grison, and Martine Hossaert-McKey. Photovoltaism, Agriculture and Ecology: From Agrivoltaism to Ecovoltaism. Wiley & Sons, Incorporated, John, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cases, Lucie, Mailys Le Moigne, Claude Grison, and Martine Hossaert-McKey. Photovoltaism, Agriculture and Ecology: From Agrivoltaism to Ecovoltaism. Wiley & Sons, Incorporated, John, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cases, Lucie, Mailys Le Moigne, Claude Grison, and Martine Hossaert-McKey. Photovoltaism, Agriculture and Ecology: From Agrivoltaism to Ecovoltaism. Wiley & Sons, Incorporated, John, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Agrivoltaism":

1

Chalkias, Dimitris A., and Elias Stathatos. "The Water-Energy-Food-Ecosystems (WEFE) Nexus." In The Emergence of Agrivoltaics, 1–8. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48861-0_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chalkias, Dimitris A., and Elias Stathatos. "Energy and Agriculture." In The Emergence of Agrivoltaics, 9–37. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48861-0_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chalkias, Dimitris A., and Elias Stathatos. "Designing the Future of Agrivoltaics." In The Emergence of Agrivoltaics, 131–51. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48861-0_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chalkias, Dimitris A., and Elias Stathatos. "An Overview of Solar Cell Technologies Toward the Next-Generation Agrivoltaics." In The Emergence of Agrivoltaics, 69–129. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48861-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chalkias, Dimitris A., and Elias Stathatos. "Solar Photovoltaic Energy in Agriculture." In The Emergence of Agrivoltaics, 39–68. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48861-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Faizi, Mohd Adil, Abhishek Verma, and V. K. Jain. "Design and Optimization of an Agrivoltaics System." In Springer Proceedings in Energy, 31–36. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9280-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chowdhury, Kunal, and Ratan Mandal. "Agrivoltaic: A New Approach of Sustainable Development." In Lecture Notes in Civil Engineering, 513–22. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6412-7_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hendrawan, Danang, Iwan Setiawan, and Susatyo Handoko. "Central Java Natural Condition for Agrivoltaic System Development." In Proceedings of the 4th International Seminar on Science and Technology (ISST 2022), 155–63. Dordrecht: Atlantis Press International BV, 2023. http://dx.doi.org/10.2991/978-94-6463-228-6_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bim, Jiri, and Michaela Valentová. "Agrivoltaics System as an Integral Part of Modern Farming." In Environmental Science and Engineering, 547–57. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43559-1_52.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bim, Jiri. "Agrivoltaic System Development Barriers from European Legislative Framework Perspective." In Sustainable Development with Renewable Energy, 3–16. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54394-4_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Agrivoltaism":

1

Vollprecht, Jens, Max Trommsdorff, and Charis Hermann. "Legal framework of agrivoltaics in Germany." In AGRIVOLTAICS2020 CONFERENCE: Launching Agrivoltaics World-wide. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0055133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vollprecht, Jens, Max Trommsdorff, and Nurelia Kather. "Legal framework of agrivoltaics in Germany." In AGRIVOLTAICS2021 CONFERENCE: Connecting Agrivoltaics Worldwide. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0103335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Xinyu, Xinguang Zhu, and Wen Liu. "Agrivoltaics help to realize BLUE plan." In AGRIVOLTAICS2021 CONFERENCE: Connecting Agrivoltaics Worldwide. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0103215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

AlYasjeen, Sajeda, Nabila Elbeheiry, Sawsan Shukri, and Robert S. Balog. "Open-Platform Sensor Node for Agrivoltaics." In 2023 IEEE Texas Power and Energy Conference (TPEC). IEEE, 2023. http://dx.doi.org/10.1109/tpec56611.2023.10078620.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tajima, Makoto, and Tetsunari Iida. "Evolution of agrivoltaic farms in Japan." In AGRIVOLTAICS2020 CONFERENCE: Launching Agrivoltaics World-wide. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0054674.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

"Preface: AgriVoltaics2020 Conference Launching Agrivoltaics World-Wide." In AGRIVOLTAICS2020 CONFERENCE: Launching Agrivoltaics World-wide. AIP Publishing, 2021. http://dx.doi.org/10.1063/12.0004866.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Randle-Boggis, Richard J., Eileen Lara, Joel Onyango, Emmanuel J. Temu, and Sue E. Hartley. "Agrivoltaics in East Africa: Opportunities and challenges." In AGRIVOLTAICS2020 CONFERENCE: Launching Agrivoltaics World-wide. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0055470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Braik, A., A. Makhalfih, K. Sopian, H. Jarimi, and A. Ibrahim. "Review of Agrivoltaics Systems Potential in Palestine." In 2021 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). IEEE, 2021. http://dx.doi.org/10.1109/jeeit53412.2021.9634128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ahmed, M. Sojib, M. Rezwan Khan, Anisul Haque, Muhammad A. Alam, and M. Ryyan Khan. "Interposed versus Juxtaposed Solar Array Configurations for Agrivoltaics." In 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC). IEEE, 2022. http://dx.doi.org/10.1109/pvsc48317.2022.9938548.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kim, Minsu, Soo-Young Oh, and Jae Hak Jung. "History and legal aspect of agrivoltaics in Korea." In AGRIVOLTAICS2021 CONFERENCE: Connecting Agrivoltaics Worldwide. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0127822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Agrivoltaism":

1

Bilich, Andy, Brittany Staie, James McCall, Alexis Pascaris, Brian Mirletz, Thomas Hickey, Sudha Kannan, Sally Williams, Kai Lepley, and Jordan Macknick. Adapting Agrivoltaics for Solar Mini-Grids in Haiti. Office of Scientific and Technical Information (OSTI), March 2024. http://dx.doi.org/10.2172/2331426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

McCall, James, Brittany Staie, William Carron, and Johanna Jamison. Initial Feasibility Assessment of Agrivoltaics in Jackson County, IL. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2335896.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dohlman, Erik N., Karen Maguire, Wilma V. Davis, Megan Husby, John Bovay, Catharine Elizabeth Weber, and Yoonjung Lee. Trends, insights, and future prospects for production in controlled environment agriculture and agrivoltaics systems. Washington, D.C.: Economic Research Service, U.S. Department of Agriculture, January 2024. http://dx.doi.org/10.32747/2024.8254671.ers.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Public and private investments in alternative food production systems have increased in recent years. Two systems, controlled environment agriculture (CEA) and agrivoltaics (AV), have been highlighted for their potential to provide socioeconomic benefits beyond food production. This study examines recent innovations in the production process for CEA and AV systems, the extent to which they have been adopted, whether these are providing output for agricultural markets, and the types of crops or other agricultural goods the systems supply. There have been growing investments in these alternative food production systems, both for commercial and research purposes. But the growth opportunities also come with economic, technical, and other challenges, which are examined in this report.
4

Jones, Christian, Michael Ropp, and Mason Martinez. COVID-19 Technical Assistance Program: Agrivoltaic for Rural Economic Development and Electric Grids Resilience. Office of Scientific and Technical Information (OSTI), May 2022. http://dx.doi.org/10.2172/1868134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Macknick, Jordan, Heidi Hartmann, Greg Barron-Gafford, Brenda Beatty, Robin Burton, Chong Seok-Choi, Matthew Davis, et al. The 5 Cs of Agrivoltaic Success Factors in the United States: Lessons from the InSPIRE Research Study. Office of Scientific and Technical Information (OSTI), August 2022. http://dx.doi.org/10.2172/1882930.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії