Добірка наукової літератури з теми "Adaptive bitrate Algorithm"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Adaptive bitrate Algorithm".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Adaptive bitrate Algorithm"
Jabbar, Saba Qasim, and Dheyaa Jasim Kadhim. "A Proposed Adaptive Bitrate Scheme Based on Bandwidth Prediction Algorithm for Smoothly Video Streaming." Journal of Engineering 27, no. 1 (January 1, 2021): 112–29. http://dx.doi.org/10.31026/j.eng.2021.01.08.
Повний текст джерелаJabbar, Saba Qasim, and Dheyaa Jasim Kadhim. "A Proposed Adaptive Bitrate Scheme Based on Bandwidth Prediction Algorithm for Smoothly Video Streaming." Journal of Engineering 27, no. 1 (January 1, 2021): 112–29. http://dx.doi.org/10.31026/10.31026/j.eng.2021.01.08.
Повний текст джерелаKaragkioules, Theodoros, Georgios S. Paschos, Nikolaos Liakopoulos, Attilio Fiandrotti, Dimitrios Tsilimantos, and Marco Cagnazzo. "Online Learning for Adaptive Video Streaming in Mobile Networks." ACM Transactions on Multimedia Computing, Communications, and Applications 18, no. 1 (January 31, 2022): 1–22. http://dx.doi.org/10.1145/3460819.
Повний текст джерелаCwalina, Krzysztof, Slawomir Ambroziak, Piotr Rajchowski, Jaroslaw Sadowski, and Jacek Stefanski. "A Novel Bitrate Adaptation Method for Heterogeneous Wireless Body Area Networks." Applied Sciences 8, no. 7 (July 23, 2018): 1209. http://dx.doi.org/10.3390/app8071209.
Повний текст джерелаGuo, Jia, Chengrui Li, Jinqi Zhu, Xiang Li, Qian Gao, Yunhe Chen, and Weijia Feng. "Long Short-Term Memory-Based Non-Uniform Coding Transmission Strategy for a 360-Degree Video." Electronics 13, no. 16 (August 19, 2024): 3281. http://dx.doi.org/10.3390/electronics13163281.
Повний текст джерелаAlahmadi, Mohannad, Peter Pocta, and Hugh Melvin. "An Adaptive Bitrate Switching Algorithm for Speech Applications in Context of WebRTC." ACM Transactions on Multimedia Computing, Communications, and Applications 17, no. 4 (November 30, 2021): 1–21. http://dx.doi.org/10.1145/3458751.
Повний текст джерелаLi, Mao-quan, and Zheng-quan Xu. "An adaptive preprocessing algorithm for low bitrate video coding." Journal of Zhejiang University-SCIENCE A 7, no. 12 (December 2006): 2057–62. http://dx.doi.org/10.1631/jzus.2006.a2057.
Повний текст джерелаPeng, Shuai, Jialu Hu, Han Xiao, Shujie Yang, and Changqiao Xu. "Viewport-Driven Adaptive 360◦ Live Streaming Optimization Framework." Journal of Networking and Network Applications 1, no. 4 (January 2022): 139–49. http://dx.doi.org/10.33969/j-nana.2021.010401.
Повний текст джерелаChen, Jessica, Henry Milner, Ion Stoica, and Jibin Zhan. "Benchmark of Bitrate Adaptation in Video Streaming." Journal of Data and Information Quality 13, no. 4 (December 31, 2021): 1–24. http://dx.doi.org/10.1145/3468063.
Повний текст джерелаLuo, Dan, Shuhua Xiong, Chao Ren, Raymond Edward Sheriff, and Xiaohai He. "Fusion-Based Versatile Video Coding Intra Prediction Algorithm with Template Matching and Linear Prediction." Sensors 22, no. 16 (August 10, 2022): 5977. http://dx.doi.org/10.3390/s22165977.
Повний текст джерелаДисертації з теми "Adaptive bitrate Algorithm"
Kanj, Hind. "Zero-Latency strategies for video transmission using frame extrapolation." Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2024. https://ged.uphf.fr/nuxeo/site/esupversions/53e0c0d3-296e-477f-9adc-2dbc315128f5.
Повний текст джерелаThe demand for seamless, high-quality video content delivery with minimal latency is paramount in today's applications such as sports broadcasting, videoconferencing, and remote system control. However, video delivery still faces challenges due to unpredictable nature of communication channels. The variations in channel characteristics can impact the quality of experience in terms of content quality and End-To-End latency - the time elapsed between video acquisition at the transmitter and its display at the receiver.The aim of this thesis is to address the issue of real time applications with unicast transmission from server to client such as remote control applications, while maintaining a good quality. We test the effectiveness of a recent deep learning technique for latency compensation in the video transmission scheme and its impact on video quality. This technique predicts future frames using available previous frames, allowing the end-user to display the images at the desired time. The results demonstrate the promise of extrapolation, especially for content with low temporal information. However, it still needs to be improved in terms of quality, long-term prediction, and extrapolation delay.Various studies focus on the integration of a hybrid digital-analog scheme to improve the perceptual quality, taking advantage of the strengths of both digital and analog methods. We study the effectiveness of low-latency hybrid scheme in term of reducing latency while maintaining high video quality. The results show that the hybrid scheme improves the quality of the received video in most cases. However, the extrapolation artifacts outweigh encoding artifacts and mask the advantages of hybrid schemes. Thus, the improvement in hybrid scheme performance relies on the enhancement of extrapolation.Moreover, HTTP Adaptive Streaming methods have proven their effectiveness in improving the quality of experience by dynamically adjusting the encoding rate based on channel conditions. However, most of these adaptation algorithms are implemented at the client level, which poses challenges in meeting latency requirements for real time applications. In addition, in real time application, videos are acquired, compressed, and transmitted from the device acting as the server. Therefore, client-driven rate adaptation approaches are not suitable due to the variability of the channel characteristics. Moreover, in these methods, the decision-making is done with a periodicity of the order of a second, which is not reactive enough when the server is moving, leading to significant delays. Therefore, it is important to use a finer adaptation granularity in order to reduce the End-To-End delay. We aim to control the End-To-End latency during video delivery while ensuring a high quality of experience. A frame-level encoder rate control at the transmitter side is combined with a frame extrapolation at the receiver side to compensate the End-To-End delays. Frame-level rate control enables the system to adapt to sudden variations of channel characteristics. Null apparent End-To-End delay can be reached at the price of some signal quality. To the best of our knowledge, state-of-the-art algorithms try to optimize the individual sources of delay in the video delivery scheme, but not to reduce the whole End-To-End latency and achieve zero latency. A model predictive control approach involving the buffer level at the transmitter and the throughput estimation is used to find the optimal value of encoding rate for each frame. It dynamically adjusts the trade-off between the encoding rate and the extrapolation horizon at the receiver, while predicting the impact of the encoding rate decision on future frames, thus providing the best quality of experience
Mazza, Stefano. "Implementazione e analisi di algoritmi dinamici per trasmissione MPEG-DASH su client Android." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11875/.
Повний текст джерелаBelda, Ortega Román. "Mejora del streaming de vídeo en DASH con codificación de bitrate variable mediante el algoritmo Look Ahead y mecanismos de coordinación para la reproducción, y propuesta de nuevas métricas para la evaluación de la QoE." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/169467.
Повний текст джерела[CA] Aquesta tesi presenta diverses propostes encaminades a millorar la transmissió de vídeo a través de l'estàndard DASH (Dynamic Adaptive Streaming over HTTP). Aquest treball de recerca estudia el protocol de transmissió DASH i les seves característiques. Alhora, planteja la codificació amb qualitat constant i bitrate variable com a manera de codificació del contingut de vídeo més indicada per a la transmissió de contingut sota demanda mitjançant l'estàndard DASH. Derivat de la proposta d'utilització de la manera de codificació de qualitat constant, cobra major importància el paper que juguen els algorismes d'adaptació en l'experiència dels usuaris en consumir el contingut. En aquest sentit, aquesta tesi presenta un algoritme d'adaptació denominat Look Ahead el qual, sense modificar l'estàndard, permet utilitzar la informació de les grandàries dels segments de vídeo inclosa en els contenidors multimèdia per a evitar prendre decisions d'adaptació que desemboquin en una parada indesitjada en la reproducció de contingut multimèdia. Amb l'objectiu d'avaluar les possibles millores de l'algoritme d'adaptació presentat, es proposen tres models d'avaluació objectiva de la QoE. Els models proposats permeten predir de manera senzilla la QoE que tindrien els usuaris de manera objectiva, utilitzant paràmetres coneguts com el bitrate mitjà, el PSNR (Peak Signal-to-Noise Ratio) i el valor de VMAF (Video Multimethod Assessment Fusion). Tots ells aplicats a cada segment. Finalment, s'estudia el comportament de DASH en entorns Wi-Fi amb alta densitat d'usuaris. En aquest context es produeixen un nombre elevat de parades en la reproducció per una mala estimació de la taxa de transferència disponible deguda al patró ON/OFF de descàrrega de DASH i a la variabilitat de l'accés al mitjà de Wi-Fi. Per a pal·liar aquesta situació, es proposa un servei de coordinació basat en la tecnologia SAND (MPEG's Server and Network Assisted DASH) que proporciona una estimació de la taxa de transferència basada en la informació de l'estat dels players dels clients.
[EN] This thesis presents several proposals aimed at improving video transmission through the DASH (Dynamic Adaptive Streaming over HTTP) standard. This research work studies the DASH transmission protocol and its characteristics. At the same time, this work proposes the use of encoding with constant quality and variable bitrate as the most suitable video content encoding mode for on-demand content transmission through the DASH standard. Based on the proposal to use the constant quality encoding mode, the role played by adaptation algorithms in the user experience when consuming multimedia content becomes more important. In this sense, this thesis presents an adaptation algorithm called Look Ahead which, without modifying the standard, allows the use of the information on the sizes of the video segments included in the multimedia containers to avoid making adaptation decisions that lead to undesirable stalls during the playback of multimedia content. In order to evaluate the improvements of the presented adaptation algorithm, three models of objective QoE evaluation are proposed. These models allow to predict in a simple way the QoE that users would have in an objective way, using well-known parameters such as the average bitrate, the PSNR (Peak Signal-to-Noise Ratio) and the VMAF (Video Multimethod Assessment Fusion). All of them applied to each segment. Finally, the DASH behavior in Wi-Fi environments with high user density is analyzed. In this context, there could be a high number of stalls in the playback because of a bad estimation of the available transfer rate due to the ON/OFF pattern of DASH download and to the variability of the access to the Wi-Fi environment. To relieve this situation, a coordination service based on SAND (MPEG's Server and Network Assisted DASH) is proposed, which provides an estimation of the transfer rate based on the information of the state of the clients' players.
Belda Ortega, R. (2021). Mejora del streaming de vídeo en DASH con codificación de bitrate variable mediante el algoritmo Look Ahead y mecanismos de coordinación para la reproducción, y propuesta de nuevas métricas para la evaluación de la QoE [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/169467
TESIS
Частини книг з теми "Adaptive bitrate Algorithm"
Sharif, Usman, Adnan N. Qureshi, and Seemal Afza. "ORTIA: An Algorithm to Improve Quality of Experience in HTTP Adaptive Bitrate Streaming Sessions." In Advances in Intelligent Systems and Computing, 29–44. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55190-2_3.
Повний текст джерелаLi, Weihe, Jiawei Huang, Yu Liang, Jingling Liu, Wenlu Zhang, Wenjun Lyu, and Jianxin Wang. "CAST: An Intricate-Scene Aware Adaptive Bitrate Approach for Video Streaming via Parallel Training." In Algorithms and Architectures for Parallel Processing, 131–47. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0859-8_8.
Повний текст джерелаKhan, Koffka, and Wayne Goodridge. "Ultra-HD Video Streaming in 5G Fixed Wireless Access Bottlenecks." In Proceedings of CECNet 2021. IOS Press, 2021. http://dx.doi.org/10.3233/faia210441.
Повний текст джерелаТези доповідей конференцій з теми "Adaptive bitrate Algorithm"
Nos, Tarnim, Ahmed O. Elmeligy, Mohamed S. Hassan, Taha Landolsi, and Mahmoud H. Ismail. "Buffer-Based Adaptive Bitrate Algorithm for Enhanced Quality of Experience." In 2024 International Telecommunications Conference (ITC-Egypt), 721–26. IEEE, 2024. http://dx.doi.org/10.1109/itc-egypt61547.2024.10620520.
Повний текст джерелаWu, Xiaona, Xiao Li, Xun Tong, Rong Xie, and Li Song. "Reinforcement Learning Based Adaptive Bitrate Algorithm for Transmitting Panoramic Videos." In 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019. http://dx.doi.org/10.1109/iscas.2019.8702736.
Повний текст джерелаMeng, Linghui, Fangyu Zhang, Lei Bo, Hancheng Lu, Jin Qin, and Jiangping Han. "Fastconv: Fast Learning Based Adaptive BitRate Algorithm for Video Streaming." In GLOBECOM 2019 - 2019 IEEE Global Communications Conference. IEEE, 2019. http://dx.doi.org/10.1109/globecom38437.2019.9013152.
Повний текст джерелаXue, Xiaoxi, and Yuchao Zhang. "ABC: Adaptive Bitrate Algorithm Commander for Multi-Client Video Streaming." In APNET 2023: 7th Asia-Pacific Workshop on Networking. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3600061.3603134.
Повний текст джерелаZhang, Yin, and Xin Sun. "A Video Bitrate Adaptive Algorithm for Public Network Digital Trunking Terminals." In 2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS). IEEE, 2022. http://dx.doi.org/10.1109/ispds56360.2022.9874181.
Повний текст джерелаYuan, Jinghao, Bingcong Lu, Mingyue Hao, Xiaoyong Liu, Li Song, and Wenjun Zhang. "SpaAbr: Size Prediction Assisted Adaptive Bitrate Algorithm for Scalable Video Coding Contents." In 2021 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, 2021. http://dx.doi.org/10.1109/bmsb53066.2021.9547154.
Повний текст джерелаYuan, Haoyue, Hancheng Lu, Linghui Meng, and Mengjie Liu. "MUABR: Multi-user Adaptive Bitrate Algorithm based Multi-agent Deep Reinforcement Learning." In ICC 2022 - IEEE International Conference on Communications. IEEE, 2022. http://dx.doi.org/10.1109/icc45855.2022.9839087.
Повний текст джерелаChen, Chunlei, Kaijun Liu, Chen Dong, and Geng Liu. "LD-ABR: An Adaptive Bitrate Algorithm for Video Transmission in Wireless Network." In 2023 IEEE 3rd International Conference on Computer Communication and Artificial Intelligence (CCAI). IEEE, 2023. http://dx.doi.org/10.1109/ccai57533.2023.10201241.
Повний текст джерелаYang, Dujia, Changjian Song, Jian Wang, Rangang Zhu, and Jun'An Yang. "QoE-Aware Adaptive Bitrate Algorithm Based on Subepisodic Deep Reinforcement Learning for DASH." In ICMLC 2023: 2023 15th International Conference on Machine Learning and Computing. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3587716.3587733.
Повний текст джерелаJabbar, Saba Qasim, Dheyaa Jasim Kadhim, and Yu Li. "An Adaptive Bitrate Algorithm Based on Estimation and Video Adaptation for Improving QoE in DASH." In 2018 International Conference on Computer Science, Electronics and Communication Engineering (CSECE 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/csece-18.2018.41.
Повний текст джерела