Дисертації з теми "Adaptive mesh method"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Adaptive mesh method".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Antepara, Zambrano Oscar Luis. "Adaptive mesh refinement method for CFD applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/664931.
Повний текст джерелаEl objetivo principal de esta tesis es el desarrollo de un algoritmo adaptativo de refinamiento de malla (AMR) para simulaciones de dinámica de fluidos computacional utilizando mallas hexaédricas y tetraédricas. Esta metodología numérica se aplica en el contexto de simulaciones Large-eddie (LES) de flujos turbulentos y simulaciones numéricas directas (DNS) de flujos interfaciales, para traer nuevas investigaciones numéricas y entendimiento físicas. Para las simulaciones de dinámica de fluidos, se presentan las ecuaciones governantes, la discretización espacial en mallas no estructuradas y los esquemas numéricos para resolver las ecuaciones de Navier-Stokes. Las ecuaciones siguen una discretización conservativa por volumenes finitos en mallas colocadas. Para la formulación de flujos turbulentos, la discretización espacial preserva las propiedades de simetría de los operadores diferenciales continuos y la integración de tiempo sigue una estrategia autoadaptativa, que ha sido bien probada en mallas no estructuradas. Además, para las aplicaciones que se muestran en esta tesis, se utiliza el modelo LES que consiste en una viscosidad local que se adapta a la pared dentro de una formulación multiescala variable. Para la formulación de flujo de dos fases, se aplica un método de conjunto de niveles conservador para capturar la interfaz entre dos fluidos y se implementa con un esquema de proyección de densidad variable para simular flujos de dos fases incompresibles en mallas no estructuradas. El algoritmo AMR desarrollado en esta tesis se basa en una estructura de datos de quad / octree y mantiene una relación de 1: 2 entre los niveles de refinamiento. En el caso de las mallas tetraédricas, se sigue un criterio geométrico para mantener la calidad de la malla en una base razonable. La estrategia de paralelización consiste principalmente en la creación de elementos de malla en cada subdominio y establece un número de identificación global único, para evitar elementos duplicados. El equilibrio de carga está asegurado en cada iteración de AMR para mantener el rendimiento paralelo del código CFD. Además, se ha desarrollado un algoritmo de multiplicación de malla (MM) para crear mallas grandes, con diferentes tipos de elementos de malla, pero preservando la topología de una malla original más pequeña. Esta tesis se centra en el estudio de flujos turbulentos y flujos de dos fases utilizando un marco AMR. Los casos estudiados para aplicaciones de LES de flujos turbulentos son el flujo alrededor de uno y dos cilindros separados de sección cuadrada, y el flujo alrededor de un modelo de automóvil simplificado. En este contexto, se desarrolla un criterio de refinamiento basado en la física, que consiste en la velocidad residual calculada a partir de una descomposición de escala múltiple de la velocidad instantánea. Este criterio garantiza la adaptación de la malla siguiendo las estructuras vorticales principales y proporcionando una resolución de malla suficiente en las zonas de interés, es decir, separación de flujo, estelas turbulentas y desprendimiento de vórtices. Los casos estudiados para los flujos de dos fases son el DNS de la burbuja impulsada por la gravedad en 2D y 3D, con un enfoque particular en el régimen de oscilación. Además, el uso de AMR tetraédrico se aplica para la simulación numérica de burbujas impulsadas por la gravedad en dominios complejos. En este tema, la metodología se valida en burbujas que ascienden en canales cilíndricos con topología diferente, donde el estudio de estos casos contribuyó a tener una nueva investigación numérica y una visión física en el desarrollo de una burbuja con efectos de pared.
Offermans, Nicolas. "Towards adaptive mesh refinement in Nek5000." Licentiate thesis, KTH, Mekanik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217501.
Повний текст джерелаQC 20171114
Morgenstern, Philipp [Verfasser]. "Mesh Refinement Strategies for the Adaptive Isogeometric Method / Philipp Morgenstern." Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1140525948/34.
Повний текст джерелаPinchuk, Amy Ruth. "Automatic adaptive finite element mesh generation and error estimation." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63269.
Повний текст джерелаPrinja, Gaurav Kant. "Adaptive solvers for elliptic and parabolic partial differential equations." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/adaptive-solvers-for-elliptic-and-parabolic-partial-differential-equations(f0894eb2-9e06-41ff-82fd-a7bde36c816c).html.
Повний текст джерелаSombra, Tiago GuimarÃes. "An adaptive parametric surface mesh generation parallel method guided by curvatures." Universidade Federal do CearÃ, 2016. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16628.
Повний текст джерелаThis work describes a technique for generating parametric surfaces meshes using parallel computing, with distributed memory processors. The input for the algorithm is a set of parametric patches that model the surface of a given object. A structure for spatial partitioning is proposed to decompose the domain in as many subdomains as processes in the parallel system. Each subdomain consists of a set of patches and the division of its load is guided following an estimate. This decomposition attempts to balance the amount of work in all the subdomains. The amount of work, known as load, of any mesh generator is usually given as a function of its output size, i.e., the size of the generated mesh. Therefore, a technique to estimate the size of this mesh, the total load of the domain, is needed beforehand. This work makes use of an analytical average curvature calculated for each patch, which in turn is input data to estimate this load and the decomposition is made from this analytical mean curvature. Once the domain is decomposed, each process generates the mesh on that subdomain or set of patches by a quad tree technique for inner regions, advancing front technique for border regions and is finally applied an improvement to mesh generated. This technique presented good speed-up results, keeping the quality of the mesh comparable to the quality of the serially generated mesh.
Este trabalho descreve uma tÃcnica para gerar malhas de superfÃcies paramÃtricas utilizando computaÃÃo paralela, com processadores de memÃria compartilhada. A entrada para o algoritmo à um conjunto de patches paramÃtricos que modela a superfÃcie de um determinado objeto. Uma estrutura de partiÃÃo espacial à proposta para decompor o domÃnio em tantos subdomÃnios quantos forem os processos no sistema paralelo. Cada subdomÃnio à formado por um conjunto de patches e a divisÃo de sua carga à guiada seguindo uma estimativa de carga. Esta decomposiÃÃo tenta equilibrar a quantidade de trabalho em todos os subdomÃnios. A quantidade de trabalho, conhecida como carga, de qualquer gerador de malha à geralmente dada em funÃÃo do tamanho da saÃda do algoritmo, ou seja, do tamanho da malha gerada. Assim, faz-se necessÃria uma tÃcnica para estimar previamente o tamanho dessa malha, que à a carga total do domÃnio. Este trabalho utiliza-se de um cÃlculo de curvatura analÃtica mÃdia para cada patch, que por sua vez, à dado de entrada para estimar esta carga e a decomposiÃÃo à feita a partir dessa curvatura analÃtica mÃdia. Uma vez decomposto o domÃnio, cada processo gera a malha em seu subdomÃnio ou conjunto de patches pela tÃcnica de quadtree para regiÃes internas, avanÃo de fronteira para regiÃes de fronteira e por fim à aplicado um melhoramento na malha gerada. Esta tÃcnica apresentou bons resultados de speed-up, mantendo a qualidade da malha comparÃvel à qualidade da malha gerada de forma sequencial.
Ferreira, Vitor Maciel Vilela. "A hybrid les / lagrangian fdf method on adaptive, block-structured mesh." Universidade Federal de Uberlândia, 2015. https://repositorio.ufu.br/handle/123456789/14982.
Повний текст джерелаEsta dissertação é parte de um amplo projeto de pesquisa, que visa ao desenvolvimento de uma plataforma computacional de dinâmica dos fluidos (CFD) capaz de simular a física de escoamentos que envolvem mistura de várias espécies químicas, com reação e combustão, utilizando um método hibrido Simulação de Grandes Escalas (LES) / Função Densidade Filtrada (FDF) Lagrangiana em malha adaptativa, bloco-estruturada. Uma vez que escoamentos com mistura proporcionam fenômenos que podem ser correlacionados com a combustão em escoamentos turbulentos, uma visão global da fenomenologia de mistura foi apresentada e escoamentos fechados, laminar e turbulento, que envolvem mistura de duas espécies químicas inicialmente segregadas foram simulados utilizando o código de desenvolvimento interno AMR3D e o código recentemente desenvolvido FDF Lagrangiana de composição. A primeira etapa deste trabalho consistiu na criação de um modelo computacional de partículas estocásticas em ambiente de processamento distribuído. Isto foi alcançado com a construção de um mapa Lagrangiano paralelo, que pode gerenciar diferentes tipos de elementos lagrangianos, incluindo partículas estocásticas, particulados, sensores e nós computacionais intrínsecos dos métodos Fronteira Imersa e Acompanhamento de Interface. O mapa conecta informações Lagrangianas com a plataforma Euleriana do código AMR3D, no qual equações de trans- porte são resolvidas. O método FDF Lagrangiana de composição realiza cálculos algébricos sobre partículas estocásticas e provê campos de composição estatisticamente equivalentes aos obtidos quando se utiliza o método de Diferenças Finitas para solução de equações diferenciais parciais; a técnica de Monte Carlo foi utilizada para resolver um sistema derivado de equações diferenciais estocásticas (SDE). Os resultados concordaram com os benchmarks, que são simulações baseadas em plataforma de Diferenças Finitas para solução de uma equação de transporte de composição filtrada.
This master thesis is part of a wide research project, which aims at developing a com- putational fluid dynamics (CFD) framework able to simulate the physics of multiple-species mixing flows, with chemical reaction and combustion, using a hybrid Large Eddy Simulation (LES) / Lagrangian Filtered Density Function (FDF) method on adaptive, block-structured mesh. Since mixing flows provide phenomena that may be correlated with combustion in turbulent flows, we expose an overview of mixing phenomenology and simulated enclosed, ini- tially segregated two-species mixing flows, at laminar and turbulent states, using the in-house built AMR3D and the developed Lagrangian composition FDF codes. The first step towards this objective consisted of building a computational model of notional particles transport on distributed processing environment. We achieved it constructing a parallel Lagrangian map, which can hold different types of Lagrangian elements, including notional particles, particu- lates, sensors and computational nodes intrinsic to Immersed Boundary and Front Tracking methods. The map connects Lagrangian information with the Eulerian framework of the AMR3D code, in which transport equations are solved. The Lagrangian composition FDF method performs algebraic calculations over an ensemble of notional particles and provides composition fields statistically equivalent to those obtained by Finite Differences numerical solution of partially differential equations (PDE); we applied the Monte Carlo technique to solve a derived system of stochastic differential equations (SDE). The results agreed with the benchmarks, which are simulations based on Finite Differences framework to solve a filtered composition transport equation.
Mestre em Engenharia Mecânica
Maddison, James R. "Adaptive mesh modelling of the thermally driven annulus." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:4b95031b-4517-4aaf-9bb2-4d6d4a145499.
Повний текст джерелаMcDill, Jennifer Moyra Jeane Carleton University Dissertation Engineering Mechanical. "An adaptive mesh-management algorithm for three-dimensional finite element analysis." Ottawa, 1988.
Знайти повний текст джерелаKunert, Gerd. "Anisotropic mesh construction and error estimation in the finite element method." Universitätsbibliothek Chemnitz, 2000. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000033.
Повний текст джерелаKarlsson, Christian. "A comparison of two multilevel Schur preconditioners for adaptive FEM." Thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-219939.
Повний текст джерелаShanazari, Kamal. "Application of adaptive mesh and domain composition techniques to a generalized boundary element method." Thesis, University of Liverpool, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288232.
Повний текст джерелаGagnon, Michael Anthony. "An adaptive mixed finite element method using the Lagrange multiplier technique." Worcester, Mass. : Worcester Polytechnic Institute, 2009. http://www.wpi.edu/Pubs/ETD/Available/etd-050409-115850/.
Повний текст джерелаKeywords: a posteriori error estimate; adaptive; mesh refinement; lagrange multiplier; finite element method. Includes bibliographical references (leaf 26).
Alizada, Alaskar [Verfasser]. "The eXtended Finite Element Method (XFEM) with Adaptive Mesh Refinement for Fracture Mechanics / Alaskar Alizada." Aachen : Shaker, 2012. http://d-nb.info/1052408818/34.
Повний текст джерелаCarette, Jean-Christophe. "Adaptive unstructured mesh algorithms and SUPG finite element method for compressible high reynolds number flows." Doctoral thesis, Universite Libre de Bruxelles, 1997. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212161.
Повний текст джерелаAlexe, Mihai. "Adjoint-based space-time adaptive solution algorithms for sensitivity analysis and inverse problems." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/37515.
Повний текст джерелаPh. D.
Akargun, Yigit Hayri. "Least-squares Finite Element Solution Of Euler Equations With Adaptive Mesh Refinement." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614138/index.pdf.
Повний текст джерелаWilliams, Todd Andrew. "Development and Evaluation of Dimensionally Adaptive Techniques for Improving Computational Efficiency of Radiative Heat Transfer Calculations in Cylindrical Combustors." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/9038.
Повний текст джерелаBhutani, Gaurav. "Numerical modelling of polydispersed flows using an adaptive-mesh finite element method with application to froth flotation." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/39046.
Повний текст джерелаMorrelll, J. M. "A cell by cell anisotropic adaptive mesh Arbitrary Lagrangian Eulerian method for the numerical solution of the Euler equations." Thesis, University of Reading, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440088.
Повний текст джерелаYucel, Hamdullah. "Adaptive Discontinuous Galerkin Methods For Convectiondominated Optimal Control Problems." Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614523/index.pdf.
Повний текст джерелаYang, Fangtao. "Simulation of continuous damage and fracture in metal-forming processes with 3D mesh adaptive methodology." Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2385/document.
Повний текст джерелаThis work is part of the research carried out in the framework of a collaboration between the Roberval laboratory of the Compiègne University of Technology and the team within the framework of the project ANR-14-CE07-0035 LASMIS of the Charles Delaunay Institute of Technology University of Troyes. In this work, we present a three-dimensional adaptive Pi-methodology of finite elements to represent the initiation and propagation of cracks in ductile materials. An elastoplastic model coupled with the isotropic damage proposed by the LASMIS / UTT team is used. The targeted applications will mainly concern the metal forming. In this context, an updated Lagrangian formulation is used and frequent remeshing is essential in order to avoid the strong distortion of elements due to large plastic deformations and to follow the modifications of the topology resulting in the creation of cracks. The size of the new mesh must allow at a lower cost to accurately represent the evolution of the gradients of the physical quantities representative of the studied phenomena (plasticity, damage ...). We propose empirical indicators of size of elements based on the plastic deformation as well as on the damage. A piecewise defined curve represents the evolution of the element size according to the severity of the plasticity and, if appropriate, the damage. The cracks are represented by a method of destruction of elements which allows an easy description of the geometry and a simplified treatment of the cracking without any need for additional criteria. On the other hand, to allow a realistic description of the cracks, the latter must be represented by erosion smaller elements. An ABAQUS / Explicit@ solver is used with quadratic tetrahedral elements (C3DIOM), avoiding in particular the problems of numerical locking occurring during the analysis of structures in compressible or quasi-incompressible material. The control of the smaller mesh size is important in an explicit context. In addition, for softening phenomena, the solution depends on the mesh size considered as an intrinsic parameter. A study has shown that when the mesh is sufficiently refined, the effects of mesh dependence are reduced. In the literature, the costs of frequent meshing or remeshing are often considered prohibitive and many authors rely on this argument to introduce, with success, alternative methods that limit the cost of remeshing operations without eliminating them ( XFEM for example). Our work shows that the cost of local remeshing is negligible compared to the calculation. Given the complexity of the geometry and the need to refine the mesh, the only alternative to date is to use a mesh in tetrahedra. The strategy of local remeshing tetrahedron is based on a bisection method followed if necessary by a local optimization of the grid proposed by A. Rassineux in 2003. The remeshing, even local, must be accompanied by field transfer procedures on both nodal variables and integration points. Node variables are, as most authors do, transferred using finite element shape functions. The 3D field transfer at Gauss points and the many underlying problems have been relatively untouched in the literature. The main difficulties to be solved in order to ensure the "quality" of the transfer concern the limitation of numerical diffusion, the lack of information near borders, the respect of boundary conditions, the equilibrium, the calculation costs, the filtering of the information points, crucial problems in 3D where the number of Gauss points used is several hundred. We propose a so-called "hybrid" method which consists, initially, in extrapolating the data at the Gauss points, in the nodes by diffuse interpolation and then in using the finite element form functions to obtain the value at the point considered
Gokhale, Nandan Bhushan. "A dimensionally split Cartesian cut cell method for Computational Fluid Dynamics." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289732.
Повний текст джерелаAcikgoz, Nazmiye. "Adaptive and Dynamic Meshing Methods for Numerical Simulations." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14521.
Повний текст джерелаGünnel, Andreas. "Adaptive Netzverfeinerung in der Formoptimierung mit der Methode der Diskreten Adjungierten." Master's thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201000390.
Повний текст джерелаShape optimization describes the determination of the geometric shape of a domain with a partial differential equation (PDE) with the purpose that a specific given performance function is minimized, its values depending on the solution of the PDE. The Discrete Adjoint Method can be used to evaluate the gradient of a performance function with respect to an arbitrary number of shape parameters by solving an adjoint equation of the discretized PDE. This gradient is used in the numerical optimization algorithm to search for the optimal solution. As both function value and gradient are computed for the discretized PDE, they both fundamentally depend on the discretization. In using the coarse meshes, discontinuities in the discretized objective function can be expected if the changes in the shape parameters cause discontinuous changes in the mesh (e.g. change in the number of nodes, switching of connectivity). Due to the convergence of the discretization these discontinuities vanish with increasing fineness of the mesh. In the course of shape optimization, function value and gradient require evaluation for a large number of iterations of the solution, therefore minimizing the costs of a single computation is desirable (e.g. using moderately or adaptively refined meshes). Overall, the task of the diploma thesis is to investigate if adaptively refined meshes with established methods offer sufficient accuracy of the objective value and gradient, and if the optimization strategy requires readjustment to the adaptive mesh design. For the investigation, applicable model problems from the science of the strength of materials will be chosen and studied
Bringmann, Philipp. "Adaptive least-squares finite element method with optimal convergence rates." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22350.
Повний текст джерелаThe least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution. This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.
Akdag, Osman. "Incompressible Flow Simulations Using Least Squares Spectral Element Method On Adaptively Refined Triangular Grids." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614944/index.pdf.
Повний текст джерелаHellwig, Friederike. "Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20034.
Повний текст джерелаThe thesis "Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods" proves optimal convergence rates for four lowest-order discontinuous Petrov-Galerkin methods for the Poisson model problem for a sufficiently small initial mesh-size in two different ways by equivalences to two other non-standard classes of finite element methods, the reduced mixed and the weighted Least-Squares method. The first is a mixed system of equations with first-order conforming Courant and nonconforming Crouzeix-Raviart functions. The second is a generalized Least-Squares formulation with a midpoint quadrature rule and weight functions. The thesis generalizes a result on the primal discontinuous Petrov-Galerkin method from [Carstensen, Bringmann, Hellwig, Wriggers 2018] and characterizes all four discontinuous Petrov-Galerkin methods simultaneously as particular instances of these methods. It establishes alternative reliable and efficient error estimators for both methods. A main accomplishment of this thesis is the proof of optimal convergence rates of the adaptive schemes in the axiomatic framework [Carstensen, Feischl, Page, Praetorius 2014]. The optimal convergence rates of the four discontinuous Petrov-Galerkin methods then follow as special cases from this rate-optimality. Numerical experiments verify the optimal convergence rates of both types of methods for different choices of parameters. Moreover, they complement the theory by a thorough comparison of both methods among each other and with their equivalent discontinuous Petrov-Galerkin schemes.
Claudino, Marco Alexandre. "O uso do estimador residual no refinamento adaptativo de malhas em elementos finitos." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-25052015-230057/.
Повний текст джерелаIn obtaining numerical approximations for solutions to Elliptic Partial Differential Equations using the Finite Element Method (FEM) one sees that some problems have higher values for the error only in certain domain regions such as, for example, regions where the solution of the continous problem is singular. A possible alternative to reduce the error in these regions is to increase the number of elements in the partions where the error was considered large. The main issue is how to identify these regions, since the solution of the continuous problem is unknown. In this work we present the so-called residual estimate, which provides an error estimation approach which uses only the known values on the contours and the obtained approximation on a given discretization. We will discuss the relationship between the residual estimate and the error, and how to use the estimate for adaptively refining the mesh. Solutions for the Poisson equation and the Linear elasticity system of equations, and the residual estimates for the analysis of mesh refinement will be computed using the FreeFem++ software.
Quinto, Michele Arcangelo. "Méthode de reconstruction adaptive en tomographie par rayons X : optimisation sur architectures parallèles de type GPU." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENT109/document.
Повний текст джерелаTomography reconstruction from projections data is an inverse problem widely used inthe medical imaging field. With sufficiently large number of projections over the requiredangle, the FBP (filtered backprojection) algorithms allow fast and accurate reconstructions.However in the cases of limited views (lose dose imaging) and/or limited angle (specificconstrains of the setup), the data available for inversion are not complete, the problembecomes more ill-conditioned, and the results show significant artifacts. In these situations,an alternative approach of reconstruction, based on a discrete model of the problem,consists in using an iterative algorithm or a statistical modelisation of the problem to computean estimate of the unknown object. These methods are classicaly based on a volumediscretization into a set of voxels and provide 3D maps of densities. Computation time andmemory storage are their main disadvantages. Moreover, whatever the application, thevolumes are segmented for a quantitative analysis. Numerous methods of segmentationwith different interpretations of the contours and various minimized energy functionalare offered, and the results can depend on their use.This thesis presents a novel approach of tomographic reconstruction simultaneouslyto segmentation of the different materials of the object. The process of reconstruction isno more based on a regular grid of pixels (resp. voxel) but on a mesh composed of nonregular triangles (resp. tetraedra) adapted to the shape of the studied object. After aninitialization step, the method runs into three main steps: reconstruction, segmentationand adaptation of the mesh, that iteratively alternate until convergence. Iterative algorithmsof reconstruction used in a conventionnal way have been adapted and optimizedto be performed on irregular grids of triangular or tetraedric elements. For segmentation,two methods, one based on a parametric approach (snake) and the other on a geometricapproach (level set) have been implemented to consider mono and multi materials objects.The adaptation of the mesh to the content of the estimated image is based on the previoussegmented contours that makes the mesh progressively coarse from the edges to thelimits of the domain of reconstruction. At the end of the process, the result is a classicaltomographic image in gray levels, but whose representation by an adaptive mesh toits content provide a correspoonding segmentation. The results show that the methodprovides reliable reconstruction and leads to drastically decrease the memory storage. Inthis context, the operators of projection have been implemented on parallel archituecturecalled GPU. A first 2D version shows the feasability of the full process, and an optimizedversion of the 3D operators provides more efficent compoutations
Grosman, Sergey. "Adaptivity in anisotropic finite element calculations." Doctoral thesis, Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600815.
Повний текст джерелаMadugula, Sashi Kiran. "Development of a Numerical Tool to Optimise the Infill Structure of Part Produced by Fused Deposition Modeling." Thesis, Troyes, 2022. http://www.theses.fr/2022TROY0002.
Повний текст джерелаThe objective of this thesis is to develop a numerical tool to optimise the internal structure of 3D printed parts produced by the Fused Deposition Modelling (FDM) process. In 3D printing, the term infill refers to the internal structure of the part. To create the infill design, slicing software is used, which generally creates the infill uniformly throughout the part. When such a part is subjected to external loading, not all the infill regions will experience the same amount of stress. Therefore, using uniform infill throughout the part is not the most optimised solution in terms of material usage. We aim to develop a numerical tool to evolve the infill design with respect to the mechanical stresses generated by the external loads. To achieve this, we propose two different methodologies based on an iterative process using refinement technique and remeshing techniques coupled to Finite Element simulation (FE simulation) to control the internal structure of the part without changing the contour. These methodologies aim to reinforce the infill of the part without changing the contour, in the area where the mechanical strength must be improved to strengthen the structure, but also to decrease the amount of material to reduce the printing time
Galland, Florent. "An adaptive model reduction approach for 3D fatigue crack growth in small scale yielding conditions." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00596397.
Повний текст джерелаItta, Francesca. "Biomechanical modeling of parotid glands morphing in head & neck radiation therapy treatments." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11221/.
Повний текст джерелаCook, Stephen. "Adaptive mesh methods for numerical weather prediction." Thesis, University of Bath, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.707591.
Повний текст джерелаCollins, Gordon. "Invariant adaptive domain methods." Thesis, University of Bristol, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245511.
Повний текст джерелаDabonneville, Felix. "Développement d'une méthode numérique multi-échelle et multi-approche appliquée à l'atomisation." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR018/document.
Повний текст джерелаThe purpose of this work has been to develop a multi-approach and multi-scale numerical method applied to the simulation of two-phase flows involving non miscible, incompressible and isothermal fluids, and more specifically primary atomization. This method is based on a coupled approach between a refined local mesh and a coarser global mesh. The coupling is explicit with refinement in time, i.e. each domain evolves following its own time-step. In order to account for the different scales in space and time of the atomization process, this numerical method couples two different two-phase numerical methods: an interface capturing method in the refined local domain near the injector and a sub-grid method in the coarser global domain in the dispersed spray region. The code has been developed and parallelized in the OpenFOAMR software. It is able to reduce significantly the computational cost of a large eddy simulation of a coaxial atomization, while predicting with accuracy the experimental data
Alvarez, Catalina Maria Rua. "Simulação computacional adaptativa de escoamentos bifásicos viscoelásticos." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-07082013-112937/.
Повний текст джерелаNumerical simulation of incompressible multiphase flows has continuously of advanced and is an extremely important area in Computational Fluid Dynamics (CFD) because its several applications in industry, in medicine, and in biology, just to mention a few of them. We present mathematical models and numerical methods having in sight the computational simulation of two-phase Newtonian and viscoelastic fluids (non-Newtonian fluids), in the transient and stationary flow regimes. The main ingredients required are the One-fluid Model and the Immersed Boundary Method on dynamic, adaptive meshes, in concert with Chorin-Temam Projection and the Uzawa methods. These methodologies are built from simple linear partial differential equations which, most naturally, are solved on adaptive grids employing mutilevel-multigrid methods. On certain occasions, however, for transient flows modeled by the Navier-Stokes equations (e.g. in problems where we have high density jumps), one has convergence problems within the scope of these methods. Also, in the case of stationary flows, solving the discrete Stokes equations by those methods represents no straight forward task. It turns out that zeros in the diagonal of the resulting linear systems coming from the discrete equations prevent the usual relaxation methods from being used. Those difficulties, mentioned above, motivated us to search for, to propose, and to develop alternatives to the multilevel-multigrid methodology. In the present work, we propose methods to explicitly obtain the matrices that represent the linear systems arising from the discretization of those simple linear partial differential equations which form the basis of the Projection and Uzawa methods. Possessing these matrix representations is on our advantage to perform a characterization of those linear systems in terms of their spectral, definition, and symmetry properties. Very little is known about those for adaptive mesh discretizations. We highlight also that we gain access to the use of external numerical libraries, such as PETSc, with their preconditioners and numerical methods, both in serial and parallel versions, to solve linear systems. Infrastructure for our developments was offered by the code named ``AMR2D\'\' - an in-house CFD code, nurtured through the years by IME-USP and FEMEC-UFU CFD research groups. We were able to extend that code by adding a viscoelastic and a stationary Stokes solver modules, and improving remarkably the patchwise-based algorithm for computing ghost values. Those improvements proved to be essential to allow for the implementation of a patchwise Bi-Conjugate Gradient Method which ``powers\'\' Uzawa Method.
Wang, Peng. "New methods and astrophysical applications of adaptive mesh fluid simulations /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Повний текст джерелаNós, Rudimar Luiz. "\"Simulações de escoamentos tridimensionais bifásicos empregando métodos adaptativos e modelos de campo fase\"." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/45/45132/tde-08052007-143200/.
Повний текст джерелаThis is the first work that introduces 3D fully adaptive simulations for a phase field model of an incompressible fluid with matched densities and variable viscosity, known as Model H. Solving numerically the equations of this model in meshes locally refined with AMR technique, we simulate computationally tridimensional two-phase flows. Phase field models offer a systematic physical approach to investigate complex multiphase systems phenomena such as fluid mixing layers, phase separation under shear and microstructure evolution during solidification processes. As interfaces are replaced by thin transition regions (diffuse interfaces), phase field simulations need great resolution in these regions to capture correctly the physics of the studied problem. However, this is not an easy task to do numerically. Phase field model equations have high order derivatives and intricate nonlinear terms, which require an efficient numerical strategy that can achieve accuracy both in time and in space, especially in three dimensions. To obtain the required resolution in time, we employ a semi-implicit second order discretization scheme to solve the coupled Cahn-Hilliard/Navier-Stokes equations (Model H). To resolve adequatly the relevant physical scales in space, we use locally refined meshes which adapt dynamically to cover special flow regions, e.g., the vicinity of the fluid interfaces. We demonstrate the efficiency and robustness of our methodology with simulations that include spinodal decomposition, the deformation of drops under shear and Kelvin-Helmholtz instabilities.
Green, Andrew David. "Cosmological applications of multi-grid methods." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365825.
Повний текст джерелаThompson, Ross Anthony. "Galerkin Projections Between Finite Element Spaces." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52968.
Повний текст джерелаMaster of Science
Arpaia, Luca. "Adaptive techniques for free surface flow simulations : Application to the study of the 2011 Tohoku Tsunami." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0666.
Повний текст джерелаIn this thesis we implement the Shallow Water equations (SWEs) on unstructured grids in order to simulate free surface flow over irregular bathymetries, wetting/drying and other complex phenomena that typically occurs in hydrodynamic applications. In particular we would to accurately simulate tsunami events, from large scale wave propagation up to localized runup. To this aim we use two methods that are extensively compared along the manuscript: the Finite Volume method, which is very popular in the hydrodynamics and hydraulic community and a more recent technique called Residual Distribution which belongs to the class of multidimensional upwind schemes. To enhance the resolution of important flow feature such as bore development or small scale flooding, we use a dynamic mesh adaptation based on a redistribution of mesh nodes or r-adaptation (r stands for "relocation"). The proper combination of this method with the flow solver is usually referred to as Moving Mesh Method. Among the many different moving mesh algorithms available we propose an Arbitrary Lagrangian Eulerian (ALE) form of the SWEs which elegantly permit to evolve the flow variables from one mesh to the updated one
Limare, Alexandre. "Raffinement adaptatif de maillages intersectants, en Volumes Finis d’ordre élevé, pour l’aéropropulsion." Thesis, Troyes, 2017. http://www.theses.fr/2017TROY0028.
Повний текст джерелаThis thesis is part of an effort to develop numerical industrial tools for the simulation of unsteady compressible flows about bodies in relation motion often encountered in the context of space launchers. FLUSEPA, a code developed by ArianeGroup, relies on a high-order Finite Volume formulation and a conservative overlapping of meshes using geometric intersections. In the overlapping regions, geometric faces allow the calculation of fluxes and the advection of shocks and unsteady structures. This manuscript describes the implementation of a cell-based Adaptive Mesh Refinement (AMR) technique for unstructured meshes composed of hexahedra. This new method eases the mesh construction process and ensures a local resolution adapted to the physical properties captured. In order to be functional, the AMR module must be consistent with the pre-existing spatio-temporal numerical schemes (i.e. be conservative and precise) and also keep the algorithmic performance. Thus, the obtained solution is divided between several processes with a load balancing specific to the explicit temporal adaptive numerical scheme was devised and includes a high-order conservative projection of the variables for the refined cells. These two properties compose a consistant global numerical strategy. Several test cases are run using this module and validate its implementation
Alharbi, Abdulghani Ragaa. "Numerical solution of thin-film flow equations using adaptive moving mesh methods." Thesis, Keele University, 2016. http://eprints.keele.ac.uk/2356/.
Повний текст джерелаEibner, Tino, and Jens Markus Melenk. "An adaptive strategy for hp-FEM based on testing for analyticity." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601484.
Повний текст джерелаDion-Dallaire, Andrée-Anne. "A Framework for Mesh Refinement Suitable for Finite-Volume and Discontinuous-Galerkin Schemes with Application to Multiphase Flow Prediction." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42204.
Повний текст джерелаJeffers, Rebecca Siân. "Spatial goal-based error estimation and adaptive mesh refinement (AMR) for diamond difference discrete ordinate (DD-SN) methods." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/44551.
Повний текст джерелаKrishnan, Sreedevi. "An Adaptively refined Cartesian grid method for moving boundary problems applied to biomedical systems." Diss., University of Iowa, 2006. https://ir.uiowa.edu/etd/87.
Повний текст джерелаApel, T., and F. Milde. "Realization and comparison of various mesh refinement strategies near edges." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199800531.
Повний текст джерела